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Development of novel biomarkers

Clinical biomarkers serve a critical role in diagnosing diseases, monitor-
ing disease progression, measuring drug effects, and predicting treat-
ment outcomes.! As our understanding of biology and diseases con-
tinue to evolve, there is a growing demand for the development of novel
biomarkers that offer more precise, in-depth, and timely understand-
ing of the disease and provide early detection and quantification of drug
effects. To meet this need, researchers are increasingly turning towards
novel technologies that enable the development of innovative biomark-
ers. This goal is not without hurdles. Challenges such as data collection,
standardization, validation, and regulatory considerations need to be
carefully addressed. Additionally, the translation of these biomarkers
from research setting to clinical practice requires robust evidence of their
clinical utility and reliability.

The primary objective of this thesis is to address the development and
validation of innovative biomarkers by harnessing the data of mobile
health (MHEALTH) devices, such as smartphones, tablets, and wearable
devices. These widely available and data-intensive technologies offer
an unprecedented opportunity to capture diverse physiological and
behavioral data outside the traditional clinical setting. To effectively uti-
lize this wealth of information, Machine Learning (ML) techniques will be
employed to transform the unstructured and multifaceted MHEALTH data
into meaningful clinical biomarkers. This research aims to address the
challenges, important factors, and potential benefits associated with the
development and validation of MHEALTH biomarkers.

MHEALTH devices for clinical trials

Clinical trials play a crucial role in assessing the efficacy of new pharma-
cological treatments and are typically conducted by academic hospitals
and Contract Research Organizations (CROS). Conventionally, data for
observational and randomized clinical trials is collected during patients’
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visits to in-patient facilities like hospitals or clinical research units. This
approach has several benefits, such as strict control over the study envi-
ronment and standardized data collection. However, a limitation is that
the data collected only represents a snapshot of the patient’s health and
disease activity, often in an isolated context. As a result, evidence gaps
between visits are created, and clinicians’ insight into patients’ overall
health may be limited.

To overcome the limitations of conventional clinical trials, MHEALTH
devices like smartphones, wearables, and tablets offer a unique oppor-
tunity for continuous and longitudinal data collection from clinical trial
participants under free-living conditions.>® Mobile applications (apps)
installed on smartphones and tablets can be utilized to actively collect
self-reported outcomes from patients through electronic diaries.” Simul-
taneously, apps can passively collect data from various sensors such as
accelerometers, cameras, gyroscopes, microphones, and phone logs,
providing an additional source of valuable physical and behavioral data.?"
19 Wearables support continuous tracking of physiological responses or
physical activity, such as heart rate or steps, enable characterization of
intra- and inter-individual variability in disease activity and quantification
of drug response.’''* This approach of collecting data from multiple sen-
sors acknowledges that a patient’s experience of their disease is a conse-
quence of multiple neurobiological processes, and therefore is expressed
as adiverse array of symptoms simultaneously.

The use of MHEALTH devices in clinical trials has sharply increased since
the global adoption of the smartphone. Between 2012 to 2022, the term
‘MHEALTH’ was incorporated in 1605 clinical studies posted on clinicaltri-
als.gov. Only 15 studies used the term between 2000 to 2011.'> MHEALTH
biomarkers have been shown to be effective in monitoring disease activ-
ity and estimating symptom severity for a wide range of diseases such as
mood disorders,'®"?" neurodegenerative disorders,*> ** and cardiovascu-
lar diseases.?® The benefits of MHEALTH devices in clinical trials are two-
fold. First, real-world data collected under free-living conditions, which is
data collected outside of controlled clinical trial settings, can be used to

PARTI  CHAPTER1

-
-

N M I ITHHHTHTHTHTHTHHHHHHHHHHlH HHHHHH HHlH T T HHT S



nmihnmuaaaapaEnuanuuuuuuuuumniniminiimimiiiiHIHITHIHIIMITTITMMY_YaGD£S . D )Y

generate novel hypotheses or insights into the most effective treatments.
This can help to provide the ecological validity of findings produced by
well-controlled clinical trials. Second, the use of MHEALTH devices for clin-
ical trials may also be cost-effective due to the emerging concept of Bring
Your Own Device (BYoD).2%2" By leveraging participants’ own devices for
data collection, costs are reduced for clinical trials as study specific hard-
ware does not need to be purchased, distributed, or maintained. The bur-
den for participantsis also reduced as they can use hardware that they are
already familiar with and can have access to in their daily lives.

Despite these advantages, integrating MHEALTH devices into clinical tri-
als presentsits own challenges. The most significantissues include ensur-
ing tolerability and usability of the MHEALTH devices by patients and cli-
nicians and developing, validating, and interpreting the biomarkers given
the lack of control under free-living conditions.® Unlike controlled clini-
cal settings, free-living conditions offer minimal control over the environ-
ment in which data is collected. Participants may also engage in various
activities and encounter unpredictable situations that can influence data
quality and consistency. Factors such as variations in daily routines, social
interactions, and environmental exposures can introduce variability and
noise into the collected data. The accuracy and reliability of the collected
data can be affected by factors such as user engagement, device perfor-
mance, and data synchronization. Ensuring data quality requires clear
patient instructions, participant compliance, and regular monitoring to
address any issues that may arise. When collecting data in free-living con-
ditions, there is a greater risk of breaching participants’ privacy. The use
of MHEALTH devices, such as smartphones and wearable devices, often
involves capturing personal information and sensitive data. Safeguard-
ing privacy becomes crucial to ensure participants’ trust and compliance.
Implementing robust data encryption, secure data storage, and strict pri-
vacy policies are essential to mitigate privacy risks. The datasets gener-
ated by these devices are often complex, large, and subject to influence
by external factors such as differences in devices, lifestyles, weather, and
location. ML provides a potential solution for processing these large and
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heterogeneous datasets into biomarkers that can aid the understanding
and prediction of complex clinical outcomes.

ML and traditional statistical learning methods both play important
roles in the analysis and interpretation of clinical trial data. While both
share a common objective of extracting meaningful insights and inform-
ing decision-making, they have distinct approaches and applications.?®
Traditional statistical learning methods typically focus on hypothesis
testing, parameter estimation, and model interpretability and inference
and therefore are classically used to test the significance of individual
covariates or predictors, estimating effect sizes, and calculating sample
sizes.?® As traditional statistical learning methods are typically designed
to answer specific research questions or test predefined hypotheses, their
primary focus is on estimating the effects of individual covariates or pre-
dictors rather than generating accurate predictions for new, unseen data.
These methods may lack the ability to generalize well to different popula-
tions, settings, or contexts, as they are often tailored to the specific char-
acteristics of the analyzed dataset. With time-honored techniques such
as ANOVA, t-tests, linear and logistic regression, and survival analysis
deeply rooted in the field of clinical trials, the continued utilization of tra-
ditional statistical learning remains pivotal in advancing medical research
and improving patient outcomes.?**® However, their limitations can hin-
der their effectiveness in analyzing complex and diverse clinical trial data,
where flexibility and adaptability may be required.

Conversely, ML is primarily focused on developing data-driven statisti-
cal models that are both generalizable and predictive in nature.*®3"32 As
a result, ML is often considered more ‘data-hungry’ compared to statisti-
callearningduetoitsreliance on large and diverse datasets. Generalizabil-
ity is a desirable characteristic of biomarkers as itindicates their ability to
perform well in diverse scenarios. Generalizable and predictive biomark-
ers derived from ML techniques can be applied across different patient
populations, settings, and clinical trial protocols. Akey step in the ML pipe-
lineisthe use of cross-validation. By employing cross-validation, clinicians
canobtain areliable estimate of how well the ML modelis likely to perform
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on unseen data sourced from a similar population or setting. This assess-
ment of predictive accuracy is crucial in determining whether the devel-
oped model can generalize its findings beyond the specific dataset used
fortraining. This versatility allows for the broader utilization of biomarkers
invarious healthcare contexts, increasing their potentialimpactand value.

A ML model has the potential to build a representative composite bio-
marker by integrating and capturing complex relationships among differ-
ent features, which would lead to a more comprehensive and informative
representation of the underlying biological or pharmacological pro-
cesses. However, while the complexity of the biomarker can increase its
predictive accuracy, it may limit its interpretability. ML offers a wide range
of model types, such as decision trees, neural networks, ensemble meth-
ods, transfer learning, and unsupervised learning methods that can be
adapted to different types of data and objectives, allowing for more flex-
ible and adaptable modelling approaches.*®3* Many ML algorithms, par-
ticularly deep learning models, can automatically learn and extract fea-
tures directly from the data, eliminating the need for manual feature
engineering. The automation of the identification of relevant features and
patterns in the data, reduces the need for manual feature selection and
engineering. This can streamline the biomarker development process and
improve the efficiency of clinical trial analyses. In addition, unsupervised
learning algorithms, which can identify patterns in data without being
explicitly told what to look for, can be useful for exploratory data analy-
sis or for discovering hidden patterns or subgroups within data that may
not be immediately apparent.®* In conclusion, MUs data-driven approach,
flexibility in model selection, automated feature extraction, and ability to
identify hidden patterns offer significant advantages over traditional sta-
tistical learning methods in the development of biomarkers for clinical tri-
als. Its reliance on large and diverse datasets may make it more data-hun-
gry, but this enables the creation of generalizable and predictive models.
By streamlining the biomarker development process and improving the
efficiency of clinical trial analyses, ML has the potential to greatly impact
clinical research and contribute to improved patient outcomes.
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Clinical validation of composite MHEALTH
biomarkers

Composite MHEALTH biomarkers can offer several benefits to both clini-
cians and patients. By consolidating multiple clinical features into a sin-
gle composite digital biomarker, this biomarker can be used to predict
clinical outcomes, serving as a complement rather than a replacement
for multiple clinical endpoints. The resulting composite biomarkers have
the potential for inference and prediction, contributing to the discovery
of generalizable and robust evidence to guide clinical studies. This the-
sis proposes that there are three beneficial applications for composite
biomarkers. Firstly, composite biomarkers may be more sensitive to sub-
tle changes or treatment effects that may not be evident when assess-
ing individual biomarkers independently. Secondly, by combining multi-
ple biomarkers, this can help mitigate the measurement variability that
are inherent in an individual biomarker. The aggregated biomarker can
provide a more stable representation of the underlying phenomenon.
Lastly, a composite biomarker may provide a more holistic evaluation
of disease activity. A composite biomarker provides a more comprehen-
sive and multi-faceted assessment, and therefore may capture a broader
spectrum of treatment effects. However, to determine if these composite
digital biomarkers have utility in clinical research, they must be clinically
validated.?® The following section addresses the validation criteria con-
sidered to evaluate if a biomarker is suitable for clinical adoption.
Validation of novel composite biomarkers before incorporating them
into clinical trials is crucial. To validate these biomarkers, Kruizinga
et al. have proposed five criteria, which we have adopted along with an
optional criterion of Interpretability and Explainability.®® The first crite-
rion, Classifying Patients and Healthy Controls, focuses on accurately dis-
tinguishing between patients and healthy individuals to identify disease-
specific biomarkers. The second criterion, Correlation with Gold Standard
or Disease Metrics, involves establishing the validity of the biomarker and
its ability to accurately reflect disease activity by correlating it with the

PARTI  CHAPTER1

-
L]

N M I ITHHHTHTHTHTHTHHHHHHHHHHlH HHHHHH HHlH T T HHT S



nmihnmuaaaapaEnuanuuuuuuuuumniniminiimimiiiiHIHITHIHIIMITTITMMY_YaGD£S . D )Y

gold standards. The third criterion, Detecting Changes in Disease Activity
or Treatment Effects, refers to detecting changes in disease activity over
time, which is crucial for monitoring disease progression or response
to treatment. The fourth criterion, Tolerability and Usability, is particu-
larly important for MHEALTH devices that may be worn continuously or
for extended periods. The device should not cause discomfort or irrita-
tion and should be easy to use. If tolerability and usability of the device are
poor, the missing or poor-quality data collected will negatively impact the
development of the biomarker. The fifth criterion, Repeatability and Vari-
ability, refers to the device producing consistent measurements under
different conditions and over multiple time points. Finally, the optional
criterion, Interpretability and Explainability, refers to the ability of the
composite biomarker to provide clear and understandable explanations
for its predictions. This is important for building trust in the biomarker
and its ability to inform clinical decision-making.

Research objectives and structure of this thesis

The overall research question of this thesis is How can mHeALTH devices and
ML algorithms be used to develop composite biomarkers for clinical appli-
cations? To address this question, we have outlined a series of research
questions that will explore different aspects of the development and
clinical validation of these biomarkers. These research questions will be
addressed in their respective chapters, culminating in a discussion of the
general findings and recommendations for future research in this field.
Parts 2 to 4 will use clinical trial data collected using Centre for Human
Drug Research (CHDR)’s Trial@Home platform. The Trial@Home platform
aims to investigate alternative approaches for collecting clinical trial data
in non-traditional clinical settings. Serving as a comprehensive solution,
Trial@Home offers end-to-end services, encompassing trial design, exe-
cution, and data analytics. By integrating smartphones, tablets, and wear-
ables (such as smartwatches, smart scales, and sleep mats) into clinical
trials, participants can experience reduced visit frequency while enabling
more convenient and representative data collection. This innovative
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approach captures participants’ real-world experiences in their daily
lives, providing valuable insights under free-living conditions. Through
the use of ML, the collected data is transformed into novel and validated
digital biomarkers. The following chapters provide more insight into the
type of data collected during these trials, and how the data was trans-
formed into validated biomarkers for clinical applications.

Part 1 (Introduction) asks What is the motivation behind creating com-
posite mHEALTH biomarkers for clinical applications and how are they cur-
rently being developed? This part addresses the challenges and limita-
tions of using MHEALTH devices and ML for developing and validating
composite biomarkers in clinical trials. Chapter 1 provides a brief over-
view of concept, reasoning, and importance of using ML in clinical trials
that use MHEALTH devices. Chapter 2 offers a literature review of existing
published studies that have used similar techniques to derive composite
biomarkers. Given the rise and breadth of ML applications in clinical tri-
als, we sought to identify both the generic and best practices of develop-
ing these ML applications. However, given the lack of consistent report-
ing in these studies, the literature review does not provide a complete or
detailed overview. On the contrary, the literature review presents a set of
recommended reporting practices aimed at enhancing the transparency
and reproducibility of the methods utilized.

Part 2 (Classification of Diagnosis) asks How can mHeaLTH devices and
vt be utilized to create composite biomarkers for the classification of diag-
noses? This part addresses how different types of MHEALTH devices com-
pare in terms of their usability, tolerability, and data quality for develop-
ing composite biomarkers. Further, it examines the methods required
for developing accurate and clinically relevant biomarkers for the classi-
fication of disease diagnoses using MHEALTH data and ML. Chapter 3 use
the Trial@Home platform to classify the remotely monitored behavioural
activity of Facioscapulohumeral Muscular Dystrophy (FSHD) patients
respectively from Healthy Controls. To assess the feasibility of piloting a
Trial@Home study, these publications also report the data completion
rate and patient experience of the Trial@Home app to reflect the tolerabil-
ity and usability of the devices.
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Part 3 (Estimation of Symptom Severity) asks How can mHeALTH devices
and mL be utilized to create composite biomarkers for the estimation of
symptom severity? This part investigates the effectiveness of the devel-
oped composite biomarkers in estimating the severity of disease symp-
toms in patients compared to traditional methods. Chapter 4 and 5 use
regression algorithms and the Trial@Home platform to estimate the
symptom severity of the FSHD and Major Depressive Disorder (MDD)
patients. In addition to estimating the symptom severity, we evaluated
how varying time windows used to train the models can affect the repeat-
ability and variability of their predicted outcomes. Chapter 6 and 7 focus
on developing ML models that can automatically quantify the number
of coughs and cries using a smartphone microphone respectively. While
these activities cannot be used as diagnostic tools themselves, they serve
asrelevantand informative proxies for disease activity.

