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costs by providing rapid and accurate image interpretation, improving 
workflow in healthcare delivery, or empowering patients to monitor 
their health at a new level.5

A well-known component of ai is Machine Learning (ml). Generally, 
machine learning is a type of ai that provides computers with the 
ability to learn patterns without being explicitly programmed. It 
focuses on the development of algorithms that can change when 
exposed to new data. More specifically, machine learning techniques 
can be used to identify patterns from high-dimensional data and 
make decisions with minimal human intervention. Additionally, it 
can be used to obtain insights, predictions, and decisions from vast 
amounts of data by combining different parameters. For instance, 
machine learning has already shown its ability to identify key features 
(markers) and modelling predictive biomarker signature in a variety 
of medical fields, including oncology6, neurology7-9, immunology10, 
gastroenterology11, diabetes12, and skin diseases.13,14 Thus, machine 
learning can play an important role by using data collected in clinical 
trials to rationally decide on the best application of old and new drugs. 
The advantages of machine learning techniques over inferential 
statistical models are to infer relationships between variables for 
automatic pattern discovery based on multi-dimensional data and 
the ability to build generalized models.15 

One of the subsets of machine learning is supervised learning, in 
which data consisting of a series of measurements are described by a 
set of features which is used to train an algorithm. Subsequently, this 
algorithm can be used to make decisions based on concealed data.

In order to evaluate the performance of the algorithm on unseen 
data, the data set with known output is split into a training and 
testing/hold out set. The machine learning model is built using the 
training set, whereupon the outcomes of the testing set are predicted. 
These predictions are consequently compared with the real outcomes 
(graphically depicted in Figure 1).

A machine learning model can be a regression or classification 
algorithm. A regression model is used to predict a continuous value 
such as price, salary, age, etc. To evaluate this kind of model error 
metrics such as the r-squared, the mean squared error, the mean 

Background 
During the development of new drugs, an increasing amount of data 
collected from clinical trials have become available.1 These growing 
datasets are mainly the result of major advancements in technology 
in health care. The datasets comprise ,among others, a broad area of 
diagnostics, such as laboratory data and data obtained via advanced 
imaging techniques. Also, the information density of standard 
techniques such as electrocardiographic (ecg) or questionnaires are 
going beyond the usual read-outs as advanced data analytics allow 
to obtain more information. Further, the context of the datasets 
is becoming increasingly important as can be illustrated by the 
difference in blood pressure measurements as performed in a clinical 
setting compared to continuous recording of the blood pressure 
during days or even weeks. It is essential to realize, however, that 
data by themselves are useless. To be useful, data must be analyzed, 
interpreted, and acted on.2 

The goal of focusing on extensive data sets is manyfold. In this 
thesis the main focus will be on data collected in the context of early 
phase drug development. The aim is to find adequate biomarkers 
for prognostication or identification of factors that result in a 
better understanding of the intended and not-intended effects of 
pharmacological interventions. The detection of biomarkers by the 
integration of data from early pharmacological data in human studies 
could ensure a better informed future clinical drug development.3 It can 
also be concluded that this development should be halted at an early 
stage, which might save a lot of money, as described by Cohen et al.4 
    Although in clinical trials an increasing number of analyses are being 
performed to find biomarkers, it is not always clear 1) what to do 
with the collected data and 2) whether all of the large number of 
analyses are needed to identify the biomarkers. Artificial Intelligence 
(ai) strategies may assist in answering these questions. 

Broadly speaking, ai can be defined as the discipline devoted to 
the simulation of human cognitive capabilities on the computer. ai 
is already widely used, and found its way into healthcare and medical 
fields. For example, ai can improve healthcare efficiency and reduce 
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• Classical data based on electrocardiographic (ecg) 
measurements such as conduction intervals, electrical-
anatomical features of atria and ventricles 

• Innovative data based on driving performance tests and driving 
simulators

• Emerging data based on microbiome data in healthy subjects 
and patients with skin disease.

Outline of this Thesis
This thesis contains machine learning approaches on a variety 
of clinical data sets. The classical data consist of electrical signals 
from the ecg of healthy subjects, the innovative data originate from 
measurements in a driving simulator, and emerging data are derived 
from dna analysis of the microorganisms living on the skin of patients 
with skin disease.

In Chapter 1 an introduction to this thesis is given.
In Chapters 2 and 3, the application of both classical data analysis 

and machine learning analysis on the ecg in human subjects are 
explored.

The ecg is a ubiquitous tool in clinical medicine that has been used 
for decades since its invention in 1902 by the Dutch physiologist 
Willem Einthoven from Leiden, who was awarded the Nobel prize 
in 1924. The ecg is a low-cost, rapid and simple test that is available 
even in the most resource-scarce settings.17 In the classical setting 
the ecg is used to detect abnormal electrical cardiac signals in 
patients with myocardial infarction, arrhythmias, cardiomyopathy, 
and other cardiac disorders. The ecg has proven its important and 
significant value in daily clinical practice. Simple combinations of 
ecg abnormalities can be recognized and interpreted. However, 
more complex combinations of ecg deviations are difficult to 
translate towards a cardiac disease. Machine learning may provide 
identification of patterns in multiple abnormalities in individual 
patients, given proper training in a large data set. In this data set the 
link between specific complex patterns of ecg abnormalities and a 
certain clinical diagnosis is made. Subsequently, this relationship can 

absolute error, etc. are calculated. A classification model is used to 
predict discrete values, such as male or female, normal or abnormal, 
healthy or unhealthy, etc. Accuracy, specificity, sensitivity, and area 
under the curve are known error-metrics to evaluate a classification 
model.

Figure 1 Process of data splitting to evaluate the performance of the 
model. The data is split into a training and a testing set. A model is built 
based on the training set and consequently evaluated using the testing 
set.16

Machine learning models can also be divided into linear and non-
linear models. Linear algorithms such as linear regression and 
logistic regression assume a linear relationship between features 
and outcome. In case a linear model is used, it is clear what the role 
of each feature is in the predictions. When the relation between the 
features and the outcome is not linear, a non-linear model such as a 
random forest or neural network should be used. Then the models 
can become more like a ‘black box’ and it is not obvious what role each 
feature plays in making predictions. At that point other ways must be 
found to explain the prediction.

In this PhD thesis several machine learning techniques applied to data 
sets derived from early phase clinical research are explored. Machine 
learning strategies are applied on three types of data:
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of physiological age – in contrast to actual chronological age – using 
medical records, vital signs, laboratory data, or epigenetic changes.29,30 
These investigations indicate the existence of a gap between predicted 
physiological age and actual chronological age. Exploration of this gap 
is clinically important as a serious gap difference has been shown to 
be associated with higher risks of all-cause mortality, cardiovascular 
disease, obesity, earlier menopause, and frailty.30-35 

Chapters 4 and 5 contain two machine learning studies on 
data from abnormal driving behaviour. Research into abnormal 
driving behaviour is needed as car-drivers have a potential risk to 
become involved in a crash and compromise traffic safety of others 
and themselves. Traffic accidents associated with drug use have 
significantly increased over the past two decades.36 Driving simulators 
provide a safe means of studying drug effects on the ability of 
proper car-driving37. Currently, many researchers use the standard 
deviation of the lateral position (SDlp) as a measure to quantify driving 
quality37,38. Although several studies have shown that the SDlp is 
sensitive to drug-induced changes in driving behaviour38-41, it is highly 
unlikely that SDlp by itself is able to distinguish between numerous 
different aspects of driving. Altogether, it is questionable whether 
the SDlp alone is a good benchmark for safe driving.

Improving assessment of driving behaviour may be achieved by 
combining more parameters such as the mean lateral position (mlp), 
mean speed (ms), and the standard deviation of speed (SD-Speed) 
using machine learning, employing a specific algorithm1,2,42,43. Such 
algorithms may not only improve the recognition of impaired driving 
behaviour but may also explain how and to which extent the driving 
behaviour is affected. An algorithm combining multiple parameters 
may improve early recognition of the driving parameters affected by 
new drugs. 

In Chapter 4 two machine learning models are built to assess 
driving behaviour after intake of alcohol and alprazolam using all 
parameters. Subsequently, we compared the performance of these 
models with models using the golden standard (SDlp) alone.

The ultimate goal of the construction of these models are to test 
new drugs or interventions with (a selection of) models trained on 

be applied on the ecg of a new patient. Compared with the classical 
ecg analysis, machine learning may thus provide additional ways to 
identify changes in complex ecg abnormalities in individual patients. 
The application of machine learning in ecg analyses has just been 
started recently.5 Machine learning and other advanced ai methods, 
such as deep-learning convolutional neural networks, have enabled 
rapid, human-like interpretation of the ecg. Signals and patterns 
largely unrecognizable to human interpreters can be detected by 
multilayer ai networks with precision, making the ecg a powerful, 
non-invasive biomarker, even more than in the classical setting.17  
    In Chapter 2 a typical classical analysis is presented, by studying how 
many ecgs are needed to perform an adequate qt interval analysis. 
Undesirable side effects of several drugs are the unwanted occurrence 
of cardiac arrhythmias and subsequent sudden cardiac death, as it can 
cause prolongation of the qt interval18 A thorough qt (tqt) study is 
specifically designed to evaluate the potential prolongation of the qt 
interval by a novel compound.19 Although many of these studies have 
been performed since the introduction of the guideline,20 the correct 
performance and the scientific value of a tqt study are still under 
debate. A tqt study exposes many healthy volunteers or patients to 
the novel compound and the costs are relatively high.20-22

In current practice, several elements to measure a qt prolonging 
effect of a specific compound are not underpinned by peer-reviewed 
scientific data. This includes the number of ecg replicates that are 
recorded, which is arbitrarily set at three or more by the regulators,19,23 
and the formula that is deployed to correct the qt-interval for heart 
rate.24,25 

In Chapter 3 a machine learning approach has been used to 
investigate ecg changes during aging. Other readout measures 
include the RR interval, PR interval and QRS duration. Typically, the 
pharmacological treatment effects are mediated by recognized 
channels on the cardiac surface.26 However, there are cardiac effects 
that require a longer period of time to become visible on the surface 
ecg, such as aging induced cardiac fibrosis, and it is largely unknown 
if these subtle effects can be visualized on a surface ecg.27,28 There 
has been a number of recent investigations regarding the prediction 
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diagnosis of many clinical diseases. As a result, machine learning may 
be highly informative for the development of therapeutic modalities 
to ameliorate the microbial imbalance and to counteract certain 
pathogens. 

Condensed objectives of this thesis
In Chapter 1 we present an introduction to various machine learning 
techniques which can be applied in early phase drug development.

In Chapter 2 a classical analysis on ecg recordings is presented, 
obtained in a placebo-controlled phase I single ascending dose trial 
with a compound that prolongs the qt interval. In Chapter 3 a machine 
learning approach is used to investigate ecg changes during aging. 
    In Chapter 4 we analysed the effects of alcohol and alprazolam on 
car driving behaviour. Using machine learning we aimed for improved 
assessment of aberrant driving by including multiple parameters 
derived from a driving simulator. We aimed to develop an algorithm 
to explain in what way and to which extent the driving behaviour was 
affected by alcohol and alprazolam. 

In Chapter 5 an attempt was made to develop another model 
allowing to characterize sleep-deprived driving behaviour. We aimed 
to demonstrate how driving behaviour after intake of alcohol or 
alprazolam is similar to sleep-deprived driving behaviour, in order 
to validate the use of the model for characterization of a new drug. 

In Chapter 6 we employed machine learning to predict disease from 
the microbiome dataset in patients with skin disorders. We tried to 
identify discriminative biomarkers in the microbiome of patients with 
seborrheic dermatitis versus healthy controls. We hypothesized that 
the microbiome-based biomarkers alone can be used to predict the 
correct diagnosis. Modelling of the human microbiome by machine 
learning offers the potential to identify specific microbial biomarkers, 
useful for new drug development. 

Chapter 7 presents a general discussion on the main findings of 
this PhD thesis. In the section we discuss potential next steps in using 
machine learning during early phase drug development. 

distinguishing interventions already known to impair driving behavior. 
A model for detection of sleep-deprived driving may be a good first 
test in a battery of tests that can evaluate the effect of new drugs 
on driving behaviour, as sleepiness is also known to affect driving 
behavior.44-47 Sleep deprivation can serve as a surrogate of sedation 
caused by sedative drug effects.48

Although drowsy drivers are as dangerous as drivers with unlawful 
blood alcohol levels they cannot be caught in a police checkpoint, 
but only in case of a perceived dangerous driving situation.49 A 
sufficiently accurate model could be used to detect drug or food 
induced sleepiness, allowing either dose adjustment or adequate 
warning notes. 

In Chapter 5 a machine learning model is created to detect sleep-
deprived driving. This model is used to investigate if it can predict 
sleep-deprived driving characteristics after intake of alcohol or 
alprazolam. 

In Chapter 6 machine learning in microbiome data of patients with 
skin disease is explored. The skin is the largest organ of the human 
body and is colonized by a wide range of microorganisms.50 Many of 
the micro-organisms living on the skin (its microbiome) are harmless 
and, in some cases, provide vital functions.

At present, the skin microbiome is known to be involved in several 
skin diseases.51 This breakthrough has led to additional knowledge 
on specific microorganisms that play a role in some of these skin 
disorders, for instance the role of Staphylococcus aureus in atopic 
dermatitis and Cutibacterium acnes in acne vulgaris. However, the role 
of microorganisms that are less abundant is still largely unknown. It 
is plausible that the presence of a combination of several different 
organisms forming a specific microbial profile might also contribute to 
the development and subtype of skin disease. Machine learning may 
offer a solution because the underlying computational analyses may 
facilitate the identification of specific patterns of microorganisms 
that are discriminative for a specific type of skin disease.52
Modelling of the human microbiome by machine learning offers the 
potential to identify specific microbial biomarkers and may aid in the 
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Abstract
Introduction The present analysis addressed the effect of the 
number of ecg replicates extracted from a continuous ecg on esti-
mated QT interval prolongation for different QT correction formulas.

Methods For one hundred healthy volunteers, who received a 
compound prolonging the qt interval, 18 ecg replicates within a 3 
minute window were extracted from 12-lead Holter ecgs. Ten qt 
correction formulas were deployed and the qtc interval was con-
trolled for baseline and placebo and averaged per dose level. 

Results The mean prolongation difference was >4 ms for single 
and > 2 ms for triplicate ecg measurements compared to the 18 ecg 
replicate mean value. The difference was <0.5ms after 14 replicates. In 
contrast, concentration-effect analysis was independent of replicate 
count and also of qt correction formula.

Conclusion The number of ecg replicates impacted the estimated 
QT interval prolongation for all deployed qt correction formulas. 
However, concentration-effect analysis was independent of both 
the replicate number and correction formula. 

 

Introduction
Drugs can be associated with cardiac arrhythmias and subsequent 
sudden cardiac death.1 Careful cardiac assessment of the drug’s effect 
on the ventricular repolarization has therefore become mandatory.2 
The effect on the ventricular repolarization manifests itself as 
morphological changes in the ST segment of the surface ecg and a 
prolongation of the qt-interval.3 The ICH E14 guideline4 covers the 
regulator’s requirements on the assessment of the compound’s qt 
interval prolonging effect as a proxy for (polymorphic) ventricular 
arrhythmia, which includes a thorough qt (tqt) study. A tqt study is 
a study specifically designed to evaluate the qt interval prolonging 
effect of a novel compound and consists of a placebo-controlled, cross-
over study with a positive control.4 Although many of these have been 
performed since the introduction of the guideline,5 the tqt study 
is still under debate. The scientific value of the tqt remains subject 
of discussion, as the study exposes additional healthy volunteers or 
patients to the novel compound, and the costs are high.5-7 

Several studies have evaluated novel approaches to assess a qt 
prolonging effect of novel compounds. Dense ecg recording that 
was implemented into phase I single ascending dose and multiple 
ascending dose studies showed that is possible in this context 
to reliably assess qt interval prolonging effects.8,9 In addition, 
implementation of a concentration-effect analysis may improve the 
assessment of the qt prolonging effect even further.8,10

However, several elements in current practice to measure a 
compound’s qt prolonging effect are not underpinned by peer-
reviewed scientific data. This includes the number of ecg replicates 
that are recorded, which is arbitrarily set at three or more by the 
regulators,4,11 and the qt correction formula that is deployed.12,13 
Therefore, we performed an analysis on ecg recordings obtained 
in a placebo-controlled phase I single ascending dose trial with a 
compound that prolonged the qt interval. 

