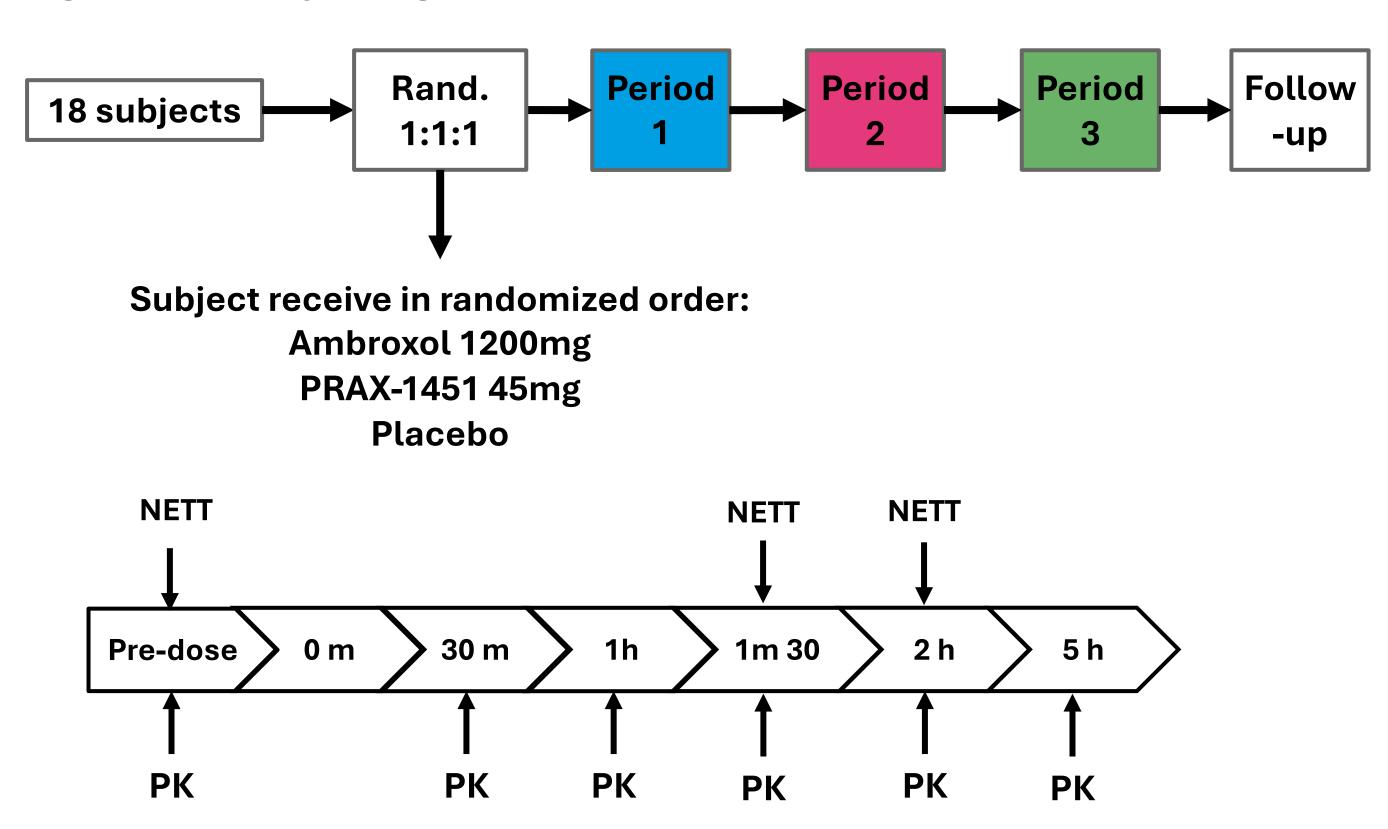
Effects of two selective sodium channel blockers with distinct mechanisms of action on axonal excitability