Part 4 (Detection of Treatment Effects) asks Can the use of MHEALTH
devices and mL algorithms enable the detection of treatment effects in clin-
ical trials and provide insights into the efficacy of pharmacological treat-
ments? To address this question, Chapter 8 exploreif acomposite tapping
biomarker can detect treatment effects and to estimate symptom severity
among Parkinson’s Disease patients respectively. The underlying motiva-
tion for this investigation lies in examining whether the same tapping bio-
marker can serve the dual purpose of monitoring both treatment effects
and symptom severity in alignment with the gold standard, thus unveiling
new possibilities for comprehensive biomarker applications.

Chapter 9, the discussion, reflects on the methodologies and analyses
in Parts 2 to 4 and addresses the motivations, factors, and limitations that
contribute to the development and adoption of MHEALTH composite bio-
markers for the purposes of diagnosis classification, symptom severity
estimation, and treatment effects detection. Given the potential impacts
of MHEALTH biomarkers, the discussion reflects on the practical and ethi-
cal implications of MHEALTH biomarkers for clinicians, other Central Ner-
vous System (cNs) disorders, and future clinical trials.
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Condensed structure of the thesis

Given the criteria for evaluating the clinical validity of candidate com-
posite biomarkers, this thesis consists of 5 parts. Part 1 provides the the-
oretical and historical framework for the development of these biomark-
ers. Part 2, 3, and 4 focus on clinical trials that use ML to classify a clinical
diagnosis, to estimate symptom severity, and to detect treatment effects
respectively. In each of these sections, we provide a detailed account of
our approach to the proposed clinical validation. Chapter 9 discusses the
general findings of this thesis and addresses general recommendations
for developing future biomarkers that use MHEALTH devices and ML.
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Abstract

Background: Central nervous system (cNs) disorders benefit from ongo-
ing monitoring to assess disease progression and treatment efficacy.
Mobile health (MHEALTH) technologies offer a means for the remote and
continuous symptom monitoring of patients. Machine Learning (ML) tech-
niques can process and engineer MHEALTH data into a precise and multi-
dimensional biomarker of disease activity. Objective: This narrative lit-
erature review aims to provide an overview of the current landscape of
biomarker development using MHEALTH technologies and mL. Addition-
ally, it proposes recommendations to ensure the accuracy, reliability,
and interpretability of these biomarkers. Methods: This review extracted
relevant publications from databases such as PubMed, IEEE, and CTTI.
The ML methods employed across the selected publications were then
extracted, aggregated, and reviewed. Results: This review synthesized
and presented the diverse approaches of 66 publications that address
creating MHEALTH-based biomarkers using ML. The reviewed publications
provide a foundation for effective biomarker development and offer rec-
ommendations for creating representative, reproducible, and interpre-
table biomarkers for future clinical trials. Conclusion: MHEALTH-based
and mL-derived biomarkers have great potential for the remote monitor-
ing of cNs disorders. However, further research and standardization of
study designs are needed to advance this field. With continued innova-
tion, MHEALTH-based biomarkers hold promise for improving the moni-
toring of cNs disorders.
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Introduction

MOTIVATION

Disorders that are affected by the Central Nervous System (cNs), such as
Parkinson’s Disease (PD) and Alzheimer’s Disease (AD), have a significant
impact on the quality of life of patients. These disorders are often pro-
gressive and chronic, making long-term monitoring essential for assess-
ing disease progression and treatment effects. However, the current
methods for monitoring disease activity are often limited by accessibil-
ity, cost, and patient compliance."? Limited accessibility to clinics or dis-
ease monitoring devices may hinder the regular and consistent monitor-
ing of a patient’s condition, especially for patients living in remote areas
or for those who have mobility limitations. Clinical trials incur costs
related to personnel, infrastructure, and equipment. A qualified health-
care team, including clinical raters, physicians, and nurses, contributes
to personnel costs through salaries, training, and administrative support.
Trials involving specialized equipment for measuring biomarkers can sig-
nificantly impact the budget due to costs associated with procurement,
maintenance, calibration, and upgrades. Furthermore, infrastructure
costs may increase as suitable facilities are required for data collection
during patient visits and equipment storage. Patient compliance poses
challenges for disease monitoring, as some methods require patients to
adhere to strict protocols, collect data at specific time intervals, or per-
form certain tasks that can be challenging for patients to execute. Low or
no compliance can lead to incomplete or unreliable monitoring results,
which in turn can hinder the reliability of the assessments. Given these
limitations, thereis a growinginterestin exploring alternative approaches
to monitoring cNs disorders that can overcome these challenges. The
increasing adoption of smartphones and wearables among patients and
researchers offers a promising avenue for remote monitoring.
Patient-generated data from smartphones, wearables, and other
remote monitoring devices can potentially complement or supplement
clinical visits by providing data during evidence gaps between visits. As
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the promise of mobile Health (MHEALTH) technologies is to provide more
sensitive, ecologically valid, and frequent measures of disease activity,
the data collected may enable the development and validation of novel
biomarkers. The development of novel ‘digital biomarkers’ using data
collected from electronic Health (EHEALTH) and MHEALTH device sensors
(such as accelerometers, GPs, and microphones) offers a scalable oppor-
tunity for the continuous collection of data regarding behavioral and
physiological activity under free-living conditions. Previous clinical stud-
ies have demonstrated the benefits of smartphone and wearable sensors
to monitor and estimate symptom severity associated with a wide range
of diseases and disorders, including cardiovascular diseases,* mood dis-
orders,* and neurodegenerative disorders.>® These sensors can capture
a range of physiological and behavioral data, including movement, heart
rate, sleep, and cognitive function, providing a wealth of information that
can be used to develop biomarkers for cNs disorders in particular. These
longitudinal and unobtrusive measurements are highly valuable for clin-
ical research, providing a scalable opportunity for measuring behav-
ioral and physiological activity in real-time. However, these approaches
may carry potential pitfalls as the data sourced from these devices can be
large, complex, and highly variable in terms of availability, quality, and
synchronicity, which can therefore complicate analysis and interpreta-
tion.”® Machine Learning (ML) may provide a solution to processing het-
erogenous and large datasets, identifying meaningful patterns within the
datasets, and predicting complex clinical outcomes from the data. How-
ever, the complexities involved in developing biomarkers using these new
technologies need to be addressed. While these tools can aid the discov-
ery of novel and important digital biomarkers, the lack of standardization,
validation, and transparency of the ML pipelines used can pose challenges
for clinical, scientific,and regulatory committees.

WHAT IS MACHINE LEARNING

In clinical research, one of the primary objectives is to understand the
relationship between a set of observable variables (features) and one or

DEVELOPMENT OF MACHINE LEARNING - DERIVED MHEALTH COMPOSITE BIOMARKERS FOR TRIAL@HOME CLINICAL TRIALS

more outcomes. Building a statistical model that captures the relation-
ship between these variables and the corresponding outputs facilitates
the attainment of this understanding.® Once this model is built, it can be
used to predict the value of an output based on the features.

ML is a powerful tool for clinical research asit can be used to build statis-
tical models. A ML model consists of a set of tunable parameters and a ML
algorithm that enables the generation of outputs based on given inputs
and selected parameters. Although mL algorithms are fundamentally sta-
tistical learning algorithms, ML and traditional statistical learning algo-
rithms can differ in their objectives. Traditional statistical learning aims
to create a statistical model that represents causal inference from a sam-
ple, while ML aims to build generalizable predictive models that can be
used to make accurate predictions on previously unseen data.’®'" How-
ever, itis essential to recognize that while ML models can identify relation-
ships between variables and outcomes, they may not necessarily iden-
tify a causal link between them. This is because even though these models
may achieve good performances, it is crucial to ensure that their predic-
tions are based on relevant features rather than spurious correlations.
This enables the researchers to gain meaningful insights from ML models
while also being aware of theirinherent limitations.

While ML is not a substitute for the clinical evaluation of patients, it can
provide valuable insights into a patient’s clinical profile. ML can help to
identify relevant features that clinicians may not have considered, lead-
ing to better diagnosis, treatment, and patient outcomes. Additionally, ML
can help to avoid common pitfalls observed in clinical decision making by
removing bias, reducing human error, and improving the accuracy of pre-
dictions.’™ '3 As the volume of data generated for clinical trials and out-
side clinical settings continues to grow, ML’s support in processing data
and informing the decision-making process becomes necessary. ML can
help to uncover insights from large and complex datasets that would be
difficult orimpossible to identify manually.

To develop an effective ML model, it is necessary to follow a rigorous
and standardized procedure. This is where ML pipelines come in. Table 1
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showcases an exemplary ML pipeline, which serves as a systematic frame-
work for automating and standardizing the model generation process.
The pipeline encompasses multiple stages, as defined by the authors,
to ensure an organized and efficient approach to model development.
First, defining the study objective guides the subsequent stages and
ensures the final model meets the desired goals. Second, raw data must
be preprocessed to remove errors, inconsistencies, missing data, or out-
liers. Third, feature extraction and selection identify quantifiable charac-
teristics of the data relevant to the study objective and extracts them for
use in the ML model. Fourth, ML algorithms are applied to learn patterns
and relationships between features, with optimal configurations iden-
tified through iterative processes until desired performance metrics are
achieved. Finally, the model is validated against a new dataset that is not
used in training to ensure generalizability. Effective reporting and assess-
ment of ML procedures must be established to ensure transparency, reli-
ability, and reproducibility.

OBJECTIVES

The objective of this narrative literature review is to provide an overview
of the ML practices used in studies that use MHEALTH technologies and ML
to develop novel biomarkers for clinical trials. In this review, each com-
ponent of the ML pipeline has a dedicated section. Based on the results
obtained from the review process, each ML component section provides a
comprehensive analysis and discussion of the most common and notable
practices. These sections delve into the motivations behind these prac-
tices, their limitations, and their overall impact on the ML pipeline. This
review will not provide precise recommendations for best practices, as
much of the research in this area is new and quickly evolving. Rather, the
recommendation section discusses the approaches for standardization
and validation procedures that are necessary for the development of ML
biomarkers to ensure the effectiveness and acceptance of these biomark-
ers by clinical, scientific, and regulatory committees.
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Methods

INFORMATION SOURCES AND SEARCH STRATEGY

Given the wide range of study designs and clinical populations that use
smartphones and wearables to collect data, we used the Joanna Briggs
Institute (JBI) guidelines to develop a search strategy.'® Based on an ini-
tial limited search of online databases for clinical trials that report using
MHEALTH devices and ML, we developed a custom keyword strategy and
performed an in-depth search in PubMed, IEEE Xplore, and cTTI (Table 2).
The search terms for the cNs disorder terms were based on the National
Library of Medicine’s cNs MeSH descriptor data.'” The relevant papers
were selected based on the title and abstract. Finally, other literature
review studies that explore the same questions were reviewed; the refer-
ences cited by these studies were then identified and reviewed if they met
our criteria. The date range for the search was between 1 January 2012 and
31December2022. The search was conducted on 7 January 2023.

INCLUSION CRITERIA

The authors adopted the Population, Intervention, Comparator, Out-
comes, Study type (pPicos) framework to define the inclusion and exclu-
sion criteria (Table 3)."”* The studies included were restricted to those
involving participants diagnosed with cNs disorders who were remotely
monitored under free-living conditions. The intervention and device cri-
teria were limited to passive data collected from smartphones and other
non-invasive remote monitoring sensors, whereas data collected using
active engagement from participants, such as disposable blood tests
or small scales, were excluded. As we chose to focus on ML pipelines, we
selected studies in which a statistical model was used to analyze a data-
set and could potentially be used to generate future predictions using an
independent dataset. Therefore, traditional statistical models such as
linear or logistic regression were included, but statistical models such as
ANOVA and correlation analyses were not included. Further, as the focus
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was on the development and validation of ML models, we did not include
studies that did not report on model performance.

DATA EXTRACTION

Two authors conducted the data extraction following the inclusion crite-
ria, and the results were reviewed by the remaining authors. Data relat-
ing to the database source, title, pol, publication year, trial setting or
scenario, objective, devices used, data collection period, number of par-
ticipants, inclusion of healthy controls, data processing steps, feature
engineering, feature selection, machine learning models used, hyperpa-
rameters and hyperparameter optimization, model performance, and
validation procedure were extracted. The comprehensive data extrac-
tion and review conducted by the authors encompassed various essen-
tial aspects of the studies, ensuring a thorough analysis of the database
source, trial details, data processing steps, machine learning models, and
validation procedures.

Results

STUDY SELECTION

Our initial keyword search revealed a total of 2310 articles that utilized
digital phenotyping devices, such as smartphones and wearables, in a
clinical study and applied ML techniques. After screening the titles and
abstracts based on our predefined criteria, we narrowed down the arti-
cles to 66 studies, which were used for our analysis. Figure 1 provides an
overview of the complete selection process.

STUDY CHARACTERISTICS

For each of the 66 studies, we extracted information about the clinical
population and the ML pipeline that was used to develop the digital bio-
markers. We found that only half of the studies included healthy controls
(N =34).As seen in Figure 2, Parkinson’s disease (PD) (N = 27) was the most
prevalent disorder identified in our search, followed by Bipolar Disorder
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(BD) (N =11), and Unipolar Depression or Major Depressive Disorder (MDD)
(N = 9). The sample size of the selected studies was heterogenous, rang-
ing from 7 to 6221 participants (Figure 3). Overall, our review provides a
comprehensive overview of the characteristics of studies that have uti-
lized MHEALTH devices and ML techniques, which can help inform future
research in this field. In the following sections, we addressed how the
selected studies approached the construction of their ML pipelines.

Missing and Outlier Data

Missing and outlier data are commonly encountered problems for remote
sensing clinical trials. Missing data can be the result of device charging fre-
quency, device robustness, and participant compliance.'® Outliers can be
the result of sensor or device dysfunction or malfunction, incorrect data
entry, and incorrect classifications.' Data preprocessing, which refers
to the dropping or manipulation of data, is required for identifying and
removing redundant or irrelevant data and for cleaning the data prior to
analysis. Without preprocessing, learning from an imperfect dataset can
influence the prediction accuracy of the models.?® In this section, we
address how the selected studies preprocessed their raw data by treating
their missing data and outliers, and the limitations of doing so.

HANDLING OF MISSING DATA

Missing data can be Missing Completely at Random (MDD), Missing at Ran-
dom (MDpD), and Missing Not at Random (MNAR).2' MDD assumes that each
observation has the same probability of being included or being missed;
therefore, there is no difference in the characteristics between partici-
pants or observations without missing data and those with missing data.
For example, data may be missed due to the battery of the smartphone
running out. MDD assumes that missing data may have systematic differ-
ences between the missing and non-missing data; however, the cause
of the missing data can be explained by the non-missing data. For exam-
ple, a smartphone may have more missing values when the smartphone
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battery is low. If the battery percentage is known during the data acqui-
sition, researchers can verify the probability of acquiring missing data
depending on the battery percentage. MNAR assumes that missing data
are caused by unknown reasons. For example, smartphone sensors may
be gradually worn down, which therefore creates more missing data over
time. The type of missing data presentin the dataset influences whether a
researchershould ignore, exclude, orimpute the missing data.