Aim of the study

The aim of the present analysis was to demonstrate the feasibility of a 
novel approach in which several epochs extracted from a continuous 
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ecg recording were used to assess the compound’s effect on the qt 
interval. The optimal number of ecg epochs (replicates) required 
to assess this effect was investigated with the FDA recommended 
approach and the concentration-effect analysis. 

Methods
The present analysis was performed on a placebo-controlled, double-
blind, single ascending dose study that was conducted at our center 
in 2016. The analysis was performed on this study because of the 
implementation of a Holter ecg in the study and the dose-dependent 
qt interval prolonging effect of the investigated compound. The study 
consisted of 10 consecutive cohorts of 10 volunteers of whom, at each 
dose level, eight received the active compound and two volunteers 
matching placebo. The dose of the investigated compound increased 
with each cohort, as is typical for a phase I single ascending dose trial. 
All subjects consented to their data being registered and the study 
was performed in accordance to Dutch law on medical-scientific 
research.

Data acquisition 

All subjects were equipped with a 12-lead Holter ecg (Holter H12+ 
recorder, Mortara instruments BV, Milwaukee, WI, USA), which was 
mounted just before the dose administration until 24 hours after 
the dose administration. Standard electrode positioning was used. 
Subjects were in a supine position and in a calm, relaxed state for 
at least 5 minutes before any 5 minute window of continuous ecg 
recording. The ecg recordings from the Holter ecg were extracted 
during the latter 5 minutes. The protocol was approved by the Dutch 
health authorities and by the local ethics committee, Foundation 
Beoordeling Ethiek Biomedisch Onderzoek. Extractions were 
performed on a single time point which was associated with the 
largest qt interval prolongation observed using standard 12-lead ecgs 
made in triplicate. The Holter ecg strips were analyzed by Intermark 
ecg Research Technology bv (Someren, the Netherlands), who 

were blinded to treatment, using LabChart v8.1.3 (ADInstruments, 
Sydney, Australia) with a validated algorithm (ecg analysis module 
v2.4; ADInstruments, Sydney, Australia)., Per subject, 18 ecg epochs 
could be extracted and optimized for signal quality from the 5 minute 
window. The qt and RR interval were measured with the algorithm 
and manually adjusted when necessary as recommended by the E14 
R3 guideline.11 

qtc formulas

The corrected qt (qtc) interval was calculated based on the qt and 
RR interval, in addition to patient characteristics for selected qt 
formulas. 

ecg extraction within window

ecgs in the present analysis were extracted without a time interval 
between the ecgs. In order to simulate a clinical situation, ecg 
recordings for each replicate count were selected in such a way to 
mimic a time interval in between the recording of these ecgs, as would 
be the case in a clinical situation. Table 1 displays the scheme that was 
used for our analysis. 

∆Baselineqtc calculation

Per subject the qtc interval for all evaluated qt correction formulas 
and number of ecg replicates was calculated. This generated 180 qtc 
intervals, with 10 different formulas and a total of 18 ecg replicates per 
subject. The subject’s baseline mean qtc value was then subtracted 
from all calculated qtc interval values, resulting in a qtc change form 
baseline (∆qtc) for all 10 qtc formulas and the 18 ecg replicates.

∆placebo∆Baselineqtc calculation 

The mean ∆qtc from the subjects in the placebo group was subtracted 
from the ∆qtc of the subjects who received the active compound, 
resulting in 180 placebo-corrected ∆qtc (∆placebo∆Baselineqtc , 
∆∆qtc) per subject. The calculation for the ∆∆qtc was performed in 
accordance with the E14 guideline.4
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Table 1 Table displaying the (randomized) selection pattern of ECG win-
dows used for QT analysis. The main goal of the selection method was to 
mimic a time interval between recordings. Fields in grey are selected ECG 
replicates for a given experiment. For example, for experiments based on 
3 ECG replicates, ECG replicates 1, 8, and 15 were used. And, ECG number 3 
is used in the experiments based on 4, 6, 7, 10, 11, 12, 14, 15, 17, or 18 ECGs.

Nr of 
replicates 
ECG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

∆18 replicates∆placebo∆baselineqtc calculation

Since the true value of the ∆∆qtc is unknown, the best estimate of the 
∆∆qtc for each formula was considered to be the mean ∆∆qtc of 18 ecg 
replicates. The difference between the mean ∆∆qtc of each replicate 
count (1 to 18) and the mean ∆∆qtc of 18 ecg replicates was calculated, 
this results in a ∆18 replicates∆placebo∆baselineqtc (∆∆∆qtc). The 
results of this analysis were displayed as a heat map (Figure 1).

∆18 replicates 90% CI ∆baselineqtc calculation

The difference between the range of the 90% CI of the ∆qtc of each 
replicate count and the range of the 90% CI of the ∆qtc of 18 ecg 
replicates was calculated and averaged per cohort and then averaged 
over all 10 cohorts (Δ18 replicates90%CI Δbaselineqtc), as displayed 
in Figure 2.

Concentration-effect analysis

The concentration of the drug at the time of the ecg recording was 
derived from the concentration time profile of the compound using 
the Logarithmic Trapezoidal method14. 

A concentration-effect analysis was performed as previously 
described by Darpo et al.8. In short, subjects were divided into 10 
groups based on the drug estimated investigated medicinal product 
concentration. These were plotted against the mean ∆∆qtc for all qtc 
formulas and number of ecg replicates. 

Statistical analysis

Data are depicted as mean ±their standard deviation or percentages 
where appropriate. Python v3.5.2 (Wilmington, DE, USA) was used 
for statistical analysis. For concentration-effect analysis, a linear 
regression was used. 

Results
A total of 100 subjects were included initially. One subject, who 
received active treatment in cohort 2, was omitted because of insuf-
ficient data quality and the final analysis was performed on data of 
99 subjects. Twenty subjects received placebo and were pooled into 
the placebo cohort. Ten other cohorts, where the dose was increased 
in successive cohorts, consisted of eight healthy volunteers each on 
active treatment. Baseline characteristics are displayed in Table 2. 

The mean qt interval and RR interval per cohort at baseline and at 
the time of the Cmax are displayed in Table 3. 
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Figure 1  Average of the mean ΔΔqtc compared to the mean ΔΔqtc of 
18 ECG replicates (mean ΔΔΔqtc) of all cohorts for every correction meth-
od in absolute values (milliseconds). The mean ΔΔqtc deviates with more 
than 0.5ms (10% of the safety limit) from the most accurate measure-
ment when it is based on less than 14 ecg replicates and more than 1ms 
when it is based on less than 5 replicates. 

Figure 2  Average upper limit of the 90% confidence interval of ΔΔqtc 
compared to the upper limit of the 90% confidence interval of ΔΔqtc of 
18 ECG replicates (mean Δ18 replicates 90%CI Δbaselineqtc) of all cohorts 
for every correction method in absolute values (milliseconds). For 7 out of 
10 correction formulas, the 90% confidence interval of the ΔΔqtc within 
a cohort increases by more than 0.5 ms (10% of the safety limit) when it 
is based on less than 11 ECGs per subject compared to a ΔΔqtc based on 18 
ECGs per subject. 
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Table 2 Baseline data. Average values with standard deviation or percen-
tages where appropriate.

Age (Years) 24.2 ± 4.8

Gender (Male) 100%

Systolic Blood Pressure (mmHg) 121.1 ± 9.2

Diastolic Blood Pressure (mmHg) 72.89 ± 8.05

Heart Rate (min-1) 59.9 ± 8.4

BMI (kg/m2) 23.0 ± 2.9

Temperature (°C) 36.6 ± 0.36

Alcohol Usage (Units / Day) 1.1 ± 1.0

Smoking History (Cigarettes / Day) 0.0 ± 0.0

Cafeine Usage (Units / Day) 1.56 ± 1.16

HbA1c (%) 32.63 ± 2.6

ALAT (U / L) 25.84 ± 12.28

ASAT (U / L) 27.72 ± 7.16

Total Cholesterol (mmol / L) 4.2 ± 0.77

Creatinin (µmol / L) 81.03 ± 8.59

Glucose (mmol / L) 4.67 ± 0.45

PR Interval (ms) 149.13 ± 19.94

QRS Duration (ms) 101.0 ± 8.39

QT interval (ms) 405.89 ± 23.69

Mean and upper limit of 90%CI of ΔΔqtc 
The variability of the mean ΔΔqtc reduced substantially with each 
additional ecg replicate and remained within 0.5 ms (10 % of the safety 
limit of 5 ms) after 14 ecg replicates for all qt correction formulas. In 
Figure 1, the mean ΔΔΔqtc for each number of ecg replicates for each 
qt correction formula is displayed. In addition, Figure 3 displays the 
results for a single cohort, with green squares that indicate a ΔΔqtc 
prolongation <5 ms and red squares that indicate a ΔΔqtc prolongation 
of >= 5 ms. 

Table 3 Estimated mean investigational medicinal compound concen-
tration and the estimated QT prolongation using 3, 5 and 18 ECG replicates 
corrected with the Fridericia formula per decile with the standard deviation 
and with corresponding slope. The dose effect relation hardly changes with 
the increase in the number of ECG replicates measured.

Decile Estimated 
mean ± SD 
investigational 
medicinal 
compound 
concentration 
(ng/mL)

Mean ± SD QT 
prolongation 
(ms) using  
3 ECG  
wreplicates

Mean ± SD QT 
prolongation 
(ms) using  
5 ECG  
replicates

Mean ± SD QT 
prolongation 
(ms) using  
18 ECG  
replicates

1 7.6 ± 2.5 6.51 ± 16.59 5.21 ± 12.47 4.84 ± 11.54

2 23.2 ± 3.1 6.08 ± 7.13 8.37 ± 5.63 7.31 ± 5.2

3 59.6 ± 10.7 -1.04 ± 10.79 0.45 ± 14.15 0.83 ± 13.11

4 119.6 ± 18.8 5.93 ± 11.59 8.78 ± 10.08 6.53 ± 9.6

5 181.3 ± 12.8 0.81 ± 9.06 2.82 ± 6.54 3.55 ± 7.93

6 238.5 ± 22.7 9.74 ± 13.30 9.01 ± 11.84 9.28 ± 12.15

7 335.3 ± 30.2 16.61 ± 13.63 15.65 ± 12.52 15.11 ± 11.96

8 397.9 ± 16.2 16.12 ± 18.56 14.56 ± 13.02 15.42 ± 12.72

9 485.3 ± 32.0 5.06 ± 13.22 7.46 ± 13.38 6.77 ± 13.71

10 616.1 ± 55.5 19.40 ± 13.37 20.17 ± 9.01 19.78 ± 10.98

Slope (ml*ng-1*ms)  0.022492 0.021380 0.022055

R2  0.462857 0.539141 0.583485

p-value  0.030387 0.015601 0.010115

The variability of the range of the 90% CI of the ΔΔqtc also reduced 
substantially with additional (>1) ecg replicates and remained within 
0.5 ms after 11 ecg replicates for all qt correction formulas. Different 
qt correction formulas and the ecg replicates are displayed in Figure 
2 for the range of the 90% CI of the ΔΔqtc.

Concentration-effect analysis of ΔΔqtc 
The result of the assessment of the effect of the number of ecg 
replicates on the concentration-effect analysis is shown in Table 3. 
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Figure 3  Mean ΔΔqtc in milliseconds of an example cohort (Cohort 1) 
for each number of ECG replicates for every correction method. In this 
Figure the variation between the number of ECG replicates and between 
the correction formulas can be clearly seen. 

The mean IMP concentration per decile is displayed together with the 
estimated qt prolongation measured using 3, 5 and 18 ecg replicates 
corrected with the Fridericia formula and corresponding slope. For 
all qt correction formulas, a significant association was found in the 
concentration-effect analysis. This was also observed for all numbers 
of ecg replicates.

Discussion
Based on our analysis we showed that the number of ecg replicates 
in qt studies has a substantial effect on the interpretation of a 
compound’s qt interval prolonging potential for all deployed qtc 
formulas. We observed an effect on the mean qtc interval prolongation 
and on the range of the 90% confidence interval of the qtc interval 
prolongation – parameters that are required by the regulators. To the 
best of our knowledge this is the first study to address the influence 
of the number of ecg replicates on the qt prolongation. 

The ICH E14 document4 dictates that, for accurate assessment of 
the qt interval, at least triplicate ecgs are implemented although 
evidence for this is limited. The specified cut-off for a positive tqt is 5 
ms for mean ΔΔqtc prolongation. The present analysis showed that all 
qt correction formulas have a mean difference of 1 ms when triplicate 
ecgs were extracted compared to 18 ecg replicate extraction. This 
implies that triplicate ecg extractions are likely to results in inaccurate 
qt-estimation and can only be used as exploratory method, but not 
to unambiguously quantify a qt prolonging effect.

The concentration-effect analysis has recently gained more at-
tention in assessing the qt prolonging effect of a compound.8 The 
present analysis corroborates these observations, as the concen-
tration-effect analysis was substantially more robust in detecting 
a qt prolonging effect of the investigated compound as it was in-
dependent from the qt correction formula that was used and the 
number of ecg replicates. It is shown also here that the difference 
in qt prolongation between subjects becomes less when more qt 
replicates are measured. This can be deduced from the standard 
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deviations, the R2 and the p-values. However, despite the decrease 
in variance in qt prolongation with an increase in the number of 
ecg replicates, the dose-effect relationship (slope) hardly changes. 
Noteworthy, applying Hodges’ qt correction formula underesti-
mated the drug plasma concentration that would result in a 10 ms 
qt interval prolongation. 

Several studies have compared the agreement of multiple qt 
correction formulas in large datasets that were collected in healthy 
volunteers.12,13 In those studies it was reported that the agreement 
between the most frequently deployed qt correction formulas is 
limited (Bazett’s and Fridericia’s correction formulas). The two main 
issues with qt correction for RR interval are 1) the intrinsic variability 
of qtc interval due to the beat-to-beat RR interval variation, and 2) 
the absence of a gold standard – which makes complete validation 
of qt correction formulas virtually impossible. Other studies have 
suggested that an individual qt/RR interval calculation may provide 
the best RR correction of the qt interval.15,16 Unfortunately we could 
not confirm this in the current work due to limitations of the data 
set, requiring a wider range of RR intervals to be available for analysis. 

The present analysis shows that the variability of mean ΔΔqtc for 
all qt formulas exceeds 0.5ms until 14 ecgs have been recorded and 
included in the analysis. This finding indicates that on average, the 
mean ΔΔqtc deviates by more than 10% of the safety limit from the 
best measured mean ΔΔqtc (based on 18 replicates per subject), when 
based on fewer than 14 replicates per subject. This underlines the 
previously identified issues with correction of qt for the RR interval, 
but also indicates that the performance of these qt correction 
formulas is comparable. The present analysis, in line with previous 
studies, confirms the suitability of a phase I SAD study as replacement 
for a tqt.8,9 in particular with implementation of a 24 hour 12-lead 
Holter ecg. This provides optimal flexibility to accurately assess the 
effect of a compound on the qt interval. Furthermore, the analysis 
on a large volume of ecg replicates can be performed after the 
compound’s development has been moved into a later stage and can 
be cancelled in case the development of the compound is abandoned, 
thereby saving resources. 

