The lipids in the uppermost layer of the skin, the stratum corneum (SC), play an important role in the skin barrier function. The three main subclasses in the SC lipid matrix are ceramides (CER), cholesterol and free fatty acids. In inflammatory skin diseases, such as atopic dermatitis and psoriasis, the SC lipid composition is modulated compared to the composition in healthy SC. One of the main alterations is the molar ratio between the concentration of CER N-(tetracosanoyl)-sphingosine (CER NS) and CER N-(tetracosanoyl)-phytosphingosine (CER NP), which correlated with an impaired skin barrier function. In the present study we investigated the impact of varying the CER NS:CER NP ratios on the lipid organization, lipid arrangement and barrier functionality in SC lipid model systems. The results indicate that a higher CER NS:CER NP ratio as observed in diseased skin did not alter the lipid organization or lipid arrangement in the long periodicity phase encountered in SC. The trans-epidermal water loss, an indication of the barrier functionality, was significantly higher for the CER NS:CER NP 2:1 model (mimicking the ratio in inflammatory skin diseases) compared to the CER NS:CER NP 1:2 ratio (in healthy skin). These findings provide a more detailed insight into the lipid organization in both healthy and diseased skin and suggest that in vivo the molar ratio between CER NS:CER NP contributes to barrier impairment as well, but might not be the main factor.
Effect of sphingosine and phytosphingosine ceramide ratio on lipid arrangement and barrier function in skin lipid models.
CHDR
Nădăban A, Rousel J, El Yachioui D, Gooris GS, Beddoes CM, Dalgliesh RM, Malfois M, Rissmann R, Bouwstra JA