Among the selected studies, we found that only 21 of the studies
reported the quantity of missing data acquired. Only 29 studies reported
how they handled their missing data. We found that complete-case anal-
ysis and imputation were the most popular. We identified 14 studies that
report using complete-case analysis.?*"*® Complete-case analysis (other-
wise known as listwise deletion) is the deletion of an observation involv-
ing one or multiple elements of missing data.?®*"-*® While complete-case
analysis is the simplest approach to handle missing data, it does reduce
the sample size and statistical power of the analysis ** and can potentially
lead to bias if the data are not MDD.*° Imputation is the statistical process
of replacing missing data with substituted inferred values.*' We identified
studies that imputed their missing data using linear interpolation,®:***3
forward filling,**""** zeros, median, means, and the most frequent
value in the column.?**® The advantage of imputation is that it enables
researchers to use all observations in the dataset. However, the inclusion
of imputed values can lead to a false impression of the number of com-
plete cases and reduce the variance in the dataset.*”*°

IDENTIFICATION OF OUTLIERS

Aggarwal’s Data mining: the textbook states that it is the subjective defi-
nition of the researcher that defines an outlier.>° In cases where the outlier
data were discussed in the selected studies, we found that researchers
customized their definition of outliers by either defining arange of accept-
able values *? or by defining a threshold based on the mean and stan-
dard deviation.>'"*® Visual inspection by the researchers or the optimi-
zation of different threshold mechanisms can both be used to define the
boundaries of normal or outlier data.**>°> Maleki et al. defined outliers as
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observations that were most likely the result of measurement errors.?® In
terms of the handling of outliers, we only identified six studies that explic-
itly stated that outliers were excluded.?¢:3%:51-53:%¢

Feature Engineering

FEATURE SCALING

Feature scaling is used to normalize the ranges of the features in a data-
set.>” Several feature engineering techniques and ML models (such as
Principal Component Analysis and Linear Regression) calculate the dis-
tances between two observations. If one feature has a broader range of
values compared to the other features, the calculated distances will be
heavily influenced by this feature.®® Therefore, the ranges of all the fea-
tures should be normalized or standardized so that each feature is appro-
priately and proportionally considered with respect to the estimated
distances.®” Feature normalization is a common scaling method for res-
caling the features into a bounding range using the minimum and maxi-
mum values, for example, between 0 and 1. Normalization is an ideal
approach when the distribution of the data is not Gaussian, as normal-
ization preserves the original distribution of the data. However, normal-
ization uses minimum and maximum values to define ranges. This makes
the method sensitive to outliers.’”° Alternatively, feature standardiza-
tion, also known as z-score normalization, is a method for rescaling the
datato fit a standard normalized distribution by using the mean and stan-
dard deviation and does not define a bounding range. Consequently, the
standardization approach is not sensitive to outliers as it has no bounding
range.’”%® Normalization, log-transformation, and standardization have
been reported in a small selection of the selected studies.?6:27-36:60:61

EXPERT FEATURE ENGINEERING

Feature engineeringis the process of constructing (new) features from the
raw data or existing features while maintaining the original patterns and
information in the data.®> The newly engineered features can be added
to or replace features in the original dataset. Engineering of the features
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can speed up the model performance, improve learning accuracy, and
ease the interpretability of the model. The latter is particularly impor-
tant for clinical trials.®® Features can be engineered manually by relying
on domain-knowledge or automatically by using statistical models, such
as Principal Component Analysis (PcA) and Deep Learning (pL).52"%* All
features aim to increase the separability between the classes or signals,
which in turn reduces noise in the dataset. While expert engineered fea-
tures are easy to interpret and explain and have been widely used in the
development of digital biomarkers, these features are typically task- or
population-dependent. Due to intra-class variability, some clinically rel-
evant characteristics may be exhibited differently by different individuals
(such as different symptom profiles among patients with the same diag-
nosis). Furthermore, expert engineered features may not be sufficient for
representing the most important characteristics of complex patterns and
can be time-consuming to acquire, especially when handling large-scale
datasets.®>°® As clinical data has expanded in terms of diversity, availabil-
ity, and complexity, the aforementioned techniques may be insufficient
for developing generic features. In the following sections, we address the
notable and generic procedures used to perform feature engineering.

SIGNAL PROCESSING

To monitor changes in the physical activity of study participants using
time series data collected from wearable sensors, signal processing is
necessary to detect, clean, and analyze the components of interest. The
feature extraction technique used is influenced by the sensor type, study
objectives, and signal quality. Typically, signal features are extracted from
the frequency, time, or cepstrum domain.®” Frequency domain features
show the prominence of a signal within a given frequency, whereas time-
domain features show the changesin the signal of time. Cepstrum domain
features represent the rate of change in the different frequency bands.
The analysis of the frequency, time, or cepstrum domain features is not
mutually exclusive. We identified studies that use both time- and fre-
quency-based features for the estimation of gait speed,®® speech-tasks,*®
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seizure detection,’® tremor detection,”’ and FoG detection.”? In particu-
lar, Tougui et al. built 138 voice related features extracted from the ceps-
tral, frequency, and time domains.?* In sum, time series data collected
from wearable sensors can be used to monitor the physical activity of
study participants, but signal processingis necessary to extract meaning-
ful features. Different feature extraction techniques can be used depend-
ing on the sensor type, signal quality, and study objectives. The analysis
of these features is not mutually exclusive, and studies that use multiple
domains for different clinical applications have been identified.

PRINCIPAL COMPONENT ANALYSIS

A common linear dimensionality reduction technique for feature engi-
neering and selection is Principal Component Analysis (PcA).2%">™ pca
is used to sufficiently explain a high-dimensional dataset through a few
principal components and, therefore, to reduce a high-dimensional data-
set to one of fewer dimensions.” To this purpose, PCA converts a set of
correlated features into a set of uncorrelated features by utilizing orthog-
onal transformation.” The principal components enable a reduction in
the feature space by creating a linear combination of the original features,
which consequently reduces the storage space and reduces the learn-
ing time. Therefore, the periodic components within a concurrent time
series dataset can beisolated using PcA, which can subsequently be used
to identify any underlying patterns within the dataset. It is important to
note that PCA assumes that the data are normally distributed and is sensi-
tive to feature variance.”>"® Consequently, features with larger ranges will
dominate features with smaller ranges. To make the variables compara-
ble, transformation of the data prior to PcA is required.”® Of the studies
selected, PcA was used to engineer and select features from times series
data sourced from waist-worn triaxial accelerometers and wearable
activity trackers.?®"®™ However, the limitations of PCA are its sensitivity
to missing data and outliers and the limited interpretation of the original
features. Hence, this observation highlights the need for thorough data
preprocessing priorto using PCA.
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CLUSTERING

A clustering algorithm is a common feature engineering method that
assigns similar observations to a single cluster and assigns dissimilar
observations to another.”” While PcA compresses the features into prin-
cipal components, clustering compresses the individual observations
into clusters. The grouping of similar observations can improve the mod-
el’s ability to discriminate between classes.”® Clustering algorithms,
more specifically bBSCAN and K-means clustering, have been deployed
in smartphone GPs systems and Wi-Fi-network sensors to extract mean-
ingful location features such as frequented location clusters,” loca-
tion patterns,®® and mobility patterns.®' These studies demonstrate that
clustering algorithms are a powerful method for reducing the number of
observations into a smaller number of artificial variables that account for
thevariance within the dataset.

DEEP LEARNING

The performance of ML models can be limited by the development of man-
ual and arbitrary features, and this potential obstacle can be overcome by
DL algorithms. bL algorithms eliminate the need for manual feature engi-
neering, as the oL layers can translate the data into more compact and
intermediate abstractions of the data, which in turn can be used as fea-
tures to predict the final output.2? While pL can reduce the need for manual
data preprocessing and feature extraction, which can potentially improve
the generalizability and robustness of a model, the interpretation of the
pL model is difficult, as the abstracted features may not be explainable by
clinicians. However, it is important to note that the discriminative power
of the pL-derived abstractions is strongly influenced by the architecture
of the pL algorithm, which is also dependent on the trial-and-error pro-
cess.”® Due to DU’s representation learning, pL is data-hungry, and there-
fore requires more data than other mL algorithms.22* For clinical trial data,
because of technological limitations and small sample sizes, there may not
be enough datato train a sufficiently representative bL model.”®83
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Four studies used DL to engineer features using time series data.?*#>8’

These models were used to extract gait features from accelerometer data
85,87 and tremor characteristics from imu data.?*8® However, it should be
noted that the bL models do not always outperform the ‘shallow learning’
models, as shown in a study by Juen et al. in which smartphone acceler-
ometers were used to predict natural walking speed and distance during a
six-minute walk test.®*

Feature Selection

In recent decades, high-dimensional clinical datasets have relied on fea-
ture selection.®® Feature selection is the process of selecting a subset
of the most informative features that will be processed by the mL algo-
rithm.2° Reducing the features for analysis has both computational and
practical benefits. Selecting features can limit storage requirements,
increase the algorithm processing speed, increase the interpretability of a
model, and improve model performance.

OVERFITTING AND UNDERFITTING

Overfitting and underfitting are common pitfalls for ML models. Overfit-
ting refers to when a ML model fits too well to its training dataset and is
unable to generalize its patterns to unseen data. This problem can occur
when the training dataset is small and not representative of the over-
all potential data distribution. Additionally, if the training dataset con-
tains many outliers, the ML model may also fit the outlier data. Underfit-
ting occurs when the trained ML model is too simple; therefore, it cannot
identify the relationship between the features and the outputs. Underfit-
ted models will perform poorly for both the train and validation datasets.
To address overfitting, reducing the number of features considered by the
model or updating the model architecture to include fewer features can
be effective.’® Underfitting can be improved by adding more features con-
sidered by the model or by updating the model architecture to increase
the complexity of the feature space.®®
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Feature selection identifies the most important features in the dataset
and eliminates the irrelevant ones, which thereby reduces noise. How-
ever, it is important to strike a balance, as strict feature selection may
remove important signals from the data. Therefore, selecting the optimal
set of features is important for preventing over- and underfitting. In the
following sections, we will elaborate on the three general methods of fea-
ture selection that are suitable for ML models.”

FILTER METHODS

Filter methods are used during preprocessing prior to training the mL
model. Filtering involves removing features based on domain knowledge,
missing data, low variance, or correlation.8%°"°2 As filter methods are inde-
pendent of any model that is to be used in later steps, they are typically
faster to implement and reduce the need for repeating feature selection
for different ML models. In our selected studies, we found five studies that
used Analysis of Variance (ANOVA), Pearson’s Correlation, or Spearman’s
Correlation to identify features that were statistically significant predictors
of the outcomes.?*?37%¢ p-value based feature selection, while commonly
used in clinical studies, is not always suitable for training a ML model. The
use of p-values to identify statistically significant features was a popular
approachthatrelied onthe belief thatinsignificant features were not infor-
mative. However, important features can be missed when sample sizes are
small. Furthermore, p-values can be biased towards low values due to the
increased risk of type 1 errors during multiple comparisons, which in turn
increases the probability of random variables being included into the final
statistical model.°"°® Additionally, p-value based feature selection meth-
ods may be based on certain assumptions that may not be applicable to
ML models, such as assuming that the distribution of scores for the groups
amongtheindependentvariables are the same.”®

We wanted to highlight one filtering method identified in our selected
studies: Relief.’® Relief is a feature selection technique that also ranks
features and selects only the top-scoring features; however, it is nota-
bly sensitive to feature interactions.'®:'°? Yaman et al. first obtained 177
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speech-related features and used Relief to select 66 most predictive vocal
biomarkers for the classification of Pp.'°® Rodriguez-Molinero used Relief
to select frequency features that were subsequently used to predict gait
disturbances among PD patients.’®* Overall, Relief has demonstrated its
effectiveness in selecting relevant features in various studies related to
the prediction of Pp using high-dimensional clinical datasets.

EMBEDDED METHODS

The embedded method is a feature selection technique integrated into
the ML algorithm itself and is commonly seen in penalized regression.'®
Penalized regression algorithms aim to learn the optimal coefficients for
each feature by minimizing its loss function. Regularization (also known
as penalization) limits the learning process of the model by increasing the
penalty of the loss function.'®® The two common penalized regression
methods, identified in the selected studies, are LASs0 (also known as L1
penalization) (N = 9) 2%:2%:29,33,42,95,100,101,107,108 3 1 q Ridge (L2 penalization)
(N =2).'9%1% Ap advantage of LASSO is that it eliminates non-informative
features by reducing their coefficients to zero. Thefirst limitation of LASSO
is that, if the number of features f is greater than the number of observa-
tions o, LASSO will select a maximum of o predictors as non-zeros, regard-
less of the relevance of other features. The second limitation is that LASSO
also suffers from collinearity; hence, if two or more variables are highly
correlated, then LAss0O will randomly select one feature and penalize the
other correlated features. A disadvantage of Ridge is that it only reduces
the weights of the non-informative features by reducing their coefficients
towards zero, but it never reduces the number of variables. Therefore,
all predictors are included in the final model. However, because of this
approach, Ridge protects ML models from overfitting.'"

WRAPPER METHODS

Wrapper methods rely on a stand-alone model to select features, but the
performance of the selected features is reflected in the performance of
the trained model.""? The wrapper method algorithms tend to be greedy
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search algorithms that aim to select the optimal feature subset by itera-
tively selecting the features based on ML performance. As the wrapper
method is an iterative process and the model must be evaluated on each
feature subset combination, this method is computationally expensive.
Wrapper-based feature selection can be completed by ranking the fea-
tures in terms of relative importance using a ML model (such as decision
trees or random forests).88191113 We identified a handful of feature rank-
ing methods that include two stepwise regression techniques: Forward
Selection and Backwards Elimination,29:38:52114°116 55 well as Recursive
Feature Selection (RFE).3%""" Forward selection starts the modelling pro-
cess with zero features and adds a new feature to the model incremen-
tally, each time testing for statistical significance. Backwards elimination
starts the modelling process with all features and incrementally removes
each feature to evaluate its relative importance in predicting the model
output.®”"'8 RFE fits a model, ranks the features, and removes the least
informative features and continues to remove features until a predefined
number of features is met.5*"'%'2° Senturk et al. illustrated that RFE-based
feature selection increased the prediction accuracy of ANN, CART, and SVM
when using vocal data to classify a Pb diagnosis.''

Machine learning algorithms

ML algorithms build a statistical model based on a training dataset, which
can subsequently be used to make predictions about a new, unseen data-
set. ML algorithms have been used in a wide variety of clinical trial appli-
cations, such as the classification of a diagnoses, classification of physical
or mental state (such as a seizure or mood), and the estimation of symp-
tom severity. Within the realm of clinical research, ML algorithms can be
broadly divided into two learning paradigms: supervised and unsuper-
vised learning.'*? In this section, we will discuss the model objectives of
supervised and unsupervised learning and the specific ML models used to
achieve these model objectives.
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Supervised ML algorithms use labeled data to map the patterns within a
dataset to a known label, while unsupervised ML algorithms do not.’*
Rather, the unsupervised ML algorithms learn the structure present
within a dataset without relying on annotations. Supervised learning can
be used to automate the labelling process, detect disease cases, or pre-
dict clinical outcomes (such as treatment outcomes). There are scenar-
ios when experts or participants can provide labelled data; however, it can
become labor-intensive or time-consuming to label every observation.
For example, a supervised learning algorithm trained to classify human
sounds can be used to automatically annotate and quantify hours of
coughs '** and instances of crying.’?® These algorithms can also be used
to differentiate between clinical populations and control participants °° to
identify known clinical population subtypes 23 or classify a clinical event
(such as a seizure or tremor)."*® The majority of our selected studies (N =
38) used a clinician to provide the label data. Some studies (N = 22) used
a combination of a clinician and self-reported label data, and six studies
solely relied on self-reported assessments. Unsupervised ML algorithms
can be used to investigate the similarities and differences within a dataset
without human intervention. This makes it the ideal solution for explor-
atory data analysis, subgroup phenotype identification, and anomaly
detection. Among digital phenotyping studies, unsupervised learning has
been used to identify location patterns ' and classify sleep disturbance
subtypes using wrist-worn accelerometer data.'?’