Limitations

The current analysis is a retrospective analysis with its inherent 
limitations. In addition, the concentration of the investigational 
compound was not assessed at the same time point as the ecgs were 
extracted. It was therefore necessary to estimate the compound 
concentration at the time point the ecgs were extracted. However, 
since any overestimation or underestimation of the compound 
concentration will be similar for all subject, the presented slopes will 
deviate very little from the actual slopes.

Conclusion
The number of ecg replicates impacted the estimated qt interval 
prolongation for all deployed qt correction formulas. In contrast, 
concentration-effect analysis provides robust data on qt interval 
prolongation independent of the formula and number of replicates. 
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Abstract
Objective The aim of the present study was to develop a neural 
network to characterize the effect of aging on the ECG in healthy 
volunteers. Moreover, the impact of the various ECG features on ag-
ing was evaluated.

Methods & Results A total of 6228 healthy subjects without 
structural heart disease were included in this study. A neural network 
regression model was created to predict age of the subjects based on 
their ecg; 577 parameters derived from a 12-lead ECG of each subject 
were used to develop and validate the neural network; A tenfold 
cross-validation was performed, using 118 subjects for validation 
each fold. Using SHapley Additive exPlanations values the impact of 
the individual features on the prediction of age was determined. Of 
6228 subjects tested, 1808 (29%) were females and mean age was 
34 years, range 18 – 75 years. Physiologic age was estimated as a 
continuous variable with an average error of 6.9±5.6 years (R2= 0.72 
± 0.04) . The correlation was slightly stronger for men (R2= 0.74) than 
for women (R2= 0.66). The most important features on the prediction 
of physiologic age were T wave morphology indices in leads V4 and 
V5, and P wave amplitude in leads AVR and II.

Conclusion The application of machine learning to the ECG using 
a neural network regression model, allows accurate estimation of 
physiologic cardiac age. This technique could be used to pick up subtle 
age-related cardiac changes, but also estimate the reversing of these 
age-associated effects by administered treatments. 

Keywords Aging, ecg, Machine Learning, Healthy Volunteers, 
Artificial Intelligence 

Introduction
Surface electrocardiograms (ecgs) are used frequently in routine 
clinical care, but also in investigational studies examining the 
effects of pharmacological and non-pharmacological treatments 
on the heart. Readout measures include the RR interval, PR interval, 
QRS duration and (corrected) qt interval. The ecg has long offered 
valuable insights into cardiac and non-cardiac health and disease, 
its interpretation requires considerable human expertise. Typically, 
the pharmacological treatment effects are mediated by recognized 
channels on the cardiac surface.1 However, there are cardiac effects 
that require a longer period of time to become visible on the surface 
ecg, such as aging induced cardiac fibrosis, and it is largely unknown if 
these subtle effects can be visualized on a surface ecg.2,3 Advanced ai 
methods, such as deep-learning convolutional neural networks, have 
enabled rapid, human-like interpretation of the ecg, while signals 
and patterns largely unrecognizable to human interpreters can be 
detected by multilayer ai networks with precision, making the ecg a 
powerful, non-invasive biomarker.4

There has been a number of recent investigations regarding the 
prediction of physiological age using medical records, vital signs and 
laboratory data, or epigenetic changes.5-7 The likelihood of having 
a ‘normal’ ecg decreases with age. The most common findings are 
left ventricular hypertrophy pattern, leftward axis deviation and QRS 
widening.8 Some of these abnormalities were significantly associated 
with all-cause death.9,10 These investigations also indicated the 
existence of a gap between predicted physiological age and actual 
chronological age. Exploration of this gap is clinically important 
as a serious gap difference has been shown to be associated with 
higher risks of all-cause mortality, cardiovascular disease, obesity, 
earlier menopause, and frailty.6,11-15 Various previous studies have 
already shown that the 12-lead ecg can be a reliable tool to estimate 
physiological aging.6,11-20 

Previous studies have applied artificial intelligence to the raw ecg 
data, allowing estimation of physiologic ecg age, which was found 
to reflect aging and comorbidities.21 However, these algorithms were 
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based on large hospital datasets, thus including patients that may 
have disease-induced abnormalities in their ecgs, which makes the 
outcome difficult to interpret when applied to a healthy volunteer. 
Therefore, the aim of the present analysis was to develop a neural 
network in healthy volunteers to characterize the effect of aging on 
the ecg.

Methods and Materials

Population

All data were collected at the Centre for Human Drug Research in 
Leiden, the Netherlands, a clinical research organization special-
ized in early phase drug development studies. Data collected dur-
ing the mandatory medical screening to verify study eligibility for 
enrolment in the early phase drug development studies as a vol-
unteer between 2010 and 2019 were included in the present analy-
sis. The medical screening consisted of a single visit to the clinical 
unit where a detailed anamnesis, a physical examination, vital signs 
including blood pressure, temperature, weight and height mea-
surement, body mass index calculation, and a twelve-lead ecg 
were recorded. Ethical approvals from the Medical Ethical Review 
Committee for the included studies were acquired and informed 
consent documents were signed by the volunteers prior to any data 
collection. The present study was performed in accordance to local 
regulations. All activities were performed in accordance with appli-
cable standard operating procedures.

The medical screening consisted of a single visit to the clinical unit 
where a detailed history, a physical examination, vital signs including 
blood pressure, temperature, weight and height measurement, 
body mass index (BMI) calculation, and a 12-lead ecg were recorded. 
Additionally, haematology and chemistry blood panels, urine dipstick, 
and a urine drug test were analysed. 

Data collection for the model

ecg parameters of 6228 subjects with an age between 18 and 75 
years were included in the present study. All subjects that were used 

in this dataset were considered healthy, none of them had known 
cardiovascular risk factors, and all ecgs were considered normal, or 
abnormal but without clinical significance. The ecg reviews were 
performed manually, using standard MUSE cardiology terms. From 
each subject ecg, 574 features were extracted by the MUSE system. 
Additionally, gender was used as a feature. The age of the subjects was 
rounded in whole years. At least ten EGGs were available for each age.

In supplementary Tables 1 and 2, 54 features present in most 
leads and other ecg features used for the machine learning model 
are shown, respectively. In addition, gender of each subject was also 
included in the model.

Data pre-processing and selection

As validation set two subjects of each age were kept apart as final test 
set. The rest of the data was used as the training set. 

To create a balanced training set the Synthetic Minority Overs-
ampling Technique (smote) algorithm was applied on the training 
set to create ‘synthetic’ subjects for the less populated age groups 
based on the values in the concerning age groups.22 

Machine learning

A neural network was used as a machine learning model. The keras 
module v. 2.4.3 in python 3.8.5 was used to build a model. Before 
training, internal cross validation (three-fold) within the training set 
was used to optimize the model. The network was optimized for 
number of layers, number of nodes per layer, activation function per 
layer for each layer and learning rate. A batch size of 300 was used. 
The number of epochs (defined as the number of cycles through the 
full training dataset) for internal validation was determined based on 
validation performance in the internal validation set. The number of 
epochs for final validation was based on the median of the optimal 
number of epochs for the internal cross validations. This process of 
optimization, training, and validation was repeated 10 times with 
different training and test sets. The optimal models were evaluated 
on the test set with the R2 score and mean absolute error. We also 
evaluated the model performance with respect to gender.
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To gain insight into the impact of the individual features on the pre-
dicted age, each fold SHapley Additive exPlanations (shap) values 
were calculated23 based on the training set. The importance of the 
features was validated by means of permutation importance (de-
fined as the decrease in a model score when a single feature value is 
randomly shuffled).24

Results
The clinical characteristics of the 6228 included subjects are displayed 
in Table 1. The study population was divided into ten chronological age 
groups of 6 years, starting from the age of 18 years. Each age group 
contained at least 194 subjects, and younger age groups comprised 
up to 2282 subjects. A total of 1808 (29 %) volunteers were female.

Table 1 Age and gender characteristics of the 6228 healthy subjects.

Subject age ( years) N % female

18 – 23 2282 29

24 – 29 1563 26

30 – 35 449 20

36 – 40 247 17

41- 46 245 24

46 – 52 339 35

53 – 57 241 38

58- 63 194 42

63 – 69 393 40

69 – 75 275 35

The relation between the (predicted) physiologic age and the chron-
ological age was assessed in 10 sets of 116 subjects. In Figure 2a, the 
relation between predicted physiologic age and chronological age 
of all 10 test sets is shown. The average relationship of the models 
showed an R2 of 0.72 ± 0.04 (mean ± SD). The mean absolute error of 
all predictions was 6.9 ± 5.5 years. The average predicted physiologic 
age was 0.3 years younger than the average chronological age of the 

subjects. The median deviation of all predicted ages was 5.6 years 
from the actual age, indicating that half of the predictions was with-
in the range of 5.6 years of chronical age. 

Figure 1  ECG samples of young and elderly male and female healthy 
subjects.A: ECG of a young 18 year old male subject. B: ECG of an elderly 
74 year old male subject.C: ECG of a young 19 year
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ecg examples of a young 18 year old male (1A) and an elderly 74 year 
old male (1B) are shown in Figure 1. Figure 1C shows an ecg of a young 
19 year old female and Figure 1D shows an ecg of an elderly 74 year 
old female subject. Several differences between the young and older 
healthy subjects were discernable. In elderly persons the heart rate 
was lower, the T wave had a lower (absolute) amplitude in leads 
I,II,III,AVR, and AVL and the P-wave duration seemed shorter. However, 
these ecg differences showed considerable variations in the healthy 
population.

The average predicted age of all subject is presented in Figure 2b. 
The average predicted age of the 20 subjects per chronological age 
had a mean absolute error of 3.4 ± 3.0 years (R2= 0.93). For subjects 
between 30 and 60 years old the mean absolute error of the average 
predicted age per chronological age was 1.6 ± 1.1 years.
 
Figure 2  Relationship between (predicted) physiologic age and chron-
ological age for 1180 healthy adults (10 test sets, Figure 2a, top). The  
average predictions for each age are shown in Figure 2b (bottom).

a 

b

3 – Cardiac age detected by machine learning

In order to study gender differences, the predicted physiological ag-
es of the male and female subjects in the test sets were separated 
and are presented in Figure 3. The predicted ages of the male sub-
jects were more accurate (R2= 0.74) than the predictions of the fe-
male subjects (R2= 0.64). the mean absolute error in women of the 
predictions was 7.5 ± 5.9 years, significantly higher than that in men 
(6.8 ± 5.3 years, p = 0.03).

Figure 3  Predictions of 819 male subjects (a, top) and 361 female sub-
jects (b, bottom). 
a 

b

Figure 4 shows the shap values of the 40 most important ecg features 
used in the prediction model. So, the impact of each individual feature 
on the model output and physiologic aging can be seen. Some of the 
most important features on the prediction of physiologic age were 
T top abnormalities in leads V4 and V5, P top amplitude in leads AVR 
and II and atrial rate.
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An increase of P peak amplitude in lead II for example, indicates a 
younger physiological age (a long red bar to the left). A longer PR 
interval both indicate an older physiologic age (longer red bar to 
the right). A higher atrial rate indicates a younger physiologic age 
( large red bar to the left). The impact of gender was only of minor 
importance with shap values ranging from -1.2 to 0.9. The order of the 
feature permutation importance is similar to the order of the shap 
values, confirming the impact of the features.

Discussion
In this study we developed machine learning models that allow 
accurate prediction of physiologic cardiac age of healthy subjects 
based on 12-lead surface ecg parameters. Using a neural network 
we were able to estimate the age of a healthy subject with an error 
of 6.9 years and to analyze the impact of the ecg features. As the 
models were trained using only healthy subjects, we can assume that 
the predicted actual age is equal to the cardiac age. we also believed 
that a psychologically older heart is an unhealthier heart. The created 
models of the present study may serve as a benchmark for testing 
the effects of new pharmacological drugs on potential decline or 
improvement of physiologic health of the heart. 

Application of Machine Learning

Attia et al. recently sought to determine whether the application 
of machine learning algorithms, including convolutional neural 
networks, to a large ecg patient data set would be capable of predicting 
age and sex reported by patients, independent of additional clinical 
data21. They further investigated whether discrepancies between ecg 
age and chronological age might be a marker of physiological health. 
When the convolutional neural network-predicted age exceeded a 
patient’s actual age by at least 7 years, there was a higher incidence 
of cardiovascular comorbidities, potentially suggesting that the 
convolutional neural network-predicted age from 12-lead ecgs may 
correlate with physiological health. Their findings suggested that 
physiological age is distinct from chronological age, and may have 

Figure 4  SHAP values of the 40 most important features for predicting 
physiologic age. High values of the features are represented in red. Low 
values are represented in blue. On the x-axis, the predicted physiologic 
age. Shorter bars mean less impact on physiologic aging.
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useful clinical applications. For example, if a patient’s biologic age 
is 60 but their ecg age predicts that they are 70, it may indicate 
underlying cardiovascular disease and potential risk. A limitation of 
their study was, as also recognized by the authors, that all individuals 
included were patients, and thus an ecg was obtained for a certain 
clinical indication. It was questioned by the authors whether their 
results are similarly accurate among an ostensibly healthy population 
is unknown, and revalidation in such a cohort will therefore be critical.

The same holds true for the study by Hirota et al., who studied 
biological age, physiological age, and all-cause mortality by 12-lead 
ecg in patients without structural heart disease.25 Their data showed 
that the gap between ecg-predicted physiological and biological 
age allowed estimation of increased risk of all-cause mortality. 
Although their study subjects were assumed to have no structural 
heart diseases, it was stated by the authors that it will be necessary to 
validate the results of their study in populations of healthy subjects. In 
our study, we only studied healthy individuals, giving the advantage of 
being a much needed benchmark study, which enables the validation 
of future studies in patients versus our data.

Performance of the model

The relation between chronological and predicted physiologic age 
was associated with an R2of 0.72. Although with a smaller dataset 
than used by Attia et al., our predictions have a similar performance, 
probably because of the healthy population in our study, which we 
expect reduces the variability of the association. Given the large 
number of influencing factors that can affect ecg parameters the R2 
of 0.72 of our models seems sufficient to detect a pharmacodynamic 
effect in a cohort of subjects. Use of the entire dataset with a larger 
number of subjects may improve future performance of the model.
In the present study,the impact of physiologic aging on the various 
ecg features was analyzed using shap values. Several changes are 
clearly visible in the ecg Figures. Some of these are already well known 
in clinical practice, such as prolongation of PR and qt interval and 
deceleration of heart rate.16 Other changes, however, could only be 
recognized by using machine learning, while these may be evenly 

important Moreover, when multiple features change at the same 
time, it becomes difficult to judge whether the change in the ecg is 
good or bad without using machine learning. By means of machine 
learning techniques a combination of various ecg changes allows 
a more accurate insight into the physiologic health changes of the 
heart.

Gender differences

The accuracy of predicting physiologic age was found to be higher 
in males than in the female subjects. This may be due to the some-
what smaller female study population, but it may also reflect the 
atypical ecg repolarization patterns which are known to occur fre-
quently in women.26 The shap values show that impact of gender 
on physiologic age prediction was only of minor importance. Future 
studies, analyzing sex- and age- interaction could clarify this.