K.P.W. Rietdijk*^{1, 2}, M.L. Claessens*^{1, 2}, C.M.K.E. de Cuba^{1, 2}, I.W. Koopmans ^{1, 2}, M. Niesters^{1, 2}, M. de Kam¹, K. Hansen³, K. Kahlig³, S. Petrou³, J.A.A.C. Heuberger¹, G.J. Groeneveld^{1, 2}

¹Centre for Human Drug Research (CHDR), Leiden, The Netherlands, ²Leiden University Medical Center (LUMC), Leiden, The Netherlands, ³Praxis Precision Medicines, Boston, USA

Introduction


The sensitivity of Nerve Excitability Threshold Tracking (NETT) for non-selective Na_v blockers has previously been demonstrated¹. Interest in the use of selective Na_v blockers has recently increased for a multitude of indications (ie. pain). Yet direct measurement of axonal excitability as a biomarker to explore mechanisms of action (MoAs) of Na_v blockers is rarely performed in early-phase clinical trials.

Aim

We aimed to investigate NETT effects of two distinct selective Na_v blockers with unique MoAs to determine the specificity of NETT and further investigate its potential in early-phase drug development of drugs that modulate axonal excitability.

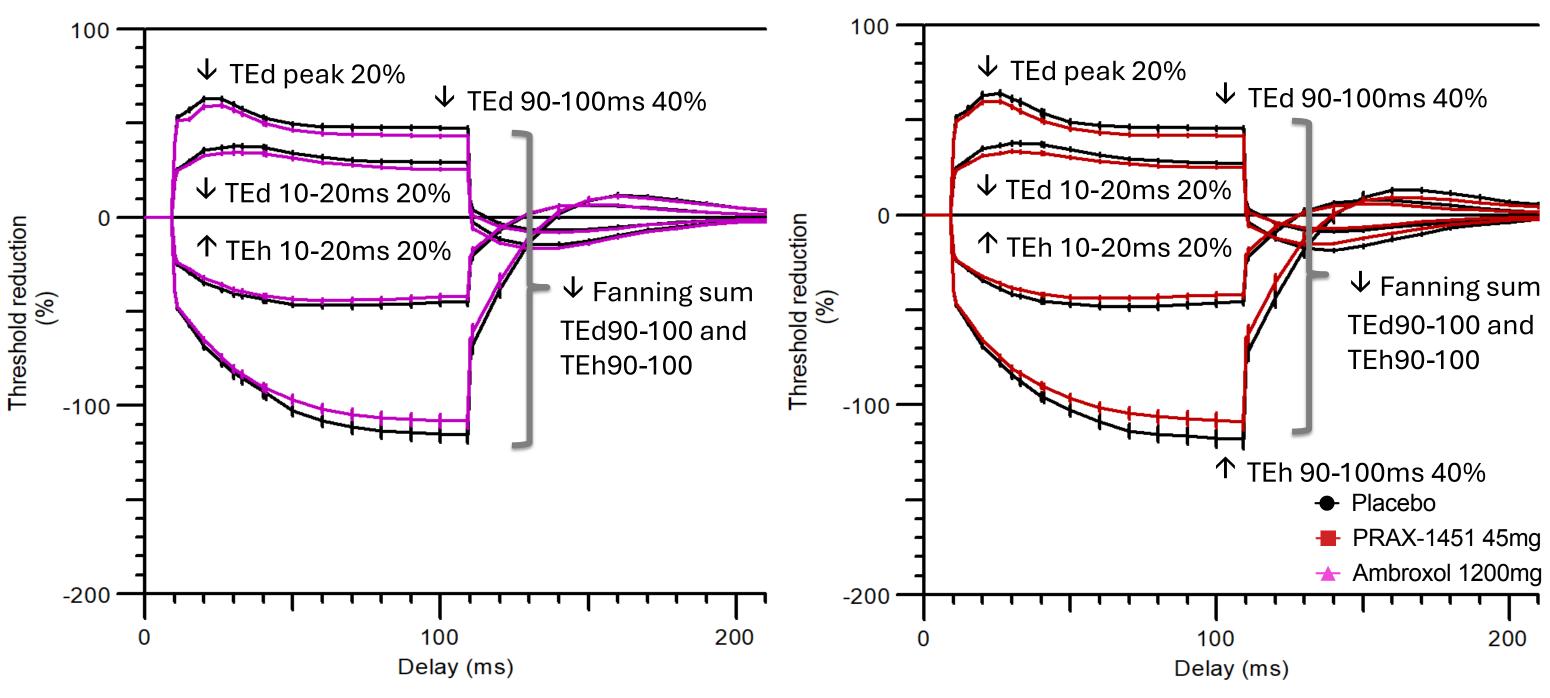
Methods

Figure 1: Study design

Randomized, double-blind, placebo-controlled, three-way crossover study with single doses of:

- Ambroxol (Na_v 1.7/1.8 blocker)
- PRAX-1451 (I_{NA} modulator)
- Motor and Sensory NETT at the median nerve
- TROND + Latent Addition (LA) protocol using QTRAC-S
- Constant skin temperature monitoring
- Mixed effects model analysis of variance with 2+5h timepoints combined and baseline as covariate

Centre for Human Drug Research | Zernikedreef 8 | 2333 CL Leiden | The Netherlands | Tel +31 71 52 46 400 | info@chdr.nl |


Results

See all

CHDR posters:

- 20 participants received all treatments
- Main results Ambroxol & PRAX-1451
 Sensory threshold electrotonus (TE) (Figure 2 & 3A)
 - \downarrow Depolarizing TE (all p < 0.05)
 - 个 Hyperpolarizing TE (all p < 0.05)
 - \downarrow Fanning sum (p < 0.05)
- Additional results PRAX-1451 (Figure 3B)
 - \downarrow Latent Addition (LA) Threshold change at 2 ms (p < 0.05)
- Additional significant results, not reported