It is important to recognize that unsupervised and supervised meth-
ods are not mutually exclusive, and they can be effectively combined. For
instance, unsupervised methods can be employed to extract a meaning-
fullatent representation of the input data. Subsequently, these latent vec-
tors, along with the original inputs, can be used as inputs for a supervised
model. This type of approach is commonly observed when applying tech-
niques such as PcA, clustering, or other dimensionality reduction meth-
0ds.273:7%128 By combining unsupervised and supervised methods, valu-
able information can be extracted from the data and used to enhance the
performance and interpretability of the overall model.
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In clinical research, supervised ML algorithms have been used to classify
class labels or estimate scores. Classification algorithms learn to map
a new observation to a predefined class label. These algorithms can be
used to classify patient populations and patient population subtypes and
identify clinical events. Regression algorithms learn to map an observa-
tion to a continuous output. These algorithms are commonly used to esti-
mate symptom severity,'?° quantify physical activity, and forecast future
events.”° Among the selected papers that were focused on the classifica-
tion of a diagnosis or state, the four most common algorithms were Ran-
dom Forest, Support Vector Machine, Logistic Regression, and k-Nearest
Neighbors (Figure 4). Some additional classification algorithm families
identified were Naive Bayes, Ensemble-based methods (including Deci-
sion Trees, Bagging, and Gradient Boosting), and Neural Networks (such
as Convolutional, Artificial, and Recurring Neural Networks). The three
most common algorithms for the regression focused papers were Lin-
ear Regression (including linear mixed effects models), Support Vector
Machine, and k-Nearest Neighbors (Figure 4). We found that most studies
only considered or reported a single ML algorithm (N = 32). Additionally, 29
of the studies considered or reported two to five ML algorithms, and the
remaining 5 studies considered six or more. The following section pro-
vides an overview of the most widely used machine learning models, their
properties, advantages, and disadvantages. In addition, we discuss some
notable off-the-shelf ML approaches and some custom-built ML methods
such as transfer learning, multi-task learning, and generalized and per-
sonalized models.

TREE-BASED MODELS

A Decision Tree (DT) is a supervised non-parametric algorithm that is used
for both classification and regression. A pT algorithm has a hierarchical
structure in which each node represents a test of a feature, each branch
represents the result of that test, and each leaf represents the class label
or class distribution.’''32 A Random Forest (RF) algorithm is a super-
vised ensemble learning algorithm consisting of multiple DTs that aims
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to predict a class or value.”** Ensemble learning algorithms use multiple
ML algorithms to obtain a prediction.'** Tree-based models have several
benefits. As each tree is only based on a subset of features and data and
because they make no assumptions about the relationship between the
features and distribution, they are not sensitive to collinearity between
features, can ignore missing data, and are less susceptible to overfitting
(for multiple trees), making the model more generalizable.”* Another
advantage of RF and bT models is that they can support linear and nonlin-
ear relationships between the dependent and independent variables.'*®
Further, as the design of the RF models can be interpreted in terms of fea-
ture importance and proximity plots, the interpretability of the RF model
is feasible. However, a limitation of using tree-based models is that small
changes in the data can lead to drastically different models. Additionally,
the more complicated a tree-based model becomes, the less explainable
amodel becomes. However, pruning the trees can help to reduce the com-
plexity of the model.

According to the selected studies, RF is a versatile and powerful model
used for classification and regression tasks across multiple datatypes and
populations. RF models have been used for the classification of diagno-
ses among PD patients,'®”"''° Multiple Sclerosis,**''® and BD and unipo-
lar depressed patients.*>®" Itis also a popular classification model for the
classification of states or episodes, such as the detection of flares among
Rheumatoid Arthritis or Axial Spondylarthritis patients 32 and tremor
detection among PD patients,'*” to quantify physical activity among cere-
bral palsy patients '*® and detect the moods of BD patients.®®'3° RF regres-
sion algorithms have also been used to predict anxiety deterioration
among patients who suffer with anxiety.*°

SUPPORT VECTOR MACHINES

A Support Vector Machine (svm) is a supervised algorithm that is used for
classification and regression tasks. The objective of a svMm is to identify
the optimal hyperplane based on theindividual observations, also known
as the support vectors. For svMm regression, the optimal hyperplane
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represents the minimal distance between the hyperplane and the sup-
port vectors. Whereas for svm classification, the objective is to find
the hyperplane that represents the maximum distance between two
classes."' The hyperplanes can separate the classes in either a linear or
non-linear fashion.'*® Given that svm are influenced by the support vec-
tors closest to the hyperplanes, svm are less influenced by outliers, mak-
ing them more suitable for extreme case binary classification. The perfor-
mance of a svM can be relatively poor when the classes are overlapping or
do not have clear decision boundaries. This makes svm less appealing for
classification tasks as inter class similarity is low. svM are computation-
ally demanding models as they compute the distance between each sup-
portvector; hence, svm do not scale well for large datasets.'*?

svM classifiers have been used to classify clinical populations (e.g.,
facial nerve palsy and their control participants).’* svm classifiers have
also been used to classify events or states, such as detecting gait among
PD patients '°* and classifying seizures among epileptic children.'**
We identified studies that used svm regression to estimate motor fluc-
tuations and gait speed among pPp and Multiple Sclerosis patients,
respectively.’*'*°

K-NEAREST NEIGHBORS

A k-Nearest Neighbor (k-NN) algorithm is a non-parametric supervised
learning approach that can be used for multi-class classification and
regression tasks. Classification k-NN algorithms determine class member-
ship by the plurality vote of its nearest neighbors. They can estimate the
continuous value of an output by calculating the average value of its near-
est neighbors.'*® Given this, the quality of predictions is not only depen-
dentontheamount of data but also onthe density of the data (the number
of points per unit). K-NN is simple to implement, intuitive to understand,
and robust to noisy training data. However, the disadvantage is that K-NN is
computationally slow when itis faced with large multi-dimensional datas-
ets. Further, K-NN does not work well with imbalanced datasets, as under-
orover-represented datapoints will influence the classification.'*®
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The most popular application for kK-NN algorithms is for wearable-based
time series data. kK-NN classification models have been used to classify PD
and healthy controls,** classify tremor severity,'*” predict acute exacer-
bations of chronic obstructive pulmonary disease (AEcopPD),** and iden-
tify mood stability among BD and MDD patients.?*%%'*® Using wearable
data, K-NN regression models have been used to predict the deterioration
of symptoms associated with anxiety disorder.'*°

NAIVE BAYES

A Naive Bayes (NB) classifier is a supervised multi-class classification algo-
rithm. NB classifiers calculate the class conditional probability—the prob-
ability that a datapoint belongs to a given class in the data.*"'*° NB clas-
sifiers are computational efficient algorithms; thus, they are suitable for
real-time predictions, scale well for larger datasets, and can handle miss-
ing values. A limitation of NB is that it assumes that all features are con-
ditionally independent; hence, it is recommended that collinear features
are removed in advance. Another limitation is that when new feature-
observation pairs do not resemble the data in the training data, the NB
assigns a probability of zero to that observation. This approach is partic-
ularly harsh, especially when dealing with a smaller dataset. Hence, the
training data should represent the entire population.

As NB classifiers help form classification models, we found that NB
classifiers have been used for the classification of tremors or for freezing
gait among PD patients,*? as well as to classify flares among Rheumatoid
Arthritis and Axial Spondylarthritis patients 2 and classify bipolar epi-
sodes and mood stability among BD and MDD patients.33:°%148

LINEARAND LOGISTIC REGRESSION

AlLinear Regression model is a supervised regression model that predicts
a continuous output. It finds the optimal hyperplane that minimizes the
sum of squared difference between the true data points and the hyper-
plane. A Logistic Regression model is a supervised classification model
that can be used for binomial, multinominal, and ordinal classification
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tasks. Logistic Regression classifies observations by examining the out-
come variables on the extreme ends and determines a logistic line that
divides two or more classes.'*® Linear and Logistic Regression are popu-
larin algorithms as they are easy to implement, efficient to train, and easy
tointerpret. However, a limitation of both models is that they make multi-
ple assumptions, e.g., that a solution is linear, the input residuals are nor-
mally distributed, and that all features are mutually independent.’° Mul-
ticollinearity, the correlation between multiple features, and outliers
will inflate the standard error of the model and may undermine the sig-
nificance of significant features."' Further, outliers that deviate from the
expected range of the data can skew the extreme bounds of the probabil-
ity, making both algorithms sensitive to outliers in the dataset.'®°

Linear Regression has been used to quantify tremors among Essential
Tremor (ET) patients ''® and to estimate motor-related symptom sever-
ity among PD patients.®’*? It has also been used to forecast convergence
between body sides for Hemiparetic patients."*° Logistic Regression was
a popular approach for classifying Pp diagnosis,'®”''® Post-Traumatic
Stress Disorder,'®® and distinguishing fallers and non-fallers.’* Logistic
Regression has been used to classify drug effects, such as predicting the
pre-and post-medication states among PD patients.??

NEURAL NETWORKS

Neural Networks (NN), also known as Artificial Neural Networks (ANN),
can be used for unsupervised and supervised classification and regres-
sion tasks.'®® NN consists of a collection of artificial neurons (or nodes).
Each artificial neuron receives, processes, and sends the signal to the
artificial neuron connected to it. The neurons are aggregated into multi-
ple layers, and each layer performs different transformations on the sig-
nal. The signal first travels from the input layer into the output layer while
possibly traversing multiple hidden layers in between. NN offer several
advantages, such as the ability to detect complex non-linear relation-
ships between features and outcomes and work with missing data, while
it also requires less preprocessing of the data and offers the availability
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of multiple training algorithms. However, the disadvantages of NN include
increased computational burden, reduced explainability and interpret-
ability (as NN are ‘black box’ in nature), and the fact that NN are prone to
overfitting.'** However, it is important to highlight the growing number
of studies that specifically explore explainable deep learning approaches
for biomarker discovery and development. Studies utilizing methodolo-
gies such as LIME (LIME Tabular Explainer), SHAP (SHAPley Additive exPla-
nations), and other visual inspections of feature distribution and impor-
tance have aided clinicians in understanding the model mechanisms.
These approaches also provide patient-specific insights by describing
the importance of each feature, which may, in turn, facilitate personalized
treatment opportunities.®%13571%7

The most popular applications for neural networks were for the classi-
fication of a diagnosis or classification of a state or event. The most popu-
lar application is the detection of tremors among PD patients, 33286137138
NN have been used to classify unipolar and bipolar depressed patients
based on motor activity,*>'>° estimate depression severity,'*® forecast
seizures,'® and classify a treatment response using keyboard patterns
among PD patients.'®’

TRANSFER LEARNING

Transfer learning (also known as domain adaption) refers to the act of
deriving the representations of a previously trained ML model to extract
meaningful features from another dataset for an inter-related task.'®> One
applicable scenario is the training of a supervised ML model on data col-
lected in a controlled setting (such as in a lab or clinic). The performance
of the model may suffer when applied to a dataset collected under free-
living conditions. Rather than developing a new model trained solely on
a free-living condition dataset, transfer learning can use patterns learned
from the controlled setting dataset to improve the learning of the pat-
terns from the free-living conditions dataset.

Transfer learning can also be a valuable technique for enhancing the
utilization of limited or rare data.’®® One practical application is to employ
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pretraining on abundant control data and subsequently finetune the
model on the specific population of interest to improve the model’s per-
formance.’®*7 "% This approach not only optimizes the efficiency of utiliz-
ing scarce data but also facilitates model personalization. By adapting a
pretrained model to individual characteristics or preferences, it becomes
possible to create personalized models that better cater to unique needs
or circumstances. Transfer learning thus offers a powerful means to lever-
age existing knowledge and make the most of available data resources,
enhancing both the efficiency and personalization of biomarkers.

Given its application, transfer learning reduces the amount of labeled
data and computational resources required to train new ML models,'®?
thus making this method advantageous when the sensor modalities, sen-
sor placements, and populations differ between studies. While we only
identified two studies that applied transfer learning to estimate pPp dis-
ease severity using movement sensor data,'®®'®” we predict that the
application of transfer learning will enable future researchers to over-
come the challenges of a limited dataset and develop more sensitive and
effective ML models.

MULTI-TASK LEARNING

Multi-task learning (MTL) enables the learning of multiple tasks simulta-
neously.'®® Learning the commonalities and differences between mul-
tiple tasks can improve both the learning efficiency and the prediction
accuracy of the ML models.'®® A traditional single-task ML model can have
a performance ceiling effect, given the limitations of the dataset size and
the model’s ability to learn meaningful representations. MTL uses all avail-
able data across multiple datasets and can learn to develop generalized
models that are applicable to multiple tasks. To use MTL, there should be
some degree of information shared between or across all tasks. The cor-
relation allows MTL to exploit the underlying shared information or princi-
ples within tasks. Sometimes MTL models can perform worse than single-
task models because of ‘negative transfers’. This occurs when different
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tasks share no mutual information or if the information of tasks are con-
tradictory.”®® MTL models have been used to simultaneously model data
sourced from two separate sources or to model multiple outcomes.'%'"
For example, Lu ET AL. explored the use of MTL to jointly model data col-
lected from two different smartphone platforms (iPhone and Android) to
jointly predict two different types of depression assessments (QIDs and
a bDsM-5 survey).”® They illustrated that the classification accuracy of the
MTL approach outperformed the single-task learning approach by 48%;
thus, the classification model benefited from learning from observations
sourced from multiple devices.

GENERALIZED VERSUS PERSONALIZED

ML algorithms can be trained on population data or individual subject
data. Generalized models, which are trained on population data, are fed
data from all participants for the purpose of general knowledge learn-
ing. Conversely, personalized models are trained on an individual’s data
and take into consideration individual factors such as biological or life-
style-related variations.””? We have adopted these terms from Kahdemi
etal’s study, in which they developed generalized and personalized mod-
els for sleep-wake prediction.'”® The heterogenous nature of each popula-
tion orindividual can be a potential hinderance for generalizable models.
Asingle individual’s deviation from the ‘norm’ may be viewed as a source
of ‘noise’ in a generalized model. For example, patients with mood dis-
orders such as MDD and BD have large inter-individual symptom variabil-
ity. Abdullah ET AL., reliably predicted the social rhythms of BD patients
with personalized models using smartphone activity data.*® Cho et al.
compared the mood prediction accuracy of personalized and general-
ized models based on the circadian rhythms of MDD and BD participants.3®
Their studies illustrated that their personalized model predictions were,
on average, 24% more accurate than the generalized models. These stud-
ies lay the groundwork for developing personalized models that are more
sensitive to individual differences.
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MODEL HYPERPARAMETERS

The process of building an effective ML model consists of two main steps:

selecting the appropriate ML algorithm and optimizing the model per-

formance by tuning its parameters. Each model consists of two types of
parameters:

« The parametersthatareinitialized and continuously updated through-
outthe learning process (e.g., the weights of neurons of a neural
networks).