Pharmaceutical drug testing and potential implications

The prediction of the physiologic age for one single person is less 
relevant in this model. However for larger groups or cohorts of 
multiple subjects, the prediction could be more accurate. For example, 
for a group of 30 test subjects, the average deviation is only less than 
two years from average physiologic age. Therefore, our models could 
be particularly suitable as benchmark for testing new pharmaceutical 
drugs or other interventions which may have impact on cardiac 
health in the near future. Differences between physiologic ecg age 
and chronological age have been shown to predict all-cause and 
cardiovascular mortality and reflect physiologic age, cardiovascular 
health and long term outcomes.27 It has also been found that a 
difference in predicted (cardiac) age and chronological age (higher 
cardiac age) was greater in patients with peripheral microvascular 
endothelial function.28 Additionally, patients with an ecg-age more 
than 8 years greater than chronological age had a higher mortality 
rate.29 Our models, trained with healthy subjects, would therefore be 
a good benchmark and could be used to predict the mean cardiac age 
of a cohort before (baseline) and after an intervention to determine 
its effect on the heart.
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polarity.
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p area r’ peak time

p area full s area

p duration s duration

p offset s peak amplitude

p onset s peak time

p onset amplitude special t

p peak amplitude st end st

p peak time st j point

p’ area st mid st

p’ duration s’ area

p’ peak amplitude s’ duration

p’ peak time s’ peak amplitude

q area s’ peak time

q duration t area

q peak amplitude t area full

q peak time t duration

qrs area t end

qrs balance t peak amplitude

qrs deflection t peak time

qrs intrinsicoid t’ area

r area t’ duration

r duration t’ peak amplitude

r peak amplitude t’ peak time
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Table S2 Other ecg features extracted by the Muse system included in 
the model.

Features per ECG
atrial rate
P AXIS
Q OFFSET 
QT INTERVAL
QTC BAZETT
Q ONSET
R AXIS 
Number of qrs complexes
T AXIS
T OFFSET
T ONSET
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Abstract
Rationale Car-driving performance is negatively affected by the 
intake of alcohol, sleep deprivation, tranquillizers, and sedatives. 
Although several studies have shown that the standard deviation of 
the lateral position (SDlp) is sensitive to drug-induced changes in a 
simulated driving performance test, this parameter might not fully 
assess and quantify deviant driving. 

Objective Using machine learning we aimed for a better assessment 
of driving performance by including multiple parameters derived 
from a simulator rather than the SDlp alone. We specifically analysed 
the effects of alcohol and alprazolam on car driving behaviour.

Methods The data used in this study were collected during a 
previous study that was a single-centre, randomized, double-blind, 
double-dummy, placebo-controlled, four-way crossover-study with 
alcohol and alprazolam in 24 healthy subjects (12 M, 12 F, mean age 
26 years, range 20-43 years). Using a gradient boosting-Classifier, 
quantification of the factors influencing driving performance after 
administration of alcohol or alprazolam was performed to assist in 
designing a predictive model.

Results Adding additional features besides the SDlp increased the 
model performance from an accuracy of 65% to 83% for prediction 
of alprazolam intake and from 50% to 76% for prediction of alcohol 
ingestion. Analysis of other parameters such as the steering 
behaviour of the driver appears to be an important contributor to 
the improvement of the accuracy of the models. 

Conclusion Machine learning using multiple driving features 
in addition to the SDlp improves the assessment of drug-induced 
driving behaviour. These algorithms may serve as a benchmark in the 
development and application of psychopharmacological medicines. 

Introduction
Drugged driving crashes have significantly increased over the past two 
decades. Car-driving behaviour is negatively affected by the intake of 
alcohol, sleep deprivation, tranquillizers, and sedatives (Arnedt 2000; 
Mets 2011). Driving simulators provide a safe means of studying drug 
effects on car-driving (Liguori 2009). While the assessment of deviant 
driving behaviour is difficult, many researchers use the standard 
deviation of the lateral position (SDlp) as a measure to quantify driving 
quality (Liguori 2009; Verster 2011). Although several studies have 
shown that the SDlp is sensitive to drug-induced changes in driving 
behaviour (Mets 2011; Guo 2013; Darby 2009; Verster 2011), it is highly 
unlikely that it is able to distinguish between numerous different 
aspects of driving. Various kinds of medical drugs may impair the 
ability of car-driving in a different way. Altogether, it is questionable 
whether the SDlp alone is a good benchmark for safe driving.

Improving assessment of driving behaviour may be achieved by 
combining more parameters such as the mean lateral position (mlp), 
mean speed (ms), and the standard deviation of speed (SD-Speed) 
using machine learning, employing a specific algorithm (Obermeyer 
2016; Deo 2015; Hegde 2020; Paltrinieri 2019). Such algorithms may 
not only improve the recognition of impaired driving behaviour, but 
may also explain in what way and to which extent the driving behaviour 
is affected. In earlier studies machine learning has been applied on 
driving behaviour (Yang 2015; Chen 2017; Dong 2016; Dogan 2011), but 
none of these studies concerned the recognition of the intake of drugs 
based solely on driving parameters. Such an algorithm could improve 
early recognition of the way new drugs affect driving behaviour.

Using machine learning we aimed for a better assessment of 
aberrant driving by including multiple parameters derived from a 
driving simulator rather than the SDlp alone. We specifically analysed 
the effects of alcohol and alprazolam on car driving behaviour as these 
effects have shown to have the highest frequencies among fatally 
injured drivers (Bunn 2019). We aimed to develop an algorithm to 
explain in what way and to which extent the driving behaviour was 
affected. 
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Material & Methods

Data Collection

The data used in this study were collected during a previous study 
from our group (Huizinga 2019). For a detailed description of the 
study design see the above-mentioned study from our institution. 
In short, this was a single-centre, randomized, double-blind, dou-
ble-dummy, placebo-controlled, four-way crossover-study with al-
cohol and alprazolam in 24 healthy subjects (12 males, 12 females, 
age range 20-43 years), while performing neurocognitive and psy-
chomotor tests on the NeuroCart® and a driving simulator (Green 
Dino bv, Wageningen, The Netherlands). The interventions consist-
ed of intravenously administered alcohol using a validated clamping 
protocol to obtain concentrations of 0.5 g L-1and 1.0 g L-1, and al-
prazolam which was given orally in a dose of 1 mg. Driving tests and 
laboratory tests were done at regular time intervals during a study 
day. In the current analysis the driving parameters from the study 
days with 1.0 g L-1alcohol, alprazolam and placebo were consid-
ered. Because the pharmacodynamical effects for alcohol and alpra-
zolam varied during one single occasion, measurements at 2- and 
4-hours post dose were used for the classification of alprazolam. 
Measurements at 5- and 6-hours post dose, were used for the alco-
hol classification. The lane position was calculated using the strip-
index parameter, which is the lateral position on the entire highway. 
The speed (km/h) was derived from the mean-speed parameter at 
various time intervals, according to the following formula: speed at 
t = mean speed at t x t – mean speed at t-1 x (t-1) (t= dimensionless time 
point) 

All used parameters are listed in Table 1. 

Analysis

Pipeline Pilot 2018 (BIOVIA 2018) was used for all analyses and 
calculations performed in the present study. A gradient boosting 
model from the scikit-learn module v0.21.2 (Pedregosa 2011) in python 
3.6.7 was used for classification. 

Table 1  List of used driving parameters with their desciptions.

Parameters Description

Strip-index lateral position on the entire highway

Lane Position lateral position in the lane

Speed speed

Steer steer-position

Steer-speed speed of steering to the right

Front-distance-meters distance to the car in front in meters

Baseline-corrected features

To create an algorithm, features for every observation were required. 
The first 5 and the last 10 minutes of each measurement were removed 
from the dataset which left 15 minutes (from 5 to 20 minutes) of 
driving data per measurement. Contrary to the previous analyses 
as reported by Huizinga et al., lane switches were included in the 
dataset. For each parameter time series the following features were 
calculated:
• Mean: the mean of the whole time series
• Std: the standard deviation of the whole time series
• Diff: the average absolute difference between successive time 

points in a time series
• Intensity: the highest intensity of the power spectrum of the 

Fourier transform (sampling frequency of 10 Hz) of the time 
series corrected with the mean value of the time series

• Frequency: the frequency with the highest intensity of the 
power spectrum of a Fourier transform (sampling frequency of 
10 Hz) of the time series corrected with the mean value of the 
time series

• For the speed, steer-speed and front-distance-meters, also the 
following was calculated:

• Min: the minimum of the time series
• Max: the maximum of the time series
 
In addition, the following features obtained from the original study 
of Huizinga et al. (Huizinga 2019) – after cleaning the data (including 
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removal of lane switches) – were used: the standard deviation of 
the lateral position (SDlp, also referred to as GD_SLDP2), the mean 
lateral position (GD_lane_mean), the mean speed (GD_spd_mean), 
the standard deviation of speed (GD_SDSpeed). A list of all features 
is shown in Table 2. 

To obtain baseline corrected values, the mean of all baseline val-
ues (of all treatment arms) of the subject was subtracted from the 
values after drug ingestion. Finally, when two features had a high 
correlation (> 0.9 or < -0.9), only the most important one – based up-
on the feature importance of fitting the algorithm on the training 
set – was used for our analysis.

Table 2  Overview of all features.

Feature Name mean std diff intensity freq (f) min max

Strip-index x x x x x

Lane Position x x x x x

Speed x x x x x x x

Steer x x x x x

Steer-speed x x x x x x x

Front-distance-
meters 

x x x x x x x

Features from original study

GD_SDLP2

GD_lane_mean

GD_spd_mean

GD_SDSpeed

Machine Learning

First, it was studied whether the administration of alprazolam or 
alcohol could be distinguished from placebo treatment using only 
the SDlp obtained from the original analysis. Next, it was studied if 
this could be performed using all features. 

The data sets were randomly split into a training set, consisting 
of 80% of the subjects, and a test set containing the other 20%. The 
features in the training and test set were normalized. 

The training and testing of the algorithm were repeated five times 
for both the data set with only SDlp and the full data set with all fea-
tures. The model performance was evaluated by assessing accuracy, 
specificity, sensitivity, positive predictive values (ppv), and nega-
tive predictive values (npv). All data were presented as mean ± SD. 
Also, the probability/continuous scores of the predictions – ranging 
from 0 (placebo) to 1 (intervention) – were extracted to show how 
the models could be used for distinguishing abnormal from normal 
driving behaviour.

Results
Data from all 24 subjects were used for our analysis, but not every 
subject performed all study days. The data set comprised a total 
of 80 test drives from 20 study days with placebo treatment; 40 
of these placebo tests were used to create and validate the model 
for alprazolam and the other 40 test drives for optimization 
and validation of the alcohol model. The effect of alprazolam 
was assessed using 44 test drives from 22 study days and for the 
evaluation of the effect of alcohol 35 test drives from 18 study days 
were available. We ensured that the external test set only contained 
subjects who joined both the drug administration days and the 
placebo study days.

Alprazolam

Figure 1 shows the accuracy, specificity, and sensitivity for alprazolam 
usage versus placebo of SDlp alone (black bars), and of the models 
using all driving features on predicting alprazolam ingestion (grey 
bars). These driving features have been listed in Table 2. Figure 1 
clearly shows that the addition of other driving features considerably 
improved the prediction model compared to the performance of the 
model using SDlp only. The accuracy improved from 65 ± 0% to 83 ± 
4%, the specificity from 50 ± 0% to 82 ± 7%, and the sensitivity from 
80 ± 0% to 83 ± 6%. For the models using all features, the ppv and npv 
were 83 ± 6% and 84 ± 4%, respectively, versus 62 ± 0% and 71% ± 0%, 
respectively, for the model using SDlp only.
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Figure 1  Performances with standard deviation of the models using 
only the standard deviation of the lateral position (SDLP, black bars) and 
the models using all features on predicting ingestion of alprazolam (grey 
bars). PPV, positive predictive values. NPV, negative predictive values.

Figure 2 shows the average feature importance of the models based 
on all features included in our analyses. The most important feature 
for predicting whether a subject had used alprazolam was the GD_
SDLP2, which represents the standard deviation in lateral position 
after removal of lane switches. By contrast, the maximal speed was 
only of minor importance in predicting the usage of alprazolam.

In Figure 3, boxplots are shown containing the continuous 
(probability) predictions of one of the repetitions for both alprazolam 
models. It is clearly shown that the difference in prediction score 
between alprazolam and placebo is significantly larger when using 
multiple features.

Figure 2  Average feature importance of the models using all parame-
ters predicting ingestion of alprazolam using all features.

Alcohol

Figure 4 shows the accuracy, specificity, and sensitivity for alcohol 
usage versus placebo of both SDlp alone (black bars) and the models 
using all driving features on predicting alcohol intake (grey bars). 
In terms of performance, the accuracy improved from 50 ± 0% to 
76 ± 4%, the specificity from 60 ± 0% to 82 ± 7%, and the sensitivity 
improved from 40 ± 0% to 70 ± 0%. For the models using all features, 
the ppv and npv were 80 ± 7% and 73 ± 2%, respectively, versus 50 ± 0% 
and 50 ± 0%, respectively, for the model using SDlp only. 
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Figure 3  Boxplots of the probability predictions of one of the repeti-
tions of alprazolam intake. Left: the model using standard deviation of 
the lateral position (SDLP) only. Right: the model using all features.

Similar to the results with alprazolam, it is clear that the addition 
of driving features substantially improved the performance of the 
model predicting alcohol ingestion. In Figure 5 the relevance of the 
various features that were used in the analyses on alcohol intake is 
shown. The most important feature for predicting the presence of 
alcohol was – similar to the results for alprazolam prediction – the 
SDlp (GD_SDLP2). Conversely,the meanspeed (after removal of lane 
switches,GD_SpeedMean) wasonly of minor importance.

In Figure 6, boxplots are shown containing the continuous 
(probability) predictions of one of the repetitions for both alcohol 
models. It is clearly shown that the difference in prediction score 
between alcohol and placebo is significantly larger when using 
multiple features.

Figure 4  Performances with standard deviation of the models using 
only the standard deviation of the lateral position (SDLP, black bars) and 
the models using all parameters on predicting alcohol intake (grey bars). 
PPV, positive predictive values. NPV, negative predictive values.

Discussion
Sedative drugs and alcohol are well known to significantly influence 
driving behaviour, which can be evaluated by driving parameters such 
as SDlp (Verster 2011). Accurate knowledge of these side-effects is 
of crucial importance in the development and application of new 
psychoactive medicines. This is the first study to create an algorithm 
using machine learning to detect driving impairment due to the use 
of drugs with inclusion of multiple driving features rather than the 
SDlp alone. These algorithms provided improved insight into the 
way driving behaviour was affected by alcohol and alprazolam. These 
models may serve as a benchmark for analysis of newly developed 
drugs. 
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Figure 5  Average feature importance of the models using all parame-
ters predicting alcohol intake

The previous study from our group had already shown that alprazolam 
and alcohol significantly affected the main parameters of driving in 
the simulator and affected scores of safe driving (Huizinga 2019). To 
extend these findings, the current study showed that, if only the SLDP 
was taken into account, machine learning models, trained on the 
data of 80% of the subjects, could predict the intake of alprazolam 
or alcohol in the remaining 20% of the subjects with an accuracy of 
only 65% and 50%, respectively. These relatively low percentages are 
probably due to the high inter-subject variability. Since the effect of 

a medicine may vary substantially for each subject and the number 
of subjects in the datasets is relatively small, the change in SDlp may 
differ for subjects in a training set compared to subjects in a test 
set. In our dataset used for ‘the alprazolam model’, the prediction 
of alprazolam use was difficult when based on the training set using 
only SDlp. Adding more features to train the model, the performance 
increased the predictive accuracy of alprazolam intake to over 80%. 
The higher accuracy is associated with a clearer distinction between 
placebo and drug intake in the continuous / probability predictions.

Figure 6  The probability predictions of one of the repetitions of alco-
hol intake. Left: the model using standard deviation of the lateral posi-
tion (SDLP) only. Right: the model using all features.

The predictive accuracy for alcohol ingestion increased to 76%. 
These percentages are slightly higher than observed previously 
(Chen 2017), where the authors only evaluated the effects of alcohol 
and additionally used physiological measurements in their model. In 
their study the authors could successfully distinguish drunk driving 
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from normal driving with an accuracy of 70%. Our results are likely 
to be more accurate, because we used a correction for baseline 
measurements of each subject. Part of the inter-subject variability 
can significantly be reduced by correcting the driving results for 
the baseline measurements of the same subject. This will make 
it substantially easier to evaluate the effect of a drug on driving 
behaviour.