 - 1. ↓ Current-Threshold (I/V) parameters PRAX-1451 sensory
 - 2. ↓ Recovery Cycle (RC) parameters PRAX-1451 sensory
 - 3. Ambroxol motor results generally in line with sensory results
- PRAX-1451 did not exhibit motor effects

Figure 2: SNAP Threshold Electrotonus TROND Graphs
A) Ambroxol
B) PRAX-1451

Description: TROND graphs for sensory Threshold Electrotonus (TE) parameters (mean ± standard error): baseline in black vs. 2+5 h post-dose combined for A) ambroxol in purple and B) PRAX-1451 in red. The TE paradigm consists of a40% and 20% depolarizing or hyperpolarizing conditioning pulse during which a test pulse is given (10-100 ms after) measuring the neuron's compensatory ability.

B) Latent Addition –

Time (hours)

Figure 3: SNAP Change from Baseline Graphs

A) Threshold Electrotonus –

Time (hours)

Fanning Sum Threshold change at 0.2 ms Placebo PRAX-1451 45mg Ambroxol 1200mg * epsquare to the property of the property of

Description: Change from baseline (including 95% confidence interval error bars) for sensory parameters A) TE Fanning sum and B) LA Threshold Change at 0.2 ms. The fanning sum is a sum of the depolarizing and hyperpolarizing conditioning pulse (CP) at 90 - 100 ms. The LA consists of a 90% hyperpolarizing CP pulse where the neuronal recovery is specific for persistent sodium current (I_{NA}).

Conclusions

- Both ambroxol and PRAX-1451 significantly decreased axonal excitability across multiple endpoints
- We confirmed NETT's sensitivity for demonstrating drug effects of selective ion channel modulators, supporting its potential use as a proof-of-mechanism biomarker
- TE was the most sensitive biomarker for sodium channel modulation, irrespective of MoA
- PRAX-1451's distinct effects on the LA confirm its MoA on the I_{NA} current, supporting LA as a specific biomarker for I_{NA} modulation

References: 1. Ruijs et al. Effects of Mexiletine and Lacosamide on Nerve Excitability in Healthy Subjects: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Clin Pharmacol Ther. 2022 Nov;112(5):1008–19.

^{*} Equal contribution