« Thehyperparameters that must be set priorto the learning process
asthey define the model architecture (e.g., the regularization param-
etersof a Linear Regression model, and the learning rates of a neural
network).'™

Every combination of the selected hyperparameters will have a direct
influence on the performance of the learned model. For example, as the
number of trees in a RF increases, the more features tend to be selected
by the model, which may not always be relevant for the development of
biomarkers.'”® Similarly, the number of layers, number of neurons per
layer, activation functions, and the regularization techniques used for
NN can each influence the model performance.'”® While most ML algo-
rithms come with default values for the hyperparameters, these may not
be optimal for the dataset at hand, and even tuned hypermeters are at
risk of being non-optimal for a different dataset. The process of selecting
the optimal hyperparameter configurations is known as hyperparameter
tuning.'””

To identify the optimal hyperparameters for a model, researchers must
define the hyperparameter space and the hyperparameter search strat-
egy. When defining the hyperparameter space, the distribution of the
hyperparameter ranges can be either uniform or logarithmic. The uniform
distribution assigns equal probability to all hyperparameter values within
a manually defined range. The log-uniform distribution samples hyper-
parameter values uniformly between the logarithmic transformations of
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the lower and upper thresholds. We argue that log-uniform distribution
is particularly useful when exploring values that vary over several orders
of magnitude. Consider the example of tuning a linear regression model
with the hyperparameter alpha, which determines the strength of reg-
ularization. To efficiently explore a wide range of alpha values, such as
between 0.001 and 10, the log-uniform distribution allows for an evenly
distributed search space over different orders of magnitude. Log-uni-
form distribution can be used for the initial exploration of a large range of
hyperparameter values. The range can then be narrowed down to explore
with a uniform-distribution to determine the optimal hyperparameters
forthe respective models.

The manual tuning of hyperparameters is impractical due to the
large number of available hyperparameters, hyperparameter config-
urations, and time-consuming model evaluations. Automated tuning
approaches are preferred, and there are a wide variety of approaches
available, including GridSearch, RandomSearch, and Bayesian Optimiza-
tion."”” GridSearch uses brute force to test a finite combination of hyper-
parameters to identify the optimal hyperparameter configuration.'”® This
approach can suffer from the effects of dimensionality, as more poten-
tial hyperparameter configurations can be time-consuming and com-
putationally expensive. An alternative to GridSearch is RandomSearch.
RandomSearch only samples a subset of all possible hyperparameter
configurations within a specific time or computational budget.’” While
RandomSearch only relies on a subsample of configurations, it has been
shown to outperform the GridSearch method.'” As GridSearch and Ran-
domSearch do not consider previous performance evaluations for their
hyperparameter optimization strategy, they are inefficient in exploring
the hyperparameter search space. Bayesian Optimization, which uses
Bayes Theorem, is a powerful approach. It considers previous hyperpa-
rameter evaluations to choose which hyperparameters to evaluate next
and disregards potential hyperparameter combinations that are deemed
irrelevant.’”® This approach reduces the time and computations required
for hyperparameter tuning. The benefit of using these more automated
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approaches to hyperparameter tuning is three-fold. First, it reduces the
time effort required to optimize a ML model. Next, the performance of the
ML models is improved as the hyperparameters explore different optimal
model configurations for different datasets. Finally, when the hyperpa-
rameters and their ranges (together also referred to as the hyperparam-
eter space) and the hyperparameter tuning methods are reported, the
models and the findings become reproducible.’® When similar hyperpa-
rameter tuning processes can be used for different ML algorithms for dif-
ferent datasets, researchers can then identify the optimal ML model.

Among the selected studies, 25 discussed which hyperparameters
were Considered for their mOdelS,23’24’34’43’44’46’53’69’73’86’87’94’95’107_110’”4’
138,158,159,181-184 of which one stated they used the default hyperparam-
eters of the models.®® Only nine studies discussed how they selected or
optimized their hyperparameters. We identified four studies that stated
GridSearch was used for the hyperparameter tuning.2¢*¢2>11% We did not
identify any studies that used RandomSearch or Bayesian Optimization.
The limited reporting of hyperparameters and the hyperparameter tuning
process poses a problem for the transparency, reproducibility, and com-
parison of ML models.

Model evaluation

Assessing a ML model’s performance is an essential component for deter-
mining the usability and reliability of the model. Depending on the objec-
tive of the research, it is often necessary to try to compare the perfor-
mance of multiple ML models to identify the optimal model.'®%8¢ |n ML,
the terms metric and measure are often used interchangeably, but they
do have slightly different meanings. A metric is a function used to evalu-
ate the performance of a model, while a measure is a numerical summary
of the performance of a model obtained using one or more metrics. It is
best practice to use multiple metrics and model performance visualiza-
tions for the model evaluation, as a model may perform well for one eval-
uation metric and poorly for another. Using multiple evaluation metrics
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ensures that the model is operating optimally and correctly. The follow-
ing sections provide more details about the performance metrics used for
classification and regression models. Table 4 provides an overview of the
most common performance metrics used in the selected studies, their
respective calculations, and their clinicalinterpretations.

CLASSIFICATION MEASURES

Classification models have discrete outcomes; thus, a metric must reflect
how often an observation belongs to the correct label or class.'®” There
are three categories of classification measures: Threshold Metrics, Rank-
ing Metrics, and Error Metrics. Threshold Metrics (such as accuracy and F1
score) quantify the prediction errors of the classification model as a ratio
or rate. Ranking Metrics (such as the Receiver Operating Characteristics
(Roc) and Area Under the Curve (auc)) focus on evaluating classification
models based on how effective they can discern separate classes. Error
Metrics (such as Root Mean Square Error) quantify the uncertainty of the
classification model’s predictions. While the Threshold and Ranking Met-
rics are focused on correct and incorrect predictions, the Error Metrics
quantify the proportion of classification errors.

As ML models are increasingly being used to perform high-impact tasks
pertaining to clinical assessments, an evaluation metric must be selected
based on what the stakeholders find to be important regarding the model
prediction, which can make the selection of the model metrics challeng-
ing. As seen in Table 4, accuracy, sensitivity, specificity, and precision are
calculated based on four test results. The True Positive (TP) and True Neg-
ative (TN) indicate the presence or absence of a diagnostic or characteris-
tic. The False Positive (FP) and False Negative (FN) indicate the opposite of
thetrue condition.

Binary classification models typically involve a decision threshold
hyperparameter that determines how the model assigns labels based on
the predicted probabilities. The default threshold is typically 0.5, mean-
ing that if the predicted probability is greater than 0.5, the positive label
is assigned, and vice versa. However, it is important to note that this
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threshold can be adjusted to accommodate specific needs or domain con-
siderations. To evaluate the performance of binary classification models
across different decision thresholds, the Roc curve is commonly used.
The ROC curve provides an overview of the model’s performance by illus-
trating the trade-off between TP and Fp rates at various threshold values.
ROC can aid the assessment of the model’s performance across a range of
decision thresholds and enable the selection of the threshold that aligns
with a specific objective.

It is worth noting that many classification metrics, including accuracy,
precision, recall, and F1 score, assume binary labels. However, when deal-
ing with multiclass classification problems, another approach is to use
one-vs-rest or one-vs-one strategies, wherein the problem is decomposed
into multiple binary classification tasks. The performance of the model
on each task can then be evaluated using the binary classification met-
rics, and the results can be aggregated or averaged to provide an overall
assessment of the model’s performance on the multiclass problem.

Class imbalance can be an obstacle for assessing model perfor-
mance. In particular, accuracy, AuC, ROC, may be sensitive to such imbal-
ances.® Hence, when facing class imbalance, there are two approaches
to consider: one can choose a metric that accounts for class imbal-
ance or one can choose to balance the classes. Metrics such as balanced
accuracy, Fi-score, or Matthews Correlation Coefficient (Mcc) are com-
mon metrics for handling class imbalance, as identified by 15 studies.
23,24,29,36,44,60,61,107,108,110,114,140,159,161,189 Balanced accuracy I’epresents
the mean of the sensitivity and specificity, while the Fi1-score represents
the mean of the precision and recall.’®® The Mmcc measures the correlation
coefficient of the binary and even multiclass classes. Therefore, the mcc
score is high only if the classification model correctly predicts both the
positive and negative predictions.'®%'!

The other approach to handling class imbalances is adjusting the class
distribution using oversampling or undersampling. We identified eight
studies that used random over/under sampling or SMOTE,2%:44746,61,95,109,192
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Oversampling techniques duplicate the samples of the minority class,
while undersampling removes samples of the majority class. However,
these techniques also have their disadvantages, as the duplication of mul-
tiple samples can lead to overfitting of a model, while undersampling
reduces the diverse representation of the majority class. Thus, we would
specifically recommend using the Synthetic Minority Oversampling Tech-
nique (sMOTE) with Tomek Links or Edited Nearest Neighbor (ENN)—two
undersampling techniques.’®®'%* sMOTE is first applied to create an arti-
ficial minority class to minimize the class imbalance. Next, Tomek Links
or ENN can be used to remove samples that are close to the boundar-
ies between the classes, which would further separate the classes.'#%'9*

REGRESSION MEASURES

As regression models generate predictions on a continuous scale, the
objective is to estimate how close the predictions were to the true val-
ues.'”® Among the studies selected, we found that regression models
used Distance Metrics and Error Metrics to estimate the strength of the
association or the distance between the predicted values and the true
values 29:42:87:93:96.128.152 \We would like to emphasize that these met-
rics are used to compare the performance of the composite biomarkers
rather than the performance of the individual features. The most com-
mon Distance Metrics were the correlation (also known as R) and the
percentage of the variance explained (R2). Both were used to assess the
strength of the association between the predicted and true values.'®®
There is no rule of thumb for interpreting the strength of rR2. While an
R2 closer to 1 can be obtained in clinical trials, a low rR2 can still be use-
ful with respect to trends in the data. We would like to address two
points of caution when using the rR2.®>'87 First, it is not always suit-
able to compare R2 across different datasets, as different clinical pop-
ulations are likely to differ in their feature variance. Second, the r2
will increase with the number of features. To compensate for this, one
may use the adjusted R2 to account for the number of features.'?”'%8
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The Error Metrics included the Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE).'*® The MAE measures
the average absolute difference between the true and predicted values.
The MAE is easy to interpret and robust to outliers. The absolute difference
accounts for negative differences. The MSE squares the error instead of
providing the absolute error, which gives more weight to the bigger errors.
The MSE is sensitive to outliers and not easy to interpret, as the results will
not have the same unit as the output. However, the RMSE provides an esti-
mation of the error in the same units as the output while maintaining the
properties of the Msg."®°

Model validation

In ML, model validation refers to the process of evaluating the general-
izability of a trained model on an unseen dataset. Selecting the most
appropriate model validation approach depends on the size and char-
acteristics of the datasets. Three datasets are required for model valida-
tion: the training, test, and validation datasets. In most cases, the valida-
tion dataset can be a subset of the original dataset; however, this can lead
to data leakage, which could produce overly optimistic results. Another
approach is to create a validation dataset from an independent (but com-
parable) dataset, which ensures an unbiased and independent evaluation
of the ML model. However, a limitation is that the performance evaluation
may reflect high variance due to the limited size of the dataset.?°° More-
over, it is crucial to highlight that a participant should only be present in
a single dataset, such as the training dataset, and should not simultane-
ously appear in other datasets such as the testing or validation datasets.
When a participant’s observations are distributed across multiple datas-
ets, data leakage can occur, compromising the accuracy estimation and
its applicability to new participants.'®* As a result, cross-validation on the
observation level rather than the participant level is methodologically
flawed. Unfortunately, this is a common issue and needs to be accounted
forin future studies.?®’
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Cross-validation is a popular validation method that uses resampling to
train, test, and validate a model using different subsets of the data. The
training dataset is used to train the ML model to learn the patterns within
a dataset. The validation dataset is used to tune the hyperparameters of
the model based on the performance of the ML model trained on the train-
ing dataset. The test dataset provides an unbiased estimate of the perfor-
mance of the final ML model after training and validation. In the scenario
when both validation and test datasets are used, the test datasets are
only used to assess the model once (via hold-out validation) or multiple
times (via nested cross-validation). In general, datasets need to meet two
main requirements. The datasets should not have shared or overlapping
observations to ensure that data leakage does not lead to bias in the esti-
mates, and all observations must be statistically independent.?°> When
applying feature engineering or feature selection with cross-validation,
any transformation or selection steps should be performed within each
fold of the cross-validation to prevent biasing in the training of the predic-
tion model with information from the test dataset.?°® The overall perfor-
mance of the prediction models, obtained by averaging across each iter-
ation of the cross-validation, evaluates the effectiveness of the combined
feature reduction and learning methods in estimating the label for a given
dataset.

Among the selected studies, we found that the most popular cross-
validation methods were k-fold cross-validation (N = 27), Leave-One-
Out cross-validation (N = 16), and custom validation (N = 8). Overall, 15
studies did not report the use a validation method. K-fold cross-valida-
tion randomly splits the datasets in ‘k’ folds; one-fold is used for testing
and the remaining folds are used for training. This step is repeated until
every unique fold has been used as the test dataset, and the overall per-
formance is based on the average of the performance of each model in
each fold.*** Leave-one-out cross-validation is a specific type of k-fold
cross-validation, whereinindividual observations (or participants) are the
test datasets, and the remaining cases are used for training. Leave-one-
out cross validation prevents data leakage across datasets, as repeated
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measurements of the same subjects can lead to the violation of indepen-
dence assumption for ordinary cross-validation.2°4-20¢

We would like to highlight the advantages of the nested cross-vali-
dation approach. While nested cross-validation was the least popular
approach, we would argue that nested cross-validation is a more robust
approach for selecting and evaluating a ML model.?°” Currently, the model
section without the nested cross-validation approach uses the same data
to both tune the model hyperparameters and evaluate its performance.
Therefore, information is ‘leaked’ between the training and validation
of the model, which can lead to overfitting.?°” Nested cross-validation
consists of an inner loop and an outer loop. The outer loop assesses the
model performance, while the inner loop assesses the hyperparameter
selection.?°” Each iteration of the outer loop is split into a different com-
bination of training and test sets. The outer loop training set is used in the
inner loop, which is further splitinto a training and validation dataset. The
inner loop split is repeated over k-folds, and the best performing model
across the k-folds is evaluated in the outer loop. This ensures that differ-
ent data are used to optimize the models’ hyperparameters and evalu-
ate the model’s performance. The final model performance represents
the average and standard deviation of the model performance as selected
by each of the outer loops. Without the standard deviation or confidence
intervals, itis not possible to evaluate the spread or stability of the predic-
tion error of the given models.2°82%°

Itisimportant to highlight that cross-validation is only used to approxi-
mate the generalization error of the models built and not to build the final
model that will be used for making predictions.?°>?'° The average predic-
tion error across the folds gives an expected error for a single model built
on the single dataset. If the variance of the prediction error is too high,
then the model is considered unstable. To select a single model, it is rec-
ommended that researchers rebuild the model using the full dataset.?'" If
an external validation set is available, then this validation set can be used
to evaluate and compare the single prediction error to that of the cross-
validation prediction error.
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Recommendations

In this recommendation section, we address the main issues consis-
tently identified in the selected studies and how to amend these issues
for future trials (see Figure 5 for a simplified overview of these recommen-
dations). It is important to bear in mind the regulatory implications for
developing mML-derived biomarkers. Within the European Union, Al medi-
cal systems and devices are considered high risk; therefore, they are sub-
ject to stringent reviews prior to being made available on the market.?'?
These review requirements emphasize the importance of achieving high
levels of performance, transparency, and minimal risk in mL-derived bio-
marker development.?'® High performance implies that the developed
ML models must be accurate, robust, and capable of reliably and consis-
tently predicting the target outcome variable. Furthermore, transparency
in ML-derived biomarker development refers to the provision of clear and
adequate information to the user, including appropriate human-readable
measures to minimize risks associated with the use of the system. The
development of ML-derived biomarkers must also aim to minimize risks
and discriminatory outcomes, which can be achieved by training the ML
model on high-quality datasets that are representative of the target pop-
ulation and by conducting adequate risk assessment checks.?'* These
considerations are critical for ensuring the safe and effective use of mML-
derived biomarkersin clinical practice.