When using multiple driving features rather than only SDlp as 
read-out, the performance of the models improved with 18 and 26 
percentage points for alprazolam and alcohol, respectively. For both 
the alprazolam and alcohol models the SDlp was a major determinant. 
However, adding analyses of other parameters such as the steering 
behaviour substantially increased the capacity to distinguish between 
drug usage and placebo. This observation emphasizes the importance 
of analysing multiple features rather than SDlp alone. Previously, such 
features where difficult or impossible to obtain from simulators or 
on-road tests, but the current generation of cars allows such data 
to be relatively easily collected. In this manner it may be possible to 
develop systems that learn normal driving behaviour of an individual 
and detect abnormalities for that particular driver. This may be a 
substantial advantage particularly when assessing the effect of drugs 
or alcohol.

Limitations

In daily practice, a car accident caused by drug or substance is the true 
endpoint, but this is difficult to assess. It would seem a reasonable 
assumption that abnormal driving behaviour is a proxy for this 
endpoint. Preferably this proxy should be as predictive as possible.

Although the use of an ensemble machine model, such as the 
gradient boosting model used in this study, is more accurate 
and robust (Mesquita 2017), this model is accompanied by lack of 
interpretability (Wang 2015). The importance of the features can be 
extracted after training the model, but it is not directly clear how 
the features are being used by the model. The ppv and npv are quite 
high – 83% and 84% for the alprazolam model, respectively, and 80% 

and 73% for the alcohol model, respectively, showing the reliability 
of the models. However, the model was tested on the measurements 
of 5 subjects in this study. Also, it has not yet been analysed how the 
model performs in other interventions.

In the future, more prediction models for impaired driving have to 
be created, that detect aberrant driving characteristics. It would be 
interesting to test for instance the effects of a cognitive disorder or 
sleep deprivation. These new prediction models, can be used as some 
kind of ‘test battery’ to create a unique ‘fingerprint’ (profile) with 
respect to both desired and undesired effects on driving. However, 
any inability to detect deviant driving behaviour may be related to 
limitations of this test battery to detect novel driving behaviour 
abnormalities, and further studies may still be warranted. With these 
considerations, the proper use of created algorithms in early drug 
development can provide important information that can be used to 
make a go/no-go decision regarding further development. Similarly, 
they can be used to guide the decision-making process regarding the 
dosage range to be used in phase II studies, determining a therapeutic 
window, and even identifying the target study population (Groeneveld 
2016). This way novel psychopharmacological drugs could be tested 
on driving behaviour in the early phase of development. Using these 
algorithms adequate probability scores can be given to test-drives, 
which provide an indication about the way and the extent to which 
these drugs are modifying driving behaviour.

Conclusion
In our study we showed how machine learning may improve the 
assessment of drug-induced driving behaviour. In particular, 
the inclusion of multiple driving features rather than SDlp alone 
improved the performance of an algorithm predicting the way driving 
behaviour was affected by alcohol or alprazolam. These algorithms 
may serve as a benchmark in the development and application of 
psychopharmacological medicines. 
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Abstract
Objective Sleep deprivation is known to affect driving behaviour 
and may lead to serious car accidents similar to the effects from e.g., 
alcohol. In a previous study, we have demonstrated that the use of 
machine learning techniques allows adequate characterization of 
abnormal driving behaviour after alprazolam and/or alcohol intake. 
In the present study, we extend this approach to sleep deprivation and 
test the model for characterization of new interventions.  We aimed 
to classify abnormal driving behaviour after sleep deprivation, and, by 
using a machine learning model, we tested if this model could also pick 
up abnormal driving behaviour resulting from other interventions.

Methods Data were collected during a previous study, in which 24 
subjects were tested after being sleep-deprived and after a well-rested 
night. Features were calculated from several driving parameters, such 
as the lateral position, speed of the car, and steering speed. In the 
present study, we used a gradient boosting model to classify sleep 
deprivation. The model was validated using a 5-fold cross validation 
technique. Next, probability scores were used to identify the overlap 
of driving behaviour after sleep deprivation and driving behaviour 
affected by other interventions. In the current study alprazolam, 
alcohol, and placebo are used to test/validate the approach. 

Results The sleep deprivation model detected abnormal driving 
behaviour in the simulator with an accuracy of 77 ± 9%. Abnormal 
driving behaviour after alprazolam, and to a lesser extent also after 
alcohol intake, showed remarkably similar characteristics to sleep 
deprivation. The average probability score for alprazolam and alcohol 
measurements was 0.79, for alcohol 0.63, and for placebo only 0.27 
and 0.30, matching the expected relative drowsiness. 

Conclusion We developed a model detecting abnormal driving 
induced by sleep deprivation. The model shows the similarities 
in driving characteristics between sleep deprivation and other 
interventions, i.e. alcohol and alprazolam. Consequently, our model 
for sleep deprivation may serve as a next reference point for a driving 
test battery of newly developed drugs.

Introduction
Research into abnormal driving behaviour is needed as car-drivers 
have a potential risk to become involved in a crash and compromise 
traffic safety of others and themselves. The risk on abnormal driving 
behaviour and ensuing car accidents depends on numerous factors, 
such as predisposing driving style and individual characteristics (e.g., 
age, gender) of the car-driver and intake of alcohol. (Irwin et al. 2015; 
Sagberg et al. 2015) cns -active medicines and recreational substances 
may also negatively affect car-driving behavior. (Arnedt et al. 2000; 
Houwing et al. 2012; Mets et al. 2011; Robertson et al. 2017)

To quantify abnormal driving behaviour many researchers have used 
the standard deviation of the lateral position (SDlp) of the car on the 
road as a valid measure.(Darby et al. 2009; Mets 2011; Verster and Roth 
2011) In a recent study we have shown that by using machine learning, 
a more sensitive driving measure based on multiple driving features 
can be created.(van der Wall et al. 2020) In that study, two models 
were developed that were able to classify driving behaviour affected 
by either alcohol or by alprazolam. Moreover, our results suggested 
that a series of these machine learning models could evolve to a test 
battery, allowing a more precise and accurate evaluation of abnormal 
driving behaviour in the process of new drug development. However, 
the generalizability of such a model is still unknown. At the moment, 
it has only been shown that such a model can recognize solely the 
drug that has been used for the development of the model. However, 
the ultimate goal would be to test new drugs or interventions with (a 
selection of) these models. A model for detection of sleep-deprived 
driving would be a good first in a battery of tests that can evaluate 
the effect of new drugs on driving behavior, as sleep deprivation can 
serve as a surrogate of sedation caused by sedative drug effects.(Van 
Steveninck et al. 1999)

In the current study, we attempted to create a model to evaluate 
the effect of sleep deprivation on driving behaviour as sleepiness is 
also known to affect driving behavior.(Gaspar et al. 2017; Koopmans 
et al. 2020; Schwarz et al. 2019; Soares et al. 2020) Although drowsy 
drivers are as dangerous as drivers with unlawful blood alcohol levels 
they cannot be caught in a police checkpoint, but only in case of a 
perceived dangerous driving situation.(Haraldsson and Akerstedt 
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2001) Such a model, when sufficiently accurate could be used to detect 
drug or food induced sleepiness, allowing either dose adjustment or 
adaquate warning notes.

The aim of the current study was twofold: 1) to develop a new 
model allowing to characterize sleep-deprived driving behavior, and 
2) to demonstrate how driving behaviour after intake of alcohol or 
alprazolam is similar to sleep-deprived driving behavior, in order to 
validate the use of the model for characterization of a new drug.

Methods and Materials

Data collection for the model

All Data used in the present study were collected during two previous 
studies. (Huizinga et al. 2019; Koopmans et al. 2020) In both studies 
subjects were healthy adults who were in possession of a valid 
drivers license. They were active and skilled drivers with a minimum 
mileage of 3000 km per year. Subjects were instructed to drive in 
a driving simulator (Green Dino bv, Wageningen, The Netherlands) 
with a steady lateral position in the right-hand lane of a 30 min dual-
carriageway highway scenario similar to the one being used during 
on-road tests; overtaking other vehicles was allowed. The simulators 
have a non-moving base and consist of a mock-up car with three 
pedals (clutch, brake and gas), manual shift, steering wheel, safety 
belt, indicators and hand brake. The controls are linked to a dedicated 
graphics computer that simulates road environment and dynamic 
traffic. The driving simulators have a wide view display, made with 
three LCD (24") flat panel monitors positioned side by side. The total 
LCD monitor surface is 0.48 m2.

Data used to create the model that allows the characterization of 
sleep-deprived driving behaviour were collected during a previous 
study. (Koopmans et al. 2020) In short, this was an exploratory single-
center cross-over study in 24 healthy male subjects, 23 to 35 years of 
age, to investigate the effects of sleep deprivation on driving. 
Subsequently, this model was used to demonstrate sleep-deprived 

driving characteristics in subjects after intake of alprazolam or alco-
hol. The effect of alprazolam and alcohol on driving was previous-
ly studied in our institution by Huizinga et al. (2019). (Huizinga et al. 
2019) In short, this was a single-center, randomized, double-blind, 
double-dummy, placebo-controlled, four-way crossover-study on 
alcohol and alprazolam in 24 healthy subjects (12 males, 12 females, 
age range 20-43 years), while performing neurocognitive and psy-
chomotor tests on the NeuroCart® – a comprehensive battery 
that can test all functional domains of the central nervous system 
(cns) – and a driving simulator (Green Dino bv, Wageningen, The 
Netherlands). The interventions consisted of intravenously admin-
istered alcohol to obtain steady state concentrations of 0.5 g L-1 and 
1.0 g L-1, oral administration of 1 g alprazolam, or placebo. (Zoethout 
et al. 2012) Driving and laboratory tests were performed at regular 
time intervals during a study day. As the pharmacodynamic effects 
for alcohol and alprazolam varied during one single study period, 
measurements at 2- and 4-hours post-dose were used for the char-
acterization of alprazolam. Measurements at 5 and 6 hours post 
dose were used for the characterization of alcohol. All used parame-
ters are listed in Table A1.

Feature pre-processing

All measurements were corrected for baseline, by subtracting the 
mean of all baseline values of all treatment arms in the alcohol 
and alprazolam datasets, of the subject from the values after drug 
ingestion.

Due to the nature of the study the sleep-deprivation dataset had 
no baseline measurement shortly before the intervention. Therefore, 
the morning measurement in the well-rested occasion was used as 
baseline. The feature values of this measurement were subtracted 
from the sleep-deprived measurement and the afternoon well-rested 
measurement (which was used as control).

The features required to develop a model were created in a similar 
way as described in the article by van der Wall et al. (van der Wall et 
al. 2020) In short, the mean, the standard deviation, and the mean 
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absolute difference between consecutive time points were calculated 
for all parameters. In addition, the minima and maxima for the 
speed, steer-speed and distance to the car in front were calculated. 
Additionally, the maximum intensity of the power spectrum of a 
Fourier transform at low frequency (< 0.05 Hz) and high frequency (> 
0.05 Hz) were calculated for all parameters. 

Finally, some of the features were obtained from the original study, 
which were calculated after cleaning the data (including removal of 
lane switches): the standard deviation of the lateral position (SDlp), 
the mean lateral position (mlp), the mean speed (ms) and the standard 
deviation of speed (SDs). A list of all features is show in Table A2.

Feature selection

When two features had a high correlation (> 0.9 or < -0.9), only the 
most important one – based upon the feature importance of fitting 
the model on the training set was used for final validation.(van der 
Wall et al. 2020) 

Machine learning

In our previous study two linear and two non-linear models were 
tested on driving simulator data after intake of alcohol or alprazolam. 
The linear models showed accuracies of 67% and 54% for the 
alprazolam training set (logistic regression and Support Vector 
Machine, respectively), and 60% and 52% for the alcohol training set. 
The non-linear models gave the best performances. Random forest 
and gradient boosting models both showed an accuracy 81% for the 
alprazolam training set, and 65% and 68% for the alcohol training 
set, respectively. (van der Wall et al. 2020) Since it was shown to work 
best overall on this type of driving simulator data, a gradient boosting 
classifier with a subsample rate of 0.5 was used as a model, which was 
obtained from the scikit learn module version 0.23.1 in python 3.7.3.

A cross validation was performed to evaluate the performance of 
the algorithm. The features of 80% of randomly selected subjects 
was used five times to train the model. Subsequently, the model was 
tested on the other 20%. The features were standardized based on 
the data in the training set. The model performance was evaluated by 

assessing accuracy, specificity, sensitivity, positive predictive values 
(ppv), and negative predictive values (npv). (Wong and Lim 2011) Data 
were presented as mean ± SD. The performance when using all driving 
features was compared with the performance of the model when 
using SDlp only.

To demonstrate sleep-deprived driving characteristics in subjects 
after intake of alprazolam or alcohol, the model was trained on the 
entire sleep deprivation data set (all measurements and all features) 
and tested on the alprazolam and alcohol data sets. 

Since a continuous ‘sleep-deprived’ score was preferred to get an 
indication of how similar the effects of the drug was to the sleep 
deprivation effects, a simple (binary) prediction from a classifier did 
not seem useful. Therefore, the measurements in the alcohol and 
alprazolam datasets were given probability predictions. 

Probability scores indicate the likelihood that the outcome of 
the model is positive for a particular intervention, in this case sleep-
deprivation. Therefore, these values may provide information about 
the similarity to the sleep-deprived effects. A higher score means a 
higher probability of being sleep-deprived and therefore the driving 
pattern is more similar to a sleep-deprived driving pattern. In the 
current study, probability scores can be used to demonstrate the 
similarity between the effects of sleep deprivation and alcohol/
alprazolam intake on driving behavior. A high probability score means 
that a test subject using these compounds acting on the central 
nervous system shows driving characteristics very similar to those 
of sleep deprived subjects.

Finally, the model was also fitted on the alprazolam and alcohol sets 
to collect the feature importance for detection of these interventions, 
whereupon it was compared with the feature importance of the sleep-
deprivation model. The importance of the features derived from the 
same parameter were added together because of the high correlations 
between these features.

Statistical analysis

Treatment effects on the probability score were analysed with a mixed 
model analysis of variance (ANOVA) with treatment, measurement, 
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occasion in the cross-over experiment and treatment by measurement 
as fixed factors and subject, subject by treatment and subject by 
measurement as random factors. This was similar to the statistical 
analysis of the SDlp in the study of Huizinga et al. For this analysis, 
R version 3.6.1 was used. The difference was considered significant if 
the p-value was below 0.05.

Results 
From the sleep-deprived driving dataset in 24 subjects, one subject 
did not complete the ‘baseline’ measurement and therefore the 
data of this subject were not taken into consideration. Additionally, 
one subject did not finish the control measurement. Therefore, 45 
baseline corrected measurements, consisting of 23 sleep-deprived 
and 22 controls, were used for our analyses. 

Model performance 

The model had an accuracy of 77± 9 %, a specificity of 77 ± 23 %, and 
a sensitivity of 76 ± 9 %. The ppv and npv of the model were 83 ± 17 
% and 74 ± 5 %. Supplementary Figure 1 shows the average feature 
importance of the repeated model fitting. The most important feature 
for predicting whether a subject was driving sleep-deprived was the 
SDlp. The maximum steering speed was only of minor importance for 
predicting sleep-deprived driving behavior. 
When using only SDlp the accuracy of the model was 70 ± 10 %, the 
sensitivity 80 ± 14 % and the specificity 58 ± 13 %. In this case the ppv 
and npv were 69 ± 7 % and 74 ± 18 %.

Characterization of alprazolam or alcohol affected driving 
behavior

For the alcohol and alprazolam data, the same measurements were 
used as in our previous study in which the models for detection 
of abnormal driving was introduced.(van der Wall et al. 2020) This 
concerned 80 placebo measurements (40 to compare with alprazolam 
and 40 to compare with alcohol), 44 measurements after alprazolam 
intake and 36 measurements after 1 g/l alcohol intake. 

Figure 1  Sleep deprived probability score for placebo and 10 g/L alcohol. 
Violin plot of the probability scores of the measurements in the 10 g/L alco-
hol data set, indicating the distribution of the probability scores. The left 
violin plot shows the scores for the placebo measurements. The right vio-
lin plot shows the scores for the 10 g/L alcohol measurements. The width 
of the violin reflects the relative number of measurements with that score.

Additionally, in the current study also 42 measurements after 0.5 g/l 
alcohol were used to compare with placebo on sleep-deprived driving 
characteristics. 

In Figure 1 a violin plot is shown containing the probability scores of 
the model on the 1.0 g/l alcohol dataset. It demonstrates the similarity 
between the effects of sleep deprivation and alcohol intake on driving 
behavior. The mean probability score for the measurements after 1.0 
g/l alcohol intake was 0.63 ± 0.37, substantially higher than the score 
of 0.30 ± 0.36 for the measurements after placebo intake. This finding 
indicates a substantial similarity in the driving characteristics after 
sleep deprivation and those after 1.0 g/L alcohol intake. Statistical 
analysis of the scores revealed that there was a significant effect of 
treatment (p = 0.0014).

The violin plot in Figure 2 shows the probability scores of the model 
on the 0.5 g/l alcohol dataset. The mean probability score for the 
measurements after 0.5 g/l alcohol intake was 0.41 ± 0.40, compared 
to 0.30 ± 0.36 of the placebo measurements. The differences in these 
scores were insignificant (p = 0.2434).
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Figure 2  Sleep deprived probability score for placebo and 0.5 g/L Alcohol 
Violin plot of the probability scores of the measurements in the 0.5 g/L al-
cohol data set, indicating the distribution of the probability scores. The left 
violin plot shows the scores for the placebo measurements. The right vio-
lin plot shows the scores for the 0.5 g/L alcohol measurements. The width 
of the violin reflects the relative number of measurements with that score.

Figure 3  Sleep deprived probability score for placebo and alprazolam. 
Violin plot of the probability scores of the measurements in the alprazol-
am data set, indicating the distribution of the probability scores. The left 
violin plot shows the scores for the placebo measurements. The right vio-
lin plot shows the scores for the alprazolam measurements. The width of 
the violin reflects the relative number of measurements with that score.

The probability scores on the alprazolam data set are shown in the 
violin plot of Figure 3. The mean probability score for the measure-
ments after alprazolam intake was as high as 0.79 ± 0.32, versus 0.27 
± 0.32 for the placebo measurements. So, after alprazolam intake 
subjects showed car-driving characteristics which were quite simi-
lar to sleep-deprived driving characteristics. As expected, the ANOVA 
yielded a significant effect of treatment (p < 0.0001).

In Figure 4 the sum of all feature importances for all parameters is 
shown for the alprazolam, 1.0 g/l alcohol and sleep-deprived dataset. 

For all datasets, the sum of the importances of the features derived 
from the lane position was the highest. For the 1.0 g/l alcohol set, the 
steer-speed features were also of high importance.

Figure 4  Relative feature importance. Sum of the relative feature im-
portances grouped by type for all parameters (sum of all feature impor-
tances is 1). An overview of all features is shown in Table A2.
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Discussion
Sleep deprivation is known to impair driving performance (Gaspar et 
al. 2017; Peters et al. 1999; Philip et al. 2005; Schwarz et al. 2019; Soares 
et al. 2020). The current study has shown that, by using machine 
learning, the effect of sleep deprivation on driving behaviour can be 
classified. The created model performed with an average accuracy 
of 77%. The current study did also show that driving behaviour after 
sleep deprivation had a great similarity with driving behaviour after 
alprazolam intake and to a lesser extent after alcohol intake of 1 g/l. 
For the first time, we developed a model to characterize abnormal 
driving behaviour for a single intervention, which can also be used 
for characterization of other/new interventions. Using this model, 
the effects of a newly developed drug on driving behaviour can be 
compared with the effects of sleep deprivation. In this way, a series of 
these machine learning models could evolve to a test battery, which 
allows a more precise and accurate evaluation of abnormal driving 
behaviour by creating a predictive effect profile for a medicine. 

The performance of the created model is similar to what we have 
shown for the classification of alcohol and alprazolam in our previous 
study.(van der Wall et al. 2020) These earlier models, which performed 
with an accuracy of around 80%, could characterize abnormal driving 
behaviour solely for the drug that had been used for the development 
of that particular model. In the present study we have shown that 
such a model may serve to characterize driving behaviour after a 
diversity of interventions. Given the large number of influencing 
factors that can affect driving behaviour the accuracy of 77% of our 
model seems satisfying. Larger number of subjects may improve 
future performance of the model.

When using all driving features the performance of the model is, 
although not significantly, higher then when using only SDlp. This 
is in line with the results of previous study.(van der Wall et al. 2020) 

Also, when using SDlp only, the specificity is much lower and 
thereby susceptible to false positive results.

The SDlp remains the most important feature for distinguishing 
abnormal driving behaviour and has rightfully been used as a standard 

measure. However, by combining all driving features in a model the 
way in which driving behaviour deviates can be determined, so that 
a more informative assessment can be made.

The probability scores for the placebo measurements in the 
alprazolam dataset (3 and 4 hours after intake) and alcohol datasets (5 
and 6 hours after intake) were very similar. This means that the average 
control measurement would get a probability score somewhat below 
0.3. An average sleep-deprived score of 0.3 can be considered high 
for a subject driving under ‘normal’ circumstances but considering 
the relatively small training set this score is reasonable. When more 
data will become available, the recognition of control measurements 
will improve and the probability scores for these measurements will 
decrease.

The current study has also shown that driving behaviour after sleep 
deprivation shows characteristics, which are quite like those after 
alprazolam intake and, but to a lesser extent, after alcohol intake of 
1 g/l. An explanation for this can be found in the analysis of feature 
importance. The features derived from the lane position, which 
also includes the SDlp, are most important. However, for assessing 
the effects of alcohol, the features calculated from the steer-speed 
parameter are also of high importance, while these are of minor 
importance in the detection of alprazolam and sleep deprivation.

As alprazolam is a sedative, great similarities with drowsiness were 
expected, which was confirmed in our study by the highest sleep 
deprived probability scores after intake of this drug. After 1.0 g/L 
alcohol intake also a substantial similarity of the abnormal driving 
characteristics was found, but to a lesser extent. After 0.5 g/l alcohol 
intake, which is just under the legal limit, there was almost no sleep-
deprived effect in driving behavior. The probability scores seem to 
match the relative drowsiness expected from the interventions, 
indicating that the model shows the degree of sleep deprivation in 
other interventions. 

Limitations

Although ppv and npv of the model were quite high (around 75%), 
these predictive values were still suboptimal, possibly due to the 
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relatively small number of subjects. This information can be derived 
from the violin plots, where still a great variation of scores can be 
observed. Therefore, more subjects are needed to be tested in order 
to obtain a reliable characterization of driving behaviour of a drug, and 
to neutralize the errors of the model. Part of the variation can also be 
explained by inter-subject differences. The effect of an intervention 
may vary substantially for each subject and the number of subjects 
in the datasets is relatively small. Moreover, the change in driving 
performance may also differ for subjects in a training set compared 
to subjects in a test set. Currently, the training set only contains 
male subjects. As we don’t know the difference of the effect of sleep-
deprivation on driving behaviour between males and females, we 
cannot say anything about the effect of sleep-deprivation in female 
subjects. However, female subjects have been involved in several 
previous car driving studies.(Åkerstedt et al. 2010; Banks et al. 2004)

It must be kept in mind that baseline measurements are still required 
for an accurate evaluation. In this way, the inter-subject variation may 
be reduced by correction for the baseline variation in driving style. The 
accuracy might improve when individual normal driving behaviour 
could be learned based on multiple control measurements in one 
subject.

It is difficult to estimate how dangerous driving behaviour is with 
sleep-deprived driving characteristics. Because sleep deprivation 
may lead to abnormal driving and may cause accidents, it seems 
reasonable to assume that with a higher score on sleep-deprived 
driving, driving performance is more impaired. On the other hand, 
a small overlap with driving after sleep deprivation does not mean 
that driving is safe. Driving behaviour might be negatively influenced 
in a different way. In the current study the alcohol intake well over 
the legal dose (1.0 g L-1) appears to have less impact on the driving 
performance than alprazolam, while previous studies have shown 
that alcohol greatly impairs driving behavior. (Arnedt et al. 2000; Bunn 
et al. 2019; Huizinga et al. 2019; Irwin et al. 2017; Mets et al. 2011). In our 
previous study we have shown that driving behaviour after alcohol 
intake could be assessed with an accuracy of more than 80%.(van 
der Wall et al. 2020) Therefore, a test battery with multiple models 

is needed to give a good indication of the way driving is affected by 
drugs. This test battery consists of a set of models, characterizing the 
effect of cns- active medicines on driving behavior.

The order of sleep deprivation for the interventions tested in the 
current study was as could have been anticipated (alprazolam highest, 
then 1.0 g/l alcohol, then 0.5 g/l alcohol, then placebo). Therefore, 
the model developed in the current study can be used to identify 
how interventions such as the intake of drugs may influence the 
driving performance in a sleep-deprived way. Therefore, this can 
serve as a benchmark in a test battery to characterize how drugs 
affect driving performance. In this way psychopharmacological drugs 
could be tested for effects on driving behaviour in an early stage of 
development.
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Supplementary tables 
Table A1 Overview of all parameters. 

Parameters Description 

Strip-index lateral position on the entire highway 

Lane Position lateral position in the lane 

Speed speed in km/h 

Steer steer-position 

Steer-speed speed of steering to the right 

Front-distance-meters distance to the car in front in meters 

Table A2 Overview of all features. 

Feature Name                      mean std diff Intensity at  
low frequency

Intensity at 
high frequency

min max 

Strip-index             x x x x x   
Lane Position            x x x x x   
Speed (km/h)                x x x x x x x 
Steer                  x x x x x   
Steer-speed            x x x x x x x 
Front-distance-meters          x x x x x x x 
Features from original study
SDLP (standard deviation of the lateral position) 
MLP (mean lateral position) 
MS (mean speed) 
SDS (standard deviation of speed) 
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Abstract
In recent years the skin microbiome has taken center stage as 
drug target and as disease biomarker. Computational analyses of 
microbiome sequencing data from patients with skin diseases, 
for example seborrheic dermatitis, can be performed to identify 
discriminative biomarkers in the microbiome profile. The aim of 
the present study was twofold, namely to employ machine learning 
to predict disease from the microbiome dataset, and to identify 
discriminative biomarkers in the microbiome of patients with 
seborrheic dermatitis versus healthy controls using machine learning 
techniques.

The population consisted of 97 patients with seborrheic dermatitis 
and 763 healthy controls. Skin swabs were taken from naso-labial fold 
(lesional skin: n = 22; non-lesional skin: n = 75, controls: n = 763). Using 
an extra trees machine learning model, differences between the skin 
microbiome of patients with seborrheic dermatitis versus healthy 
controls were characterized. Subsequently, the most important 
microorganisms for discrimination were determined by feature 
analysis and SHapley Additive exPlanations (shap) values.

The accuracy of the prediction models to discriminate between 
skin affected by seborrheic dermatitis and facial skin from healthy 
subjects was 77 % and the roc-auc was 83 %. Next to Cutibacterium 
and Staphylococcus, the most important organisms for discrimination 
had a relatively low occurrence.

Our study showed that machine learning can be utilized to identify 
discriminating biomarkers in the microbiome skin. This indicates that 
machine learning can be of major importance in basic skin research, 
and in the discovery and development of new individualized therapies, 
involving the microbiome.

Introduction
The skin is the largest organ of the human body and is colonized by a 
wide range of microorganisms.1 Many of the micro-organisms living 
on the skin (its microbiome) are harmless and, in some cases, provide 
vital functions.

Despite the great interest of the skin as an ecosystem during the 
past decade, the study of the skin microbiome was until recently 
restricted by the low host-commensal cell ratio and the high 
taxonomical divergence among skin sites.2 This changed by the 
introduction of methodology to remove microbial dna from low 
biomass skin samples such as described by Garcia-Garcera et al. in 
2013. The authors utilized a combination of molecular techniques 
that involved standard, quantitative PCR and amplicon sequencing of 
16S rRNA, which significantly improved the field of skin microbiome 
research. At present, the skin microbiome is known to be involved 
in several skin diseases.3 This breakthrough has led to additional 
knowledge on specific microorganisms that play a role in some of these 
skin disorders, for instance the role of Staphylococcus aureus in atopic 
dermatitis and Cutibacterium acnes in acne vulgaris. However, the role 
of microorganisms that are less abundant is still largely unknown. It 
is plausible that the presence of a combination of several different 
organisms forming a specific microbial profile might also contribute to 
the development and subtype of skin disease. A challenge to explore 
this hypothesis is however hampered by the magnitude of the data 
which analysis is frequently beyond conventional data analyses. 
Machine learning may offer a solution because the underlying 
computational analyses may facilitate the identification of specific 
patterns of microorganisms that are discriminative for a specific type 
of skin diseases.4

Machine learning has been rapidly adopted in microbiome studies 
for diagnosing clinical diseases. Modelling of the human microbiome 
by machine learning offers the potential to identify specific microbial 
biomarkers and may aid in the diagnosis of many clinical diseases. For 
instance, machine learning has already shown its ability to identify key 
features (markers) and modelling predictive biomarker signature in a 
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variety of fields, including oncology5-7, neurology5-7, immunology8, 
gastroenterology9, diabetes10, and skin diseases.11,12 The advantages 
of machine learning techniques over classical statistical models 
are to infer relationships between variables for automatic pattern 
discovery and handling with multi-dimensional data.13 As a result, 
machine learning may be highly informative for the development 
of therapeutic modalities to ameliorate the microbial imbalance 
and to counteract certain pathogens. By training a highly accurate 
model it is easy to find out which features are most informative for 
classification. For a dataset with many different features, in this case 
more than 600, machine learning is therefore saving time and effort, 
compared to existing statistical methods. In addition, the benefits 
of machine learning comprise flexibility and scalability compared 
with conventional statistical approaches, which makes it deployable 
for several tasks, such as diagnosis and classification, and survival 
predictions.14 As a result, machine learning may be highly informative 
for the development of therapeutic modalities to ameliorate the 
microbial imbalance and to counteract certain pathogens.

The aim of the present study was twofold, namely to employ 
machine learning to predict disease from the microbiome dataset, 
and to identify discriminative biomarkers in the microbiome of 
patients with seborrheic dermatitis versus healthy controls using 
machine learning techniques. We hypothesized that the microbiome-
based biomarkers alone can be used to predict the diagnosis. These 
models can then be employed toidentify discriminative biomarkers 
in the microbiome.

Methods & Materials
All data used in the present study were obtained from a previous 
study performed in participants from the Rotterdam Study.15 This 
was a cross sectional study embedded in a population-based study. 
Skin swabs were taken from naso-labial fold from 97 participants 
with seborrheic dermatitis (lesional skin: n = 22; non-lesional skin 
n=75) and controls without skin conditions on the face or scalp (n 
= 763). Participants with seborrheic dermatitis and involvement 

of the nasolabial fold were considered lesional cases, and those 
without involvement of the nasolabial fold non-lesional cases. The 
median age was 53 years in the control group, 56 years for non-
lesional cases and 68 years for lesional cases (for further details see 
Sanders, Nijsten15). The Rotterdam Study has been approved by the 
Medical Ethics Committee of the Erasmus MC (registration number 
MEC 02.1015) and by the Dutch Ministry of Health, Welfare and Sport 
(Population Screening Act WBO, license number 1071272-159521-PG). 
All participants provided written informed consent to participate 
in the study and to have their information obtained from treating 
physicians.