INCLUSION OF HEALTHY CONTROLS

When conducting a study focused on disease classification or estima-
tion, the inclusion of control data can serve several purposes. By com-
paring the data from individuals with the condition of that of the healthy
controls, researchers can discern whether the observed differences are
specific to the condition or a result of unrelated factors. Moreover, ana-
lyzing the performance of a model on control subjects can shed light on
the biomarker’s effectiveness and reliability. By evaluating how well the
model distinguishes between healthy controls and patients with the
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condition, researchers can gain a better understanding of its predictive
capabilities. This evaluation can provide insights into potential false posi-
tives or false negatives that may occur when using the model in real-world
settings.

It is worth noting that, when including control data, the control data
should be appropriately matched with the patient population data. Hav-
ing age- and gender-matched control subjects can help minimize con-
founding variables, improving the accuracy of the analysis. This match-
ing process allows researchers to draw more robust conclusions about the
relationship between the identified features or patterns and the disease
activity while also reducing the potential impact of demographic factors
ontheresults.

Thefinding that only half of the studies included healthy controlsis sig-
nificant as it highlights a potential gap or limitation in the existing body
of research. Without the inclusion of controls, it becomes challenging to
attribute identified features or patterns solely to the cNs disorder or the
severity of the condition. Further, if the dataset only contains a relatively
homogeneous population, it calls the reliability and predictive capa-
bilities of the models into question. We encourage future researchers to
include control subjects in their studies, as it would improve the strength
of their biomarkers and the validity of their findings.

DATA QUALITY AND PREPROCESSING

The remote monitoring of clinical trials can generate large and complex
datasets that include longitudinal data from multiple subjects and data
sourced from multiple sensors, resulting in a multi-dimensional data
structure. To this point, we recommend using the WHO MHEALTH Tech-
nical Evidence Review Groups’ MHEALTH evidence and evidence report-
ing and assessment (MERA) 16-item checklist to provide transparency
on which MHEALTH invention was used, where, and how it was imple-
mented to support the reproducibility of the MHEALTH data collection.*'®
To ensure the quality and reliability of the data, it is important to assess
the quality of the data. This assessment includes examining the data for
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missing and outlier data and understanding how these factors might
affect the generalizability and reproducibility of the ML model. While most
studies provide detailed information on patient populations, the devices
used, and the data collected, they often underreport information related
to data quality and preprocessing steps. Therefore, it isimportant to pro-
vide sufficient details on the methods used to preprocess the data, includ-
ing the quantity of missing and outlier data and the strategies employed
to handle such data. This information can ensure that the data collec-
tion and preprocessing process can be reproduced, which, in turn, can
enhance the credibility and generalizability of the ML model.

FEATURE ENGINEERING AND SELECTION

There is a wide variety of manual or automated techniques used for
engineering and selecting features to feed a model. ML models perform
best when feature engineering and selection are leveraged to formu-
late potentially clinically relevant features from existing data. In addi-
tion, the performance of the ML model can be optimized, and the compu-
tational time can be reduced when the redundancy across the features is
reduced. While only selecting the most informative features can remove
noise (therefore reducing the likelihood of overfitting), selecting too few
features may reduce the strength of the (combined) signal in the dataset,
making the ML model vulnerable to underfitting. Feature engineering and
selection can be guided by domain expertise and/or automated statisti-
cal models, where multiple features are evaluated by their importance
in predicting the outcome. While automated feature engineering tech-
niques, such as clustering, PCA, and DL, can be used to extract a reduced
set of representative features, this risks a potential decline in interpret-
ability, which may limitits clinical application.

MODEL CONFIGURATION AND OPTIMIZATION

When selecting the ML models, there are several factors that should
be considered, such as model objectives, model types, model hyper-
parameters, and model evaluation. Poor design choices and lenient
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hyperparameter tuning and validation in these steps can lead to poor
model performance. We recommend that researchers carefully consider
each step of building their ML pipeline by comparing multiple mL algo-
rithms, using automated methods for assessing multiple hyperparame-
ter configurations, and using nested cross validation to both optimize and
validate the ML models.

MODEL VALIDATION

We would recommend using a minimum of three datasets to validate a ML
model and train, validate, and test a dataset. At no point should the test
set be used for the model configuration, which includes the data trans-
formation, feature engineering, and selection, or the tuning of the hyper-
parameters. The test dataset could either be a subset of the original data
(with no overlapping subjects or observations) or a separate external
dataset. The use of an external dataset is ideal as this ensures that there is
no influence of bias during the data collection period and that there is no
data leakage between the datasets. If an external dataset is not available
or if the dataset is not sufficiently large, we recommend nested cross-val-
idation. This resampling method supports model hyperparameter tuning
and performance evaluation without the risk of data leakage across the
dataset.

It is crucial to report the evaluation metric results for each dataset. In
the case of cross-validation reporting, we recommend that researchers
report the distribution of the performance measures (e.g., the mean and
standard deviation or median and 95% confidence interval) across the
folds to show the average and variability of the performance of the mod-
els. As cross-validation evaluates the prediction error across multiple ML
models, we would also recommend reporting the performance of the final
model selected. Thisis achieved by re-traininga ML model on the full data-
set and evaluating the performance on an external dataset.?°’?'° This
would give insight into how well the model would perform under differ-
ent circumstances. We also highly recommend using multiple evaluation
metrics for assessing the model’s performance. Seeing as a model might
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excel for one metric and fail for another, this underscores the need for
comprehensive evaluation. Employing multiple metrics ensures optimal
operation and reduces the likelihood of blind spots.

Once the final model has been trained, there are three approaches
to choose from to apply the model to a new target dataset. The first
approach is to test the model ‘as-is’, implying that the ready-made model
can be used in its original state without modifications.?'® In the second
scenario, the train data and the target data may have different character-
istics, which may lead to a distribution shift. The type of distribution shift
between the two datasets can occur for many reasons, including differ-
ent MHEALTH devices used for data collection, environmental noise, and
sampling bias.?’” When this occurs, transfer learning can be used to fine-
tune the ready-made model and update its weights to better suit the tar-
get dataset.?’® In the third scenario, the target dataset may have different
requirements than the original training dataset.?'® As a result, the deci-
sion boundary of the classification model can be altered, such as optimiz-
ing the model for a sensitivity of 90% instead of accuracy. Whether test-
ing the model as-is, employing transfer learning, or adjusting the decision
boundary, these strategies offer flexibility in adapting the model to differ-
entsettings and improving its performance for validation purposes.

MODEL REPRODUCIBILITY AND INTERPRETABILITY

Equally important as the model performance are the ML models’ repro-
ducibility and interpretability. Reproducibility is a core component for
ensuring thatamL model can be validated and reused by clinical research-
ers. Technical reproducibility involves using the same computational
procedures to produce consistent model outcomes. Statistical repro-
ducibility ensures that the model demonstrates similar statistical perfor-
mance across different subsets of data. Conceptual reproducibility refers
to achieving consistent results under new conditions, such as data col-
lected from different settings.?'® Transparency regarding data quality,
feature engineering and selection methods, the hyperparameters consid-
ered and selected, and the model validation protocol can help ease the
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ability of the scientific community to recreate the work in the published
literature. Best practices for reproducibility include publishing the code
on GitHub or by publishing FAIR metadata.?'"-18:219

Given the potential clinical application of ML models, prior to model-
ing, researchers should determine the model’s interpretability require-
ment. While ML models provide researchers with what was predicted,
interpretability requires that the model can explain why it made the pre-
diction."® Interpretability enables us to understand the causal relation-
ships between the data and the ML model’s predictions. There are two
situations in which the interpretability of a model is required: when an
inaccurate prediction can have severe or even fatal consequences for the
patients (such as a misclassified diagnosis 2*°) and when the interpret-
ability can be used to identify novel relationships between clinical fac-
tors and the predicted outcome (such as factors influencing treatment
outcomes 2"). There can be two situations in which interpretability is not
required: situations in which incorrect predictions do not have severe
consequences (such as counting the number of coughs ?*2) or situations
in which the ML model has been sufficiently validated in real clinical appli-
cations, even if the predictions are not perfect.??* While black box mod-
els may offer more accurate predictions than an interpretable model,
they only provide limited insight into how the predictions were made.
Therefore, both interpretable and black box models have their respective
merits.

There are two broad approaches towards achieving interpretability.
One approach is to use easy-to-interpret models, such as Linear or Logis-
tic Regression, where the coefficients of the features can provide insight
into the features’ associations with the predicted outcome. The other
approach is to use explanation methods for explaining complex or black
box models, such as sHAPley Additive exPlanations plots (SHAP), Local
Interpretable Model-agnostic Explanations (LIME), or Anchors.*?* We rec-
ommend that researchers report whether their final selected model was
aninterpretable model or a black box.??® If it was interpretable, we recom-
mend discussing what interpretations can be derived from the models.

224
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Conclusions

The rise and breadth of ML applications in clinical trials highlight the
increasingreliance and importance of ML in the development of novel bio-
markers.??® While the advances in ML applications have demonstrated
great potential for innovative biomarker development, the process of
its development is not well documented, which, in turn, limits the repro-
ducibility of these findings. This review has illustrated the steps taken
to translate raw data from MHEALTH technologies into meaningful clini-
cal biomarkers using ML. Given the lack of consistent reporting in the ML
methods, the present review cannot provide a complete or detailed pic-
ture of the notable and generic practices. However, the authors have pro-
vided an overview of the status quo of the development and translation
of ML-derived biomarkers in MHEALTH-focused clinical trials. The rec-
ommended checklist provided in the review could serve as a foundation
for the design of future mL-derived biomarkers in conventional ML prac-
tices. By encouraging consistent and transparent reporting, researchers
can accelerate the integration of novel biomarkers derived from MHEALTH
sensors and ML pipelines into future clinical trials.
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TABLE1 Representation ofastandard machine learning pipeline.

Stage Objective Example

STUDY The ML pipeline is provided with a study ~ The study objective is to classify

DESIGN objective in which the features and cor-  Parkinson’s Disease patients and control
responding outputs are defined. TheML  groups using smartphone-based features.
model aims to identify the associations
between the features and outputs.

DATA Data preprocessing filters and transforms  To improve the model performance, one

PREPROCESSING

raw data to guarantee or enhance the ML
training process.

may identify and exclude any missing or
outlier data.

FEATURE
ENGINEERING
AND SELECTION

Feature engineering uses raw data to
create new features that are not readily
available in the dataset.

Feature selection selects the most
relevant features for the model objective
by removing redundant or noisy features.
Together, the goal is to simplify and
accelerate the computational process
while also improving the model process.
For deep learning methods, the concept
of ‘feature engineering’ is typically
embedded within the model architecture
and training process, although substan-
tial preprocessing steps may occur prior
to that.

An interaction of two or more predictors
(such as a ratio or product) or re-repre-
sentation of a predictor are examples

of feature engineering. Removing high-
ly correlated or non-informative features
are examples of feature selection.

Note: The feature selection step can oc-
cur during model training

MODEL TRAINING
AND VALIDATION

During training, the ML model(s) iterates
through all the examples in the training
dataset and optimizes the parameters of
the mathematical function to minimize
the prediction error.

To evaluate the performance of the
trained ML model, the predictions of

an unseen test set are compared with a
known ground truth label.

Cross-validation can be used to optimize
and evaluate model performance.
Classification models may be evaluated
based on their prediction accuracy, sen-
sitivity, and specificity, while regression
models may be evaluated using variance
explained (R2) and Mean Absolute Error.
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TABLE 2 Anoverview of the keyword strategy used for this study.

Domain Search String

TECHNOLOGY ((‘smartphone’[tiab] oR ‘wearable’[tiab] OR ‘remote + monitoring’[tiab] OR
‘home + monitoring’[tiab] or ‘mobile + sensors’[tiab] Or ‘mobile + montoring’[tiab] or
‘behavioral + sensing’[tiab] OR ‘geolocation’[tiab] OR ‘mHealth’[tiab] OR
‘passive + monitoring’[tiab] OR ‘digital + phenotype’[tiab] oR ‘digital +
phenotyping’[tiab] or ‘digital + biomarker’[tiab])

ANALYSIS AND (‘machine + learning’[tiab] OR ‘deep + learning’[tiab] OR ‘random + forest’[tiab]
OR ‘neural
+network’[tiab] OR ‘time + series’[tiab] OR ‘regression’[tiab] OR ‘svM’[tiab] OR
‘knn’[tiab] or
‘dynamics + model’[tiab] OR ‘decision + tree’[tiab] OR ‘discriminant + analysis’[tiab]
OR ‘feature
+engineering’[tiab] or ‘feature + selection’[tiab] OR ‘data + mining’[tiab] OrR
‘model’[tiab] OorR
‘classification’[tiab] oR ‘diagnostic’[tiab] OR ‘prognostic’[tiab] OR ‘symptom +
severity’[tiab] OR
‘prediction’[tiab] or ‘monitoring’[tiab])

POPULATION AND (‘disease’[tiab] oRr ‘disorder’[tiab] oR ‘diagnosis’[tiab] OR ‘prognosis’ or
‘alzheimer’[tiab] oR ‘parkinson’[tiab] oR ‘Huntington’[tiab] orR
‘neurodegenerative’[tiab] OrR
‘degenerative’ OR ‘tremor’[tiab] OR ‘bipolar’[tiab] OR ‘depression’[tiab] OR
‘manic’[tiab] orR
‘anxiety’[tiab] OR ‘vocal + biomarker’[tiab] OR ‘@amyotrophic + lateral + sclerosis’[tiab]
OR
‘central + nervous + system’[tiab] OR ‘symptom’[tiab] OR ‘psychosis’[tiab] OrR
‘stroke’[tiab] oR
‘muscular dystrophy’[tiab] oR ‘Facioscapulohumeral Dystrophy’[tiab] OR
‘autoimmune’[tiab] orR
‘seizure’[tiab] OR ‘multiple + sclerosis’[tiab])

DATE AND (2012/01/01’[PDAT]:’2022/12/31’[PDAT])

LANGUAGE AND (English[lang])

EXCLUSION NoT(‘animals’[tiab] or ‘implant’[tiab] orR ‘hospital’[tiab] OR ‘caregiver’[tiab] OrR

CRITERIA ‘telemedicine’[tiab] OR ‘telerehabilitation’[tiab] OR ‘smartphone + addiction’[tiab] OrR

‘nursing’[tiab] oR’screening’[tiab] OR ‘recruitment’[tiab] OR ‘diabetes’[tiab] OR
‘malaria’[tiab]
OR ‘self-care’[tiab] OR ‘self-management’[tiab] oRr ‘self-help’[tiab])

ARTICLE TYPE

AND (clinicalstudyl[Filter] or clinicaltrial[Filter] or clinicaltrialphasei[Filter] or
clinicaltrialphaseii[Filter] or clinicaltrialphaseiii[Filter] or clinicaltrialphaseiv|[Filter]
OR

controlledclinicaltrial[Filter] or meta-analysis[Filter] observationalstudy[Filter] or
randomizedcontrolledtrial[Filter] or systematicreview|[Filter])
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TABLE 3 Tableoftheinclusion and exclusion criteria used for study selection.