Data collection for the model

In all participants included in the study, the skin microbiome was 
analyzed by amplifying the V1 to V3 variable regions of the 16S rRNA 
gene using the 27F-519R primer pair and dual indexing. The genes 
were annotated using the Silva database. In the current study, 
microbiome data from the three categories of skin from the face 
were analyzed; facial skin from controls, (facial) non-lesional and 
lesional skin from patients with seborrheic dermatitis. To show 
the clearly visible differences between the skin categories, average 
microbiome profiles were created for each category of skin by taking 
the average occurrence of each bacterium present in all pertaining 
subjects. Subsequently, by using machine learning the lesional skin 
from patients with seborrheic dermatitis was characterized in order 
to discriminate it from the skin of healthy subjects. The occurrence of 
686 organisms at genus level present in either one of both datasets 
were used as features. In addition, three well known alpha-diversity 
indices, the Simpson’s diversity index, the Shannon diversity index, 
and the Chao1 index, were used as features.16

Data pre-processing and selection

As there were more observations available from healthy skin than 
from the skin affected by seborrheic dermatitis, there was an 
imbalance in the data set. A four-fold cross validation was used. 
Therefore, six microbiome profiles (close to 25 percent of the total 
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number of affected profiles) were used for validation of the model 
each fold. The same number of healthy profiles were used to produce 
a balanced validation set. The remaining profiles were used to train 
the model (training set).

To create a balanced training set, the smote (Synthetic Minority 
Oversampling Technique) algorithm was applied to produce ‘syn-
thetic’ profiles of the skin affected by seborrheic dermatitis based 
on the values already present in these underrepresented microbi-
ome profiles.17. Next, the features in both the training and valida-
tion sets were standardized based on the mean and standard devia-
tion of the features in the training set.

Feature selection

As the last preprocessing step, feature selection is performed on 
all 689 features, including the diversity indices. When two features 
had a high correlation (> 0.9 or < -0.9), only the most important one 
– based upon the feature importance of fitting the model on the 
training set – was used.18 The features were selected by the training 
set in unsupervised fashion.

Machine learning

Several different machine learning algorithms which were obtained 
from the scikit-learn module version 1.0.1 in python 3.7.9 were em-
ployed on the data. A DecisionTree Classifier, a RandomForest 
Classifier, a GradientBoostingClassifier, a Supprort Vector Classifier, 
Logistic Regression, and a Extra Trees Classifier were used to 
make an attempt to distinguish healthy from affected skin. Prior 
to training, a nested cross-validation (within the training set) was 
used to optimize the model hyperparameters. This process of 
oversampling, feature selection, optimization, training, and vali-
dation was repeated in each fold with different training and valida-
tion data. In each fold, the validation was performed with profiles 
that had not previously been in a validation set, so that all 22 dif-
ferent profiles from skin affected with seborrheic dermatitis were 
tested at least once. Two profiles were twice in the test set. The 
optimal models were evaluated on the validation fold with the 

accuracy, sensitivity, specificity,and Area Under the Receiver 
OperatingCharacteristic(roc) Curves (auc). An overview of the ma-
chine learning workflow is shown in supplementary Figure 2. The 
best performing model was used for further analyses. The perfor-
mance of the optimized model using the selected features was 
compared with the performance of conventional logistic regression 
using all features. The performance of the optimized model using 
the selected features was compared with the performance of con-
ventional logistic regression using all features.

To gain insight into the impact of the individual features on the 
predictions, shap(SHapley Additive exPlanations) values were cal-
culated. {Lundberg, 2017 #16}19 To validate the importance of the 
features, the feature values of the correctly and incorrectly predict-
ed occasions were compared. The impact of the features was vali-
dated by means of the feature importance of the model.

Results
The three skin categories showed many similarities in the microbiome. 
As expected, Staphylococcus and Cutibacterium showed the highest 
relative abundance (range 20–50%); Cutibacterium was highest on 
average in healthy profiles and in profiles of the non-lesional skin of 
patients with seborrheic dermatitis. Staphylococcus was highest in the 
skin affected by seborrheic dermatitis. Figure 1 shows the average skin 
microbiome profiles of lesional and non-lesional facial skin of patients 
with seborrheic dermatitis and of healthy skin. The non-lesional skin 
shows an average microbiome profile which is in between healthy 
and affected skin.

From all the models tested, the extra trees classifier performed 
best. The results of the employment of this model type are shown 
below. 

Figure 2 shows the true labels (clinical diagnosis) versus the 
predicted labels for seborrheic dermatitis versus controls based on 
the skin microbiome. The models predicting seborrheic dermatitis 
had an overall accuracy of 77% (range 73 – 81 %, compared to 48% ± 14% 
with conventional binary logistic regression). Out of the 24 profiles 
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Figure 1  Average microbiome profiles of the facial skin of healthy sub-
jects and of the non-lesional and lesional (facial) skin of patients with 
seborrheic dermatitis. The y-axis shows the relative occurrences in per-
centages. The profiles show organisms at genus level that had on average 
an occurrence of more than 1%. Other organisms are combined as ‘other’.

Figure 2  Confusion matrix (predictive analysis tool) of the predicted 
diagnoses based on the skin microbiome profile of patients with seborrhe-
ic dermatitis by means of machine learning. The x-axis shows the predict-
ed labels. The y-axis shows the true labels.
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Figure 4  SHAP values of the 10 features with the highest impact on the 
prediction of disease diagnosis for seborrheic dermatitis. A relatively high 
occurrence of a microorganism is shown in red, whereas a relatively low 
occurrence of a microorganism is shown in blue. The predicted diagnosis 
of control is on the left side of the x-axis, and of seborrheic dermatitis on 
the right side of the x-axis. Shorter bars mean less impact on diagnosis.

Figure 3  Receiver Operating Characteristic (ROC) curve of the mod-
els predicting seborrheic dermatitis where the black line is the mean curve 
and the gray area is the standard deviation.
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with seborrheic dermatitis, 18 were correctly predicted, indicating a 
sensitivity of 75% (range 65-85%). Of the 24 healthy profiles, 19 were 
correctly predicted, indicating a specificity of 79% (range 71-87%). The 
average auc of the models was 83% (range 77-89%, Figure 3). 

Figure 3 shows the impact of the occurrence of each organism on 
the predictions of seborrheic dermatitis versus healthy control. A low 
occurrence of Cutibacterium and a high occurrence of Staphylococcus 
was shown to be most predictive for the diagnosis of seborrheic 
dermatitis. It can be observed that the other micro-organisms, which 
had any impact in the discrimination of seborrheic dermatitis, showed 
a relatively low occurrence.

The boxplots of the standardized values of the most important 
organisms for the correct and wrongly predicted profiles are shown 
in the supplementary material. These Figures confirm the findings 
of the shap values.

Discussion
In the present study we demonstrated that machine learning- based 
models may facilitate the identification of discriminative biomarkers 
in the microbiome of patients. These findings are particularly 
important for skin diseases, in which the microbiome has not been 
fully elucidated. Modulations of skin microbiome composition to 
restore host–microbiome homeostasis could become important 
future strategies to treat or prevent skin disease.3 This highlights 
the potential important role of machine learning in the discovery of 
targets for new medical therapies.

Machine learning has been recently applied in microbiome studies 
for diagnosing clinical diseases in various fields, such as oncology, 
neurology, immunology and dermatology.4 In the present study we 
aimed to develop a machine learning model to predict the diagnosis 
using skin microbiome profiles from patients with seborrheic 
dermatitis. The created models provided a unique insight into the 
types and complex patterns of micro-organisms involved this skin 
condition. Although many data are available on the skin microbiome 
in seborrheic dermatitis, our results show that bacteria with a low 

abundance are also valuable for disease discrimination. The factor of 
low Cutibacterium contributes to our models, being consistent with 
previous reports.20 

Many factors are known to significantly affect the skin microbiome, 
including weather conditions and washing behaviour, but also skin 
diseases and the use of therapeutic agents.21-24 The current study 
showed that, based on the microbiome alone, machine learning 
models could predict a diagnosis of seborrheic dermatitis with an 
accuracy of 77%. The area under the curve from our models was 83%. 
There was a strong predictive correlation between the microbiome 
profile and the specific dermatologic disease. Given the large number 
of influencing factors that can affect the microbiome (although 
excluded as much as possible in the clinical trial) perfect predictive 
power using the microbiome cannot be expected. But, because of 
their high performances, these models could potentially be used 
toidentify discriminative disease biomarkers in the microbiome. 

Value of machine learning

Machine learning methods are being actively and widely used to 
elucidate the composition of microbiome and to investigate how they 
affect host phenotypes.23,25 Various studies have already explored the 
power of machine learning to use microbiome patterns to predict host 
characteristics.23,26-28 In addition, machine learning has earlier been 
applied on the skin microbiome to predict the postmortem interval.29 
In the current study we have shown that disease biomarkers can also 
be found using machine learning in the skin microbiome. Some of the 
parameters, such as a high abundance of Staphylococcus, and the 
diversity are already known to play a role in seborrheic dermatitis.30-32 

Furthermore, machine learning identified distinctive organisms 
that are not initially considered important to investigate based 
on high occurrence rates. As shown in Figure 4, the occurrence of 
Corynebacterium 1, Anaerococcus, and Finegoldia also play a role in the 
distinction between facial skin from healthy individuals and subjects 
with seborrheic dermatitis. While the above-noted three organisms 
might have been identified through occurance alone (Figure 1), 
Gemella, Prevotella and Granullicatella would not have been identified 
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as they occurred at less than one percent and are included in ‘other’. 
Use of machine learning identified organisms which would otherwise 
have been overlooked.

Using the same dataset, conventional binary logistic regression 
produced results with lower discrimination ability.

The results of this proof of concept study indicate that machine 
learning can be a valuable tool to find organisms that distinguish 
diseased skin from healthy skin . While the microbiology of seborrheic 
dermatitis has been thought to be fairly well elucidated, the importance 
of low occurrence organisms was shown. This suggest that in skin 
diseases with a less known and/or more complex microbiome profile 
machine learning could be a valuable investigative tool. 

Limitations

Some limitations of the study should be noticed. Apart from a 
relatively low number of patients, dna from microbial eukaryotes, 
such as yeast or fungi, could unfortunately not be classified meaning 
by this 16S gene screening method and limited primer set, only 
prokaryotic dna, known in the database, could be recognized. This 
precludes recognition of fungi, such as yeast and bacteria not known 
in the database, while the fungal genus Malassezia is also known to be 
a potential biomarker for seborrheic dermatitis.33,34 For future studies, 
sequencing of the internal transcribed spacer (ITS) region35, would 
enable the possibility of identifying fungi as potential biomarkers.

There is an age difference between the control group and lesional 
cases. This could be a factor of disease. Future studies, linking the 
organisms to an age group would be very interesting.

Genus level was the deepest screening level in this study, indicating 
a second limitation of screening by means of 16S dna sequencing with 
a limited set of primers. Therefore, it has to be taken into account 
that the exact distribution of species within the genus is unknown. 
For example a large part of the 16S dna recognized as Staphylococcus 
might not originate from the species S. aureus but from S. epidermidis, 
a species which is very common on healthy skin.36 This should be 
investigated in future studies with novel techniques that have the 
ability to give deeper insight on species or even strain level.

Conclusion 
In recent years, various elements in the skin microbiome have become 
of high interest for pharmaceutical companies as new drug targets. 
Despite the challenges and hurdles yet to overcome, it seems very 
likely that microbiome modulation will play a future role in the treat-
ment of skin disease. From our study it has become clear that machine 
learning can be instrumental for the identification of biomarkers in 
the microbiome of skin. Consequently, machine learning can be of 
major importance in basic skin research, and in the discovery and de-
velopment of new individualized therapies, involving the microbiome.
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Supplementary figures 
Figure 1  Boxplots of the standardized values of the 10 most important 
features for distinguishing seborrheic dermatitis from healthy skin based 
on the microbiome in order of importance of the models. On the left side 
are the healthy profiles and right are profilesaffected by seborrheic der-
matitis. Visualized in blue are the profiles predicted as healthy and the 
profiles predicted as affected are shown in orange. The y-axis shows the 
values of the standardized occurrences. The p values of an independent t-
test between the right an wrong predicted profiles are shown.

Figure 2  Machine learning workflow (4 fold cross-validation).
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Chapter 7

General Discussion
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In this PhD thesis machine learning techniques have been applied for 
data analysis on large data sets obtained in early stage clinical research 
projects. In drug development and clinical trials, biomarkersmay be 
used to help identify populations for a study, monitor therapeutic 
response, and identify side effects. Although an increasing number 
of analyses is performed, it is not always clear 1) how to handle the 
collected data, and 2) whether all these analyses are useful to study. 
We hypothesized that a good way to use these data is to employ 
a machine learning algorithm. The models built based on the data 
could then serve as new biomarkers to recognize the intended and 
unintended effects of (new) drugs. Also, after using a model, its 
predictions could be explained. It may lead to a better understanding 
of how the various features used in the algorithm influence the cause 
and effect of a specific drug. With the help of machine learning, the 
data collected at an early stage of clinical drug discovery is optimally 
exploited.

The use of machine learning on three different kinds of data 
derived from early phase clinical trials is explored; data based on 
electrocardiographic (ecg) measurements (classical data), data 
collected in driving performance test (innovative data), and data 
collected in microbiome studies (emerging data).

Chapter 1 comprises a general introduction and overview of the 
presented studies.

In Chapter 2, we showed that the number of ecg replicates in 
so-called qt studies has a substantial effect on the interpretation 
of a compound’s qt interval prolonging potential for all used qtc 
formulas. This analysis was performed after the prolongation was 
corrected for the heart rate with one of the several qt correction 
formulas. We observed effects on the mean qtc interval prolongation 
and on the range of the 90% confidence interval of the qtc interval 
prolongation—parameters that are required by the regulators. This 
analysis showed that for all qt correction formulas there is a mean 
difference of 1 ms when triplicate ecgs were extracted compared with 
18 ecg replicate extraction. These findings imply that triplicate ecg 
extractions are likely to result in inaccurate qt estimation and can only 
be used as an exploratory method, but not to unambiguously quantify 

a qt prolonging effect. The analysis performed in this thesis on a large 
volume of ecg replicates can be performed after the compound’s 
development has been moved into a later stage. It can be cancelled 
in case the development of the compound is abandoned, thereby 
saving resources. 

By using all 12-lead surface ecg parameters, we developed machine 
learning models that allow prediction of physiologic cardiac age of 
healthy subjects in Chapter 3. We were able to estimate the age of a 
healthy subject with a mean absolute error of 6.9 years and to analyze 
the impact of the ecg features, using a neural network. Additionally, 
we demonstrated the impact of the ecg features on the predicted age.

The impact of physiologic aging on the various ecg features was 
analyzed using SHapley Additive exPlanations (shap) values. By means 
of machine learning techniques a combination of various ecg changes 
allowed a more accurate insight into the aging of the heart.

As the models were trained using only healthy subjects, we can 
assume that the predicted actual age is equal to the cardiac age. We 
also assumed that a decline in heart health occurs with age. Therefore, 
our models may serve as a benchmark for (new) pharmacological 
drugs on potential decline or improvement of physiologic health of 
the heart.

In Chapter 4, we presented a study to create an algorithm using 
machine learning to detect driving impairment due to the use of 
drugs. We included multiple driving features rather than the Standard 
Deviation of the Lateral Position (SDlp) alone. These algorithms 
provided improved insight into the way driving behaviour was 
affected by alcohol and the benzodiazepine alprazolam. For both the 
alprazolam and alcohol models the SDlp was a major determinant. 
However, when using multiple driving features rather than only 
SDlp as read-out, the performance of the models improved with 18 
and 26 percentage points for alprazolam and alcohol, respectively. 
This observation emphasizes the importance of analysing multiple 
features rather than SDlp alone, when assessing drug effects on 
driving behaviour.