Category Criteria

POPULATION The study must be initiated by a research organization and not by the participants.
The participants must have a clinical diagnosis that is affected by the cns. Hence,
studies that collected data from participants with no clinically confirmed diagnosis
were not considered.

INTERVENTION The study must include the use of smartphone or non-invasive wearables to remotely
monitor and quantify passive biomarkers under free-living conditions.

COMPARATOR A ground truth comparator for digital phenotyping such as clinical assessment, med-
ical records, or
self-reported outcomes.

OUTCOMES A ML model that is used to classify a clinical label (such as a diagnosis, or clinical
event), estimate symptom severity, or to detect treatment effects.

STUDY TYPE The paper must be about a human-centered observational study (cohort or longitu-
dinal) where the data were collected outside the clinic, lab, or hospital (free-living
conditions). Hence, studies that use smartphones or
wearables as a form of intervention or as screening tools are not of interest.

The study must show if the ML models had ecological validity by validating the mod-
els using free-living data. The study has to have been written or translated into Eng-
lish and published within the last 10 years (2012 onwards).
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TABLE 4 Clinicalinterpretations of common mL performance metrics.

Term Equation Objective
ACCURACY P Out of all the predictions, how many predictions were correctly
TP+TN identified as positive or negative?
PRECISION 2xPrecision xRecall How many predictions were correctly labeled as patients out of all
Precision+Recall correctly classified patients and misclassified healthy controls?

SPECIFICITY -3 Actual — Predicted How many predictions were correctly labeled as healthy controls
out of all healthy controls? In other words, of all healthy controls,
who were correctly identified as such?

RECALL/ \/ g(prmmd(_mnat; Of all the patients, who were correctly classified/identified as

SENSITIVITY S such?

F1-SCORE How many predictions were correctly labeled as patients (recall)

2XPrecision XRecall
Precision+Recall

and what was the accuracy with regards to correctly predicted pa-
tients (precision)?

MEAN SQUARE
ERROR

%Z Actual — Predicted

What is the absolute difference between the true scores and the
predicted scores?

ROOT MEAN
SQUARE ERROR

m 7
3. (Predicted —Actual)
=)

N

What is the average difference between the true and the predicted
scores (in the same unit of the true scores)?

R2

RSS
1- TSS

What fraction of the variance in the data is captured by the model?

True Positive = TP, True Negative = TN, False Positives = FP, False Negatives = FN, Sum of Squares of Residuals =RSS, Total
Sum of Squares =TSS, Number of Observations =N
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FIGURE1 Flowdiagramillustratingthe paperselection process forthis review.
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FIGURE 2 Clinical populationsandthe use of healthy controlsin the selected studies.
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Number of Studies

FIGURE 3 Samplesizesofclinical populationsincluded in selected studies, with x-axis (sample size)
presented on a logarithmicscale.
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FIGURE 4 Machinelearningalgorithmsand their respective objectives in the selected studies. FIGURE 5 Generalrecommendationsfor building an effective and reproducible mL pipeline.
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Abstract

Background: Facioscapulohumeral dystrophy (FSHD) is a progressive
muscle dystrophy disorder leading to significant disability. Currently,
FSHD symptom severity is assessed by clinical assessments such as the
FSHD clinical score and the Timed Up-and-Go test. These assessments are
limited in their ability to capture changes continuously and the fullimpact
of the disease on patients’ quality of life. Real-world data related to phys-
ical activity, sleep, and social behavior could potentially provide addi-
tional insight into the impact of the disease and might be useful in assess-
ing treatment effects on aspects that are important contributors to the
functioning and well-being of patients with FSHD. Objective: This study
investigated the feasibility of using smartphones and wearables to cap-
ture symptoms related to FSHD based on a continuous collection of mul-
tiple features, such as the number of steps, sleep, and app use. We also
identified features that can be used to differentiate between patients with
FSHD and non-FSHD controls. Methods: In this exploratory noninterven-
tional study, 58 participants (N=38, 66%, patients with FSHD and N=20,
34%, non-FSHD controls) were monitored using a smartphone monitor-
ing app for 6 weeks. On the first and last day of the study period, clinicians
assessed the participants’ FSHD clinical score and Timed Up-and-Go test
time. Participants installed the app on their Android smartphones, were
given a smartwatch, and were instructed to measure their weight and
blood pressure on a weekly basis using a scale and blood pressure moni-
tor. The user experience and perceived burden of the app on participants’
smartphones were assessed at 6 weeks using a questionnaire. With the
data collected, we sought to identify the behavioral features that were
most salient in distinguishing the 2 groups (patients with FSHD and non-
FSHD controls) and the optimal time window to perform the classifica-
tion. Results: Overall, the participants stated that the app was well toler-
ated, but 67% (39/58) noticed a difference in battery life using all 6 weeks
of data, we classified patients with FSHD and non-FSHD controls with
93% accuracy, 100% sensitivity, and 80% specificity. We found that the
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optimal time window for the classification is the first day of data collec-
tion and the first week of data collection, which yielded an accuracy, sen-
sitivity, and specificity of 95.8%, 100%, and 94.4%, respectively. Features
relating to smartphone acceleration, app use, location, physical activity,
sleep, and call behavior were the most salient features for the classifica-
tion. Conclusions: Remotely monitored data collection allowed for the
collection of daily activity data in patients with FSHD and non-FSHD con-
trols for 6 weeks. We demonstrated the initial ability to detect differences
in features in patients with FSHD and non-FSHD controls using smart-
phones and wearables, mainly based on data related to physical and
social activity.
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Introduction

BACKGROUND

A recent Dutch population study on facioscapulohumeral dystrophy
(FsHD) estimated that approximately 2000 people in the Netherlands and
approximately 800,000 people worldwide are living with FsHD.! Often,
early symptoms include difficulty whistling, smiling, and closing the
eyelids while asleep. Weakening of the facial muscles is generally followed
by scapular winging. This abnormal positioning of the shoulder bone
impairs the movement of the shoulders and arms. Further weakening of
the muscles is commonly observed in the upper arms and may progress
to the hip girdle and lower legs in severe cases. Less visible symptoms of
FSHD are chronic pain and fatigue.? In addition to the physical symptoms
the diagnosis of FSHD comes with an emotional and social burden. The
highly variable and unpredictable progression of the disease can have
a strong impact on the quality of life **: 90% of the affected individuals
have visible symptoms by the age of 20 years and 1in 5 patients with FSHD
eventually becomes wheelchair dependent.®

No therapy is currently available that stops the progression of
FSHD.®® Patients thus must rely on symptomatic treatment such as
medical devices or surgical intervention.? The development of novel
treatment options to delay or halt disease progression is currently
under investigation. However, measuring the effect of such new
treatments is complicated because disease progression is slow and no
objective surrogate end points, predictive for clinical benefit, have been
established. App-based technologies may help to monitor FSHD symptom
progression more closely and evaluate potential treatment effects on a
continuous basis.

Currently, FSHD symptom severity is assessed by clinical scoring of
symptoms such as the FSHD clinical score or mobility performance tests
such as the Timed Up-and-Go test (TuG) and Reachable Workspace
assessment.’®'? These clinical severity and functional scores have
several drawbacks. Scores change very slowly over time,'® are assessed
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in a clinic at 1 specific moment, and do not cover the implications of the
disease on social and physical activity during daily life. The progressive
muscle weakness characterizing FSHD leads to massive changes in
the way people live their lives, affecting how they get around, how
they complete daily activities, and whether they can work or care for
children. Therefore, assessing disease severity may be improved by not
only measuring muscle function but also evaluating social and physical
activity data. This study aimed to address this by first classifying disease
using a smartphone app and wearables to continuously remotely monitor
features relating to biometric, physical, and social activities of patients
with FSHD in comparison with those of non-FSHD controls. Subsequently,
we performed a second analysis in which we aimed to assess disease
severity. This analysis will be described in a different paper.

OBJECTIVES

We investigated the feasibility of remotely monitoring multiple features

such as step count, sleep, app use, and location tracking in patients with

FSHD and non-FSHD controls. First, we evaluated the participants’ tolera-

bility of these devices. We then characterized the patients with FSHD and

non-FSHD controls in terms of composites of social, physical, and biomet-
ricactivities. We sought to:

1 Distinguish patients with FSHD from non-FSHD controls using a classifi-
cation machine learning model and determine the minimum monitor-
ing window needed to perform the classification

2 ldentify which of the remotely monitored features were most salientin
differentiating between the 2 groups.

Methods

STUDY OVERVIEW

We conducted a cross-sectional, noninterventional study in patients
with FSHD and non-FSHD controls. A total of 58 participants (N=38, 66%,
patients with genetically confirmed FSHD and N=20, 34%, non-FSHD
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controls) were included in this study at the Centre for Human Drug
Research (CHDR) in Leiden, The Netherlands, between April 2019 and
October2019. Patients were recruited from The Netherlands and Belgium.

ETHICS APPROVAL

This study was performed in compliance with International Council for
Harmonisation Good Clinical Practice and approved by the Stichting
Beoordeling Ethiek Biomedisch Onderzoek Medical Ethics Committee
(Assen, The Netherlands; ccMo number NL69288.056.19) according to Wet
medisch-wetenschappelijk onderzoek met mensen (Dutch law on medi-
cal-scientific research with humans).

PATIENT POPULATION

To represent the clinical FSHD spectrum based on symptom severity
and age, up to 40 patients with FSHD (and 20 control participants) were
deemed sufficient. As this study was exploratory, sample size was not
based on power calculations. Eligible patients with FSHD were aged >16
years, had genetically confirmed FSHD (FSHD1 or FSHD2), were symptom-
atic as demonstrated by the FSHD clinical score of >0 and had an Android
phone that they used as their main phone or were willing to use one for
the duration of the study period. Patients with any comorbidity, expected
to affect the measurements, were excluded. Eligible control participants
were included using the same inclusion and exclusion criteria that were
used to recruit the patients, except they did not have a diagnosis or symp-
toms of FSHD.

DATA COLLECTION

CLINICAL ASSESSMENTS On thefirst and last days of the study period,
the FsHD clinical score assessment was performed in the group consist-
ing of patients with FSHD, whereas the TuG was performed in both groups.
On day 42 in both groups the user experience was assessed and the per-
ceived burden questionnaire (Multimedia Appendix 1) administered. The
FSHD clinical score is a standardized clinical score that quantifies muscle
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weakness by combining the functional evaluations of the 6 muscle groups
affected in FSHD. The scale is divided into 6 independent sections that
assess the strength and the functionality of facial muscles, scapular gir-
dle muscles, upper limb muscles, distal leg muscles, pelvic girdle mus-
cles, and abdominal muscles." The TuG assesses mobility and balance
by measuring the time it takes for a participant to stand up from a seated
position in a chair, walk 3 meters, turn around, walk back 3 meters, and sit
down again.? The user experience and perceived burden questionnaire
was developed by the cHDR to measure the impact of remote monitor-
ing of apps on smartphone performance. The questions are based on the
overall experience of cHDR with mobile apps.

REMOTE MONITORING PLATFORM All participants were remotely
monitored using the cHDR Monitoring Remotely (CHDR MORE) platform
for 42 days. CHDR MORE is a highly customizable platform that allows
remote monitoring of participants using smartphones and wearables.
The infrastructure used includes an Android app to collect data from
smartphone sensors and a connection to the Withings Health (Withings)
web-based platform to collect wearable data. All collected features are
describedinTable1.

SMARTWATCH, SMART SCALE, AND BLOOD PRESSURE MONITOR |In
total, three commercially available Withings devices were used: (1) heart
rate, step count, and sleep patterns were assessed by the Withings Steel
HR smartwatch; (2) weight, BMI, and skeletal muscle mass were assessed
by the Withings Body+ scale; and (3) systolic blood pressure and diastolic
blood pressure were assessed by the Withings blood pressure monitor.
Data from the Withings devices were collected on the phone using Blue-
tooth and sent to the Withings storage servers before being transferred
to a CHDR server. Participants were instructed to wear the Withings Steel
HR smartwatch continuously for the duration of the study, and they mea-
sured their weight and blood pressure themselves weekly using the With-
ings Body+ scale and Withings blood pressure monitor, respectively.
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PRIVACY The data collection as part of this study may raise privacy and
data safety concerns. Therefore, during development of the CHDR MORE
app, we addressed these concerns by building in several measures to
maximize privacy for all participants. First, all data sources such as sms
text messaging logs, phone calls, and microphone activation only report
summative outcomes. These sources cannot send the content of mes-
sages or whole recordings to the CHDR servers. In addition, location data
only report relative location instead of absolute GPs coordinates. Further-
more, all calculations such as human voice detection are performed on
the Android phone itself and removed afterward and all personal data are
coded and safely stored on certified cHDR servers.

STATISTICAL ANALYSIS

DATA PREPROCESSING The data preprocessing and analysis pipelines
were developed using Python (version 3.6.0; Python Software Founda-
tion). The Python library scikit-learn was used for the feature extraction
and the development of the machine learning models."* All data were
manually and visually inspected for missing data and outlier data. The
identified outliers (eg, traveling 10,000 kilometers in a single day) were
subsequently removed from the analysis. Missing or excluded data points
were notimputed.

FEATURE EXTRACTION As disease progression in FSHD is gradual, the
FSHD clinical scores and TuG scores were expected to remain stable dur-
ing the 6-week period. The daily features were therefore averaged across
a defined time window (for more information see p. 95: Identification of
optimal time window). Table 1 provides a simplified overview of the fea-
turesthat were extracted from the CHDR MORE app and Withings sensors.

FEATURE SELECTION Before fitting the classification models to the
data set, features were excluded using manual and automated feature
selection. The authors (Az, RJD, AC, EVB, GJG, and JDM) of this paper man-
ually excluded features based on the degree of missing data and the
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clinical relevance of the feature (eg, time spent on home and house apps
were deemed clinically irrelevant). For the automated feature selection,
variance inflation factor and stepwise regression were used to exclude
multi-collinear features or features that did not provide additive informa-
tion, respectively.

CLASSIFICATION MODELS We used 4 categories of data sets for the
classification of patients with FSHD and non-FSHD controls. These cate-
gories include the composite data (all features), social data (smartphone
features relating to social location, social and communication app use,
and phone calls), physical activity data (smartwatch features), and bio-
metric data (scale and blood pressure monitor features). We compared
the performance of the logistic regression, random forest, and support
vector machine classification models (Multimedia Appendix 2 '*2). The
performance of these classification models was evaluated by the accu-
racy, sensitivity, specificity, and Matthews correlation coefficient (Mcc).
A grid search was performed to find the optimal hyperparameters (the
parameters that determine the model’s structure) that would yield the
highest sensitivity and specificity for each model. Furthermore, we per-
formed a 5-fold stratified cross-validation. Cross-validation is a resam-
pling method used to evaluate the prediction performance of the classifi-
cation models. The data were divided into 5 equal subsets, with the same
FSHD-to-non-FSHD ratio within each subset; the model was trained on 4
(80%) partitions of the data and tested on 1 (20%) partition. This proce-
dure was repeated 5 times, with each partition serving as a test set once.
The performance of each model validation was then averaged.