Over the years, intelligent driving assistance systems have been 
created to mitigate incidents because most of the accidents relate to 
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driver performance1 Therefore, it is important to assess the effect of 
drugs on car driving. It may be possible to develop systems that learn 
normal driving behaviour of an individual and to detect abnormalities 
for that driver. This may be a substantial advantage particularly in 
assessing the effect of drugs or alcohol. Ideally, one would use such 
models as created in Chapter 4 to evaluate new drugs/interventions. 

We used machine learning in Chapter 5 to classify the effect of 
sleep deprivation on driving behaviour. The created model performed 
with an average accuracy of 77%. It was shown that the created models 
in Chapters 4 and 5 can be used as some kind of ‘test battery’ to 
create a unique ‘fingerprint’ (profile) with respect to both desired 
and undesired effects on driving. Using this model, the effects of a 
newly developed drug on driving behaviour can be compared with 
the effects of sleep deprivation. In this way, a series of these machine 
learning models could evolve to a test battery, allowing a more precise 
and accurate evaluation of abnormal driving behaviour by creating 
a predictive effect profile for a specific drug. Using these algorithms, 
adequate probability scores can be given to test-drives, which provide 
an indication about the way and the extent to which these drugs are 
modifying driving behaviour.

In Chapter 6, we demonstrated that machine learning-based 
models may facilitate the identification of discriminative biomarkers 
in the microbiome of patients. These findings are particularly 
important for skin diseases, in which the microbiome has not been 
fully elucidated. The created models provided a unique insight into 
the types and complex patterns of micro-organisms involved in this 
skin condition. 

Based on the microbiome alone, machine learning models could 
predict a diagnosis of seborrheic dermatitis with an accuracy of 77%. 
The area under the curve from our models was 83%. Machine learning 
identified distinctive organisms that were not initially considered 
important to investigate based on high occurrence rates. Use of 
machine learning identified organisms which would otherwise have 
been overlooked.

The results of this proof-of-concept study indicate that machine 
learning can be a valuable tool to find organisms that distinguish 

diseased skin from healthy skin. This suggests that in skin diseases 
with a less known and/or more complex microbiome profile machine 
learning could be a valuable investigative tool. 

Future Perspectives
Although the ultimate assessment of the effect of a drug or 
intervention will always need the judgement by individuals with a 
medical background, applying machine learning to the large amount 
of data derived from drug development can offer substantial support 
and may lead to new insights. This may be expected, as machine 
learning is already being used in decision making across a broad 
range of fields.2 However, in drug development, every subject or 
patient is unique, and therefore the result of historical data cannot 
be completely reliable. There are still some problems to overcome, 
for example the pragmatic issue that our health system is reluctant 
to completely entrust a machine with a task that a human can do at 
higher accuracy, even in case of substantial cost savings.2 Machines 
are not endowed with common sense, and therefore need many 
more examples than a human physician would. However, when 
physicians are unsure or when a decision has to be made with major 
consequences, machine learning models trained on historical data 
can help.3 Moreover, it is impossible for a physician to learn from 
as many historical examples as a machine could. A machine learning 
model can learn from more cases than a physician would experience 
during his or her entire career. As more and more data of the early 
phases of drug development become available soon, more accurate 
estimates can be made about the effect of a new drug. This means 
that the magnitude of the effect can be determined more accurately. 
Considering the various topics of this thesis, several specific issues 
for future perspectives should be described. 

When ecg data of large and diverse populations – including female, 
young and elderly – will be gathered, the physiologic cardiac age can 
be established with more accuracy. A higher accuracy of the algorithm 
models in larger datasets in more diverse populations also applies for 
car driving behaviour and microbiome results. 
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Specifically for car driving, the models could also trace more precisely 
in which the way the drug has an effect. A series of these machine 
learning models could evolve to a test battery, which allows a more 
precise and accurate evaluation of abnormal driving behavior. Driving 
data of patients with a cognitive disorder will extend the test battery 
and may allow distinction between driving-behaviour affected by 
sleep deprivation and a cognitive disorder.

Considering the microbiome data, addition of microbiome data 
from patients with other skin diseases, will make it possible to 
differentiate skin diseases based on the microbiome in case these skin 
diseases are visually difficult to distinguish or would require invasive 
diagnostics. 

Some models also still need to be validated on external data (data 
not collected at the same facility) to make these generally suitable 
for testing interventions. For example, the neural network created 
in Chapter 3 on ecg features could also be tested on patients with 
structural heart disease.

The proper use of thoroughly validated machine learning models 
in early drug development can provide important information, 
which can be used to make a go/no-go decision regarding further 
development of new drugs.4 For example, a machine learning model 
could determine, based on their ecgs, that a new drug has a negative 
effect on the age (i.e. health) of the hearts of subjects when a new 
drug is tested. A model could rate driving behaviour after intake of a 
newly developed drug as significantly more abnormal. When relevant 
for the risk profile, it may be concluded that this development should 
be halted at an early stage, which might save a lot of money.5

In this thesis the use of machine learning is only explored on ecg 
data, data derived from driving simulators, and microbiome data. It 
would be interesting to explore machine learning on other types of 
data derived from drug development, such as neurological data (e.g. 
EEG data), and psychological data. While nowadays more and more 
data is collected using wearables, providing easy collection without 
clinical visits, machine learning might be able to classify behaviour 
characteristics based on this data.6,7

Finally, as newer and more powerful computing hardware becomes 
available, advances are made with newer machine learning algorithms 
that produce more powerful models with fewer errors.8 For example, 
more use could be made of ‘deep learning’, that has made huge 
progress in recent years.9 It has produced major breakthroughs and 
is now used on billions of digital devices for complex tasks such as 
speech recognition, image interpretation, and language translation.10 
It would be interesting to study these the application of these 
techniques in the early phases of drug development. 

Conclusion
In this PhD thesis, we showed that machine learning can be applied 
on data derived from early-stage clinical trials in order to create or to 
detect the effect of medicines or other interventions. This may inform 
the later stage of drug development about the effect of a drug. The 
proper use of thoroughly validated machine learning models in early 
drug development can provide important information, which can be 
used to make a go/no-go decision regarding further development of 
new drugs.4 Similarly, these models can be used to guide the decision-
making process regarding the dosage range to be used in phase II 
studies, determining a therapeutic window, and even identifying the 
target study population. In this way novel pharmacological drugs 
could be tested for effect on a subject or a patient in the early phase 
of development.
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Summary
As a result of major advances in technology in healthcare, an increasing 
amount of data is collected during clinical trials. It is essential to 
realize, however, that data by themselves are useless. To be useful, 
data must be analyzed, interpreted, and acted on. Machine learning 
strategies may provide helpful solutions. In Chapter 1, the concept 
of machine learning is explored. Machine learning focuses on the 
development of algorithms that can change when exposed to new 
data. It can also be used to obtain insights, predictions, and decisions 
from vast amounts of data by combining different parameters. 

This thesis contains machine learning approaches on a variety 
of clinical data sets. The classical data consist of electrical signals 
from the ecg of healthy subjects, the innovative data originate from 
measurements in a driving simulator, and emerging data are derived 
from dna analysis of the microorganisms living on the skin of patients 
with skin disease.

In Chapter 2 we addressed the effect of the number of ecg 
replicates extracted from a continuous ecg on estimated qt interval 
prolongation for 10 different qt correction formulas. We showed that 
the number of ecg replicates impacted the estimated qt interval 
prolongation for all deployed qt correction formulas. So, for an 
accurate estimation of qt prolongation more than three ecg’s are 
needed.

In Chapter 3 we present a study in which we developed a neural 
network to characterize the effect of aging on the ecg in healthy 
volunteers. We used this model to predict the physiologic age of 
individual hearts based on their ecg; physiologic age was estimated 
as a continuous variable with an average error of 6.9±5.6 years (R2= 
0.72 ± 0.04). The correlation was slightly stronger for men (R2= 0.74) 
than for women (R2= 0.66). Using SHapley Additive exPlanations 
(shap) values the impact of the individual features on the prediction 
of age was determined. We concluded that this technique could be 
used to pick up subtle age-related cardiac changes; it also enabled 
us to estimate the reversing of these age-associated effects by 
administered treatments. 

In Chapter 4 & 5 machine learning was used for a better assessment 
of driving performance in drivers using drugs by including multiple 
parameters derived from a simulator rather than the Standard 
Deviation of the Lateral Position (SDlp) alone. We specifically analysed 
the effects of alcohol and alprazolam on car driving behaviour. Adding 
additional features besides the SDlp increased the model performance 
from an accuracy of 65% to 83% for prediction of alprazolam intake and 
from 50% to 76% for prediction of alcohol ingestion. Analysis of other 
parameters such as the steering behaviour of the driver appeared 
to be an important contributor to the improvement of the accuracy 
of the models. We extended this approach to sleep deprivation and 
tested the model for characterization of new interventions. A model 
detecting sleep deprivation based on driving behaviour provided an 
accuracy of 77 ± 9%. We identified the overlap of driving behaviour 
after sleep deprivation and driving behaviour affected by other 
interventions. Abnormal driving behaviour after alprazolam, and 
to a lesser extent after alcohol intake, showed remarkably similar 
characteristics as observed with sleep deprivation, matching the 
expected relative drowsiness. Consequently, our model for sleep 
deprivation may serve as a next reference point for a driving test 
battery of newly developed drugs.

In Chapter 6 machine learning techniques were used to identify 
discriminative biomarkers in the microbiome of patients with 
seborrheic dermatitis versus healthy controls. The accuracy of the 
prediction models was 77% and the roc-auc was 83%. The most 
important microorganisms for discrimination – next to Cutibacterium 
and Staphylococcus – had a relatively low occurrence, which can be 
easily overlooked in standard analyses. This indicates that machine 
learning can be of major importance in basic skin research, as well as 
in the discovery and development of new individualized therapies 
involving the microbiome.

In this PhD thesis, we showed that machine learning can be applied 
on data derived from early stage clinical trials in order to detect and 
evaluate the effect of drugs and other interventions. 
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Nederlandse Samenvatting
Als gevolg van de grote technologische vooruitgang in de gezond-
heidszorg worden in toenemende mate gegevens verzameld tijdens 
de uitvoering van klinische onderzoeken. Het is evenwel essentieel 
om te beseffen dat gegevens op zich van weinig of geen waarde zijn. 
Ten behoeve van hun optimale bruikbaarheid dienen gegevens ge-
analyseerd, geïnterpreteerd en verwerkt te worden. Machine learn-
ing-strategieën kunnen hiertoe nuttige en adequate oplossingen 
bieden. 

In hoofdstuk 1 verkenden we het concept van machine learning. 
Machine learning richt zich op de ontwikkeling van algoritmen die zich 
kunnen aanpassen wanneer deze worden blootgesteld aan nieuwe ge-
gevens. Tevens kan machine learning worden gebruikt om inzichten, 
voorspellingen en beslissingen te verkrijgen uit grote hoeveelheden 
gegevens door het combineren van diverse parameters.

Dit proefschrift bevat machine learning-benaderingen toegepast 
op verschillende klinische datasets. De klassieke gegevens bestaan   uit 
elektrische signalen van het electrocardiogram (ecg) verkregen bij 
gezonde proefpersonen, de innovatieve gegevens zijn afkomstig van 
metingen in een rijsimulator, en de opkomende gegevens zijn afgeleid 
van dna-analyse van de micro-organismen die op de huid voorkomen 
van patiënten met huidziekten.

In hoofdstuk 2 hebben we het effect van het aantal ecg’s – geëx-
traheerd uit een continue ecg registratie op de geschatte verlenging 
van het qt-interval – voor 10 verschillende qt-correctieformules on-
derzocht. We toonden aan dat het aantal ecg’s van invloed was op 
de nauwkeurigheid van geschatte verlenging van het qt-interval voor 
alle ingezette qt-correctieformules. Voor een nauwkeurige schatting 
van qt-verlenging zijn meer dan drie ecg’s noodzakelijk.

In hoofdstuk 3 presenteren we een onderzoek waarin we een neu-
raal netwerk ontwikkelden om het effect van veroudering op het ecg 
bij gezonde vrijwilligers te karakteriseren. We gebruikten dit model 
om de fysiologische leeftijd van individuele harten te voorspellen op 
basis van hun ecg; de fysiologische leeftijd werd geschat als een con-
tinue variabele met een gemiddelde foutmarge van 6,9 ± 5,6 jaar (R2 

= 0,72 ± 0,04). De correlatie was enigszins sterker voor mannen (R2= 
0,74) dan voor vrouwen (R2= 0,66). Met behulp van SHapley Additive 
exPlanations (shap)-waarden werd de impact van de individuele ken-
merken op de voorspelling van fysiologische leeftijd bepaald. We stel-
den vast dat deze techniek kan worden gebruikt om subtiele leef-
tijd-gerelateerde hartveranderingen op te sporen; het stelt ons ook 
in staat om het omkeren van deze leeftijdsgebonden effecten door 
toegediende behandelingen in te schatten.

In hoofdstukken 4 en 5 maakten we gebruik van machine learning 
voor een betere beoordeling van de rijprestaties van bestuurders die 
medicijnen gebruikten. In plaats van uitsluitend de standaard devia-
tie van de laterale positie (SDlp) te analyseren werden meerdere pa-
rameters afgeleid van een simulator meegenomen. We analyseerden 
specifiek de effecten van alcohol en alprazolam op het rijgedrag van 
de bestuurder. Het toevoegen van extra parameters naast de SDlp 
verhoogde de prestaties van het model. De nauwkeurigheid van het 
model nam toe van 65% tot 83% na inname van alprazolam, en van 
50% tot 76% na inname van alcohol. Analyse van andere parameters 
– zoals het stuurgedrag van de bestuurder – bleek een belangrijke 
bijdrage te leveren aan de verbetering van de nauwkeurigheid van 
de modellen. We breidden deze benadering uit naar slaaptekort en 
testten het model voor de karakterisering van nieuwe interventies. 
Een model dat slaaptekort opspoort op basis van rijgedrag leverde 
een nauwkeurigheid van 77 ± 9% op. Daarmee identificeerden we de 
overlap tussen rijgedrag na slaaptekort en rijgedrag beïnvloed door 
andere interventies. Abnormaal rijgedrag na gebruik van alprazolam 
– en in mindere mate na alcoholgebruik – vertoonde opmerkelijk ver-
gelijkbare kenmerken als waargenomen bij slaaptekort, passend bij de 
verwachte relatieve slaperigheid. Daarom kan ons model voor slaap-
gebrek dienen als een volgend referentiepunt voor een rijtestbatterij 
van nieuw ontwikkelde medicijnen.

In hoofdstuk 6 pasten we machine learning technieken toe om 
discriminerende biomarkers te identificeren in het microbioom van 
patiënten met seborroïsche dermatitis versus gezonde controles. De 
nauwkeurigheid van de voorspellingsmodellen was 77%, en de roc-
auc was 83%. De belangrijkste micro-organismen voor discrimina-
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tie – naast Cutibacterium en Staphylococcus – kwamen relatief weinig 
voor, waardoor men deze micro-organismen in standaardanalyses 
eenvoudig over het hoofd kan zien. Dit geeft aan dat machine learn-
ing van groot belang kan zijn bij fundamenteel huidonderzoek. Dit 
geldt eveneens voor de ontdekking en ontwikkeling van nieuwe ge-
individualiseerde therapieën waarbij het microbioom betrokken is.

In dit proefschrift hebben we aangetoond dat machine learning kan 
worden toegepast op gegevens die zijn afgeleid van klinische onder-
zoeken om in een vroeg stadium het effect van medicijnen en andere 
interventies op te sporen en te evalueren.
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