IDENTIFICATION OF OPTIMAL TIME WINDOW In total, 6 weeks of data
were collected for this study. As continuous and periodic data collection
for long periods of time can be expensive and increase the risk of data
loss, we investigated the minimum time window needed for reliable clas-
sification. First, we used an incrementally increasing time window to train
the classification model, starting from day 1 and adding 1 day until we
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included all 42 days of data. We examined which time window would yield
the highest overall accuracy, sensitivity, and specificity. We compared the
performances of 3 classification algorithms (least absolute shrinkage and
selection operator [LASSO]-penalized logistic regression, random forest,
and support vector machine) to classify patients with FSHD and non-FSHD
controls using the incremental time windows. Second, we used the opti-
mal time window to train the classification model and evaluated how sta-
ble the classification performance would be for the remaining 5 weeks of
data. Here, we evaluated the stability of the algorithm based on the gen-
eralization error of the trained classification model.?®

Results

DATA COLLECTED

In total, 58 participants (N=38, 66%, patients with FSHD and N=20, 34%),
non-FSHD controls) participated in the study. We did not meet our goal
of 40 patients because of difficulties in recruiting patients in an accept-
able time span. The female-to-male ratio was the same in both popula-
tions; however, the median age of the control participants without FSHD
was lower than that of their counterparts with FsHD. Table 2 illustrates
the demographic and disease characteristics of the participants enrolled
in this study. The FsHD clinical scores and TuG scores remained rela-
tively stable during the 6-week period (with a maximum intraparticipant
change of 1 point for the FSHD score and 0.63 seconds for the TuG score).

PERCEIVED BURDEN AND DATA LOSS

As shown in Figure 1, overall, 3% (2/58) of the participants found the app
on their phone to be annoying. Furthermore, 67% (39/58) of the partic-
ipants agreed that there was a noticeable difference in battery life, 43%
(25/58) agreed that the constant presence of the app was noticeable on
their smartphone, 28% (16/58) rated the constant visible notification as
annoying, and 26% (15/58) of the participants noted a difference in the
speed of their smartphone.
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Data completeness is defined as having incoming data for each day of
the clinical trial, except for the blood pressure and scale data, for which
completeness is defined as having incoming data each week. As phone
and sms text messaging data are activity triggered and are aperiodic, it
is not possible to know whether data were missing. Table 3 provides an
overview of data completeness for the cCHDR MORE app, Withings watch,
Withings scale, and Withings blood pressure monitor and their respective
sensors.

FEATURE SELECTION

Several features were manually excluded before modeling. Because of
the number of participants missing body composition data, we excluded
all the body composition data with the exception of weight. Furthermore,
we excluded sMs text message use features and app categories that were
only used by only 5% (3/58) of the participants.

IDENTIFICATION OF OPTIMAL TIME WINDOW AND
CLASSIFICATION PERFORMANCE

Using all 6 weeks of data, the optimal classification model (LASSO-penal-
ized logistic regression) achieved 93% accuracy, 100% sensitivity, 80%
specificity, and 85% Mcc. This classification model identified 15 fea-
tures that were relevant for differentiating between patients with FSHD
and non-FsSHD controls. Specifically, features such as app use, weight,
location, physical activity, and sleep were important for differentiating
between the 2 populations (Figure 2). Table 4 shows the predictive fea-
tures and their positive or negative associations with the classification
label. The predictive features indicate that the participants in the group
consisting of patients with FSHD were less likely to engage in moderate
physical activity and spend time on recreational apps such as entertain-
ment apps, music and audio apps, video players and editing apps, and
games. The predictive features also showed that the participants in the
group consisting of patients with FSHD were more likely to spend more
time at home and health locations than their non-FSHD counterparts.
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Table 5 provides a summary of the number of selected features and the
respective performance metric for each of the data sets fitted to the
6-week LASSO-penalized logistic regression model. The table illustrates
that the composite data set model outperformed the models fitted to
the social, physical activity, and biometric data sets. The mcc is used to
selectthe best model because it corrects for class imbalances. The scores
of the individual data sets are included to give an overview of their perfor-
mance on their own. The mcc values of the social activity, physical activ-
ity, and biometric logistic regression models were 52%, 38%, and —21%,
respectively.

As for identifying the optimal time window for accurately classifying
the patients with FSHD and non-FSHD controls, we found that training the
random forest on the data collected on the first day and the data collected
during the first week yielded an accuracy, sensitivity, specificity, and mcc
of 95.8%, 100%, 94.4%, and 93.8% (Figure 3). This approach outperformed
the classification models that were trained on all 6 weeks of data. We also
trained classification models on the first week’s data and fitted the data
from subsequent weeks to assess the stability of the classification perfor-
mance over time (Figure 4). We found that the random forest achieved the
best overall performance, with a mean accuracy, sensitivity, specificity,
and mcc of 95% (SD 0.9%), 97.6% (SD 3.6%), 94.1% (SD 0.9%), and 93.6% (SD
0.1%), respectively. Figure 5 provides a SHAPley additive explanations plot
that illustrates the magnitude and direction of the effect of a feature on
a prediction. Of the 20 selected features, the top 5 (25%) most important
features for the classification were mean kilometers traveled, 95% maxi-
mum distance from home, total kilometers traveled, 95% highest heart
rate, and intense activity duration. For each of these features, the partici-
pants in the group consisting of patients with FSHD had lower scores than
the non-FsHD controls.
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Discussion

PRINCIPAL FINDINGS

We investigated the feasibility of monitoring and characterizing the phys-
ical, social, and biometric features of patients with FSHD and non-FSHD
controls using remote monitoring technologies. The use of the remote
monitoring platform was well tolerated by all participants. Next, we
found that a minimum of 1 day of data and a maximum of 1 week of data
can be used to reliably classify the 2 populations. In fact, an FsHD classifi-
cation model trained on data from a shorter time window outperformed
a classification model trained on data from the entire 6-week period. Fur-
thermore, we illustrated that a classification model trained on the first
week’s data yielded stable and reliable classification predictions across
the remaining 5s-week period.

Most (37/58, 64%) of the participants tolerated the CHDR MORE app con-
stantly running on their smartphone (Figure 1). Of the 58 participants,
only 2 (3%) stated that the app was annoying. However, the results show
that some of the participants agreed that there was a noticeable differ-
ence in smartphone speed performance (14/58, 25%), stability (8/58, 14%),
and overall battery life (39/58, 67%). Therefore, the presence of the app
was noticeable for some (25/58, 43%) of the participants. The decrease in
smartphone performance (ie, speed, stability, and battery performance)
was likely due to the continuous sampling of the sensors. As this was the
first study in this specific patient group with this platform, all smartphone
sensors were frequently sampled to capture all possible features. With
the collected data in this study, we identified the features that are useful
in differentiating between patients with FSHD and non-FsSHD controls. In
future studies, noncontributing raw data such as data from the acceler-
ometer and gyroscope (both sampled at 5 Hz) can be turned off to reduce
the burden on the battery performance and overall user experience. We
do not know for certain whether, and how, the noticeability of the app
affects participants’ behavior. Of the 58 participants, 6 (10%) stated that
they noticed a change in smartphone use for themselves, which may
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mean that they changed their behavior. Therefore, participants will know
that they are participating in a study and that they are being constantly
monitored even if the app is perfectly optimized. As a result, some sort of
changein behavior can be expected.

As for the user experience and perceived burden questionnaire, we
designed a questionnaire based on our own experiences with smart-
phone use and the predicted effects of the CHDR MORE app on smart-
phones. This questionnaire was not validated in any other study. At the
time of designing the study, there were no validated and published smart-
phone app questionnaires that would fit our purpose. For example, the
mHealth App Usability Questionnaire** focuses more on active smart-
phone apps, where there is interaction between the app and the partici-
pants. The CHDR MORE app is a passive app, requiring almost no interac-
tion between the app and the user. Therefore, the questions should be
more focused on the indirect effects of the app, such as more frequent
crashes in other apps, subjective loss of snappiness of the operating sys-
tem, or issues with battery performance. Although our questionnaire is
not validated, it was considered the best way to accurately capture the
perceived impact of the CHDR MORE app on smartphone use.

Feature selection is one of the most important processes for building
a classification model. The inclusion of irrelevant features can confound
the interpretability of the model because potentially predictive features
would be excluded and therefore seem to be irrelevant. For example,
because the patients with FSHD had more text-related activity than the
non-FSHD controls, the sms text messaging features were selected
as important classification features. Given that the sms text messaging
features were not deemed clinically relevant because only 55% (21/38) of
the patients with FSHD and 50% (10/20) of the non-FSHD controls actively
sent outgoing sMs text messages and the majority of the sms text mes-
sages were exchanged with unknown contacts, we excluded the sms text
messages as a feature. As a result, features that were initially not selected
by the model for inclusion, such as sleep, were now deemed important
features. The sms text messaging features masked the relevance of other
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potentially predictive features. The features that researchers manually
choose to include or exclude will influence the interpretability and stabil-
ity of the model. It should be noted that although sms text messaging fea-
tures were excluded, features regarding instant messaging app use were
included.

Our classification models allowed for the identification of a stable set
of features that were distinctive of FSHD symptomology. We believe that
identifying which remotely monitored features are relevant to FSHD can
be a first step toward continuous monitoring of symptom severity and
disease progression. For example, our classification model identified
sleep as a relevant feature for classifying patients with FSHD. Other stud-
ies have found that patients with FSHD typically experience sleep anom-
alies because of anxiety, respiratory muscle dysfunction, and pain.?>2’
This illustrates that the cCHDR MORE platform is sensitive enough to detect
and monitor sleep anomalies among individuals with FsHD outside of the
clinic. Furthermore, location-related features were relevant for differen-
tiating between the 2 populations. In this study, the patients with FSHD
spent more time at home, in areas with public transportation, or at health
locations than the healthy participants. Patients with FSHD face a range of
physical challenges because of the functional deterioration in the affected
muscular regions. Consequently, patients with FSHD may become more
home bound and more reliant on public transportation for travel, as well
as require more visits to their physicians. In conclusion, the CHDR MORE
platforms provide data that can be used to show differences in the daily
lives of patients with FSHD and controls without FSHD.

We demonstrated that there is a trade-off among the classification
accuracy, the number of sensor measurements, and the duration of
the monitoring period. Previous studies have demonstrated that using
data from multiple sensors improves the detection of mental and physi-
cal health status compared with using data from a single sensor.?®3° We
illustrated that social activity, physical activity, and biometric data alone
are insufficient for the accurate classification of FSHD. Rather, the inclu-
sion of data from the smartphone, smartwatch, and scale improves the
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performance of the FSHD classification algorithm. Although the model-
ing of multi-sensor data can be advantageous, it can lead to several prac-
tical limitations. The inclusion of more features can increase the model’s
complexity and thus limit the model’s explainability. Furthermore, the
inclusion of more sensors and a longer monitoring period can be more
expensive, potentially limiting the number of participants enrolled in a
study, and increase the risk of data loss. Future studies will need to weigh
the advantages and disadvantages of integrating smartphones, smart-
watches, scales, and monitoring period into their remotely monitored
FSHD clinicaltrials.

Despite the good performance of our model, this study includes some
limitations. The patients with FSHD and non-FSHD controls were compara-
ble except for the age demographic. The median age of the non-FSHD con-
trols was approximately 13 years less than that of the patients with FSHD.
Generally, the older the person, the less they tend to use their smartphone
and, in particular, the less they tend to use communication and social
apps.®' When characterizing patients with FSHD and non-FSHD controls
based on active smartphone use, the model may be biased because of the
difference in age. However, as seen in the results, only 1 feature of active
smartphone use—time spent on recreational apps—was included in the
final model for the characterization of patients with FSHD, which may limit
the impact of this difference. The other features used in the composite
model consist of either physical activity features collected passively from
the smartphone or biometric data collected from the Withings devices.
Therefore, we believe that the impact of these contaminated data on the
performance of our modelis low.

The objective of our study was to capture continuous sensor data. How-
ever, these data can only be considered reliable when participants carry
their smartphone and have it turned on all the time. During this study, all
participants were instructed to do so. However, data captured when the
participant was not carrying their smartphone could not be distinguished
from data captured when the participant was carrying the smartphone.
Therefore, all instances in which the smartphone is not carried or turned
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on result in unrepresentative data. These data get mixed in the real data
because these moments cannot be filtered out of the data with full cer-
tainty, resulting in unreliable data. Of note, there is no easy solution to
this problem. It would be difficult to continuously check whether the par-
ticipants are carrying their smartphone using the built-in sensors. How-
ever,adherence to this requirementis an important aspectin remote data
collection, emphasizing the need for clear instructions on this adherence
aspect to participants during training sessions before study start.

The level of data loss from the Withings scale indicates that improve-
ment is needed to gather reliable scale data (Table 3). Data loss occurred
for both the patients with FSHD and the non-FSHD controls, indicating
that the loss of data was unlikely related to any of the FSHD symptoms.
Although clear instructions were given at the beginning of the study and
all participants received a manual with the same instructions, we believe
that the data loss was caused by improper use of the scale by the partici-
pants. The weight measurement consisted of two parts: measurement of
weight and measurement of body composition.

Weight was determined first, followed by a blinking notification on the
display during the measurement of body composition. This might have
given the impression to the participant that the measurement had been
completed, causing them to interrupt the second part of the measure-
ment, resulting in an incomplete measurement. For future studies, we
recommend incorporating a live training at the beginning of the study on
the correctuse of the scale.

Efficient clinical testing of any FSHD intervention or of any drug tar-
geted at improving function of patients with FSHD or delaying disease
progression requires the availability of clinical biomarkers that ideally
change relatively rapidly over time; correlate with, and allow for, predic-
tion of progression of the existing clinical severity and functional scores;
and allow for identification of fast progressors. Using data collected in a
home setting might provide a more comprehensive picture of the evo-
lution of a patient’s overall condition over time. This study is a first step
in the development and validation process of using data collected by a
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specific remote monitoring platform for use in patients with FSHD. The
features described in this paper may be useful in further evaluating the
impact of the disease and monitoring disease progression in patients
with FSHD in the future.® More extensive data from longitudinal studies
are needed to further define how social, physical, and biometric data col-
lected remotely can be used to monitor symptomes.

Conclusions

To conclude, this study illustrates that the collection of smartphone data
and wearable data is acceptable to patients with FSHD and non-FSHD
controls and can be used to differentiate between the 2 populations. We
showed that remotely monitored end points can capture behavioral dif-
ferences between patients and controls. Further longitudinal studies are
warranted to study the potential of using a remote monitoring system for
detecting FSHD symptom severity and possible drug effects.
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TABLE 1

Overview of allsmartphone and wearable sensors used in this study and their respective
extracted features.

Device and Sensor Features

SMARTPHONE

ACCELEROMETER Maximum magnitude of the acceleration: 98%

APPS Number of times an app is opened; amount of time app is open in foreground

GPS Total kilometers traveled per day; average kilometers traveled per trip; 95% maximum

distance from home

GOOGLE PLACES

Number of unique places visited; time spent at each unique location

CALLS Number of outgoing, incoming, and missed calls; number of calls from known and un-
known contacts
MICROPHONE Percentage of time a human voice is present

WEARABLES (WITHINGS)

WATCH STEP COUNT Total step count; mean steps per minute; mean steps per hour; maximum steps per hour

WATCH HEART RATE

Heart rate: 5%, 50%, and 95% ranges and sb of heart rate percentage of time spentin
resting heart rate

WATCH SLEEP

Awake as well as light and deep sleep duration (minutes); number of awake as well as
light and deep sleep periods; time to fall asleep (minutes)

WATCH PHYSICAL

Soft, moderate, and hard activity duration

ACTIVITY
BLOOD PRESSURE  Systolic and diastolic blood pressure

MONITOR

SCALE Weight (kg); muscle mass (kg); bone mass (kg); body fat (%); body water (%)
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TABLE 2 Demographicsof patients with facioscapulohumeral dystrophy (FsHD) and controls TABLE 4 Selectedfeaturesforclassifying patientswith facioscapulohumeral dystrophy and
without FSHD (N=58). controlswithout facioscapulohumeral dystrophy based onthe complete 6-week composite data set.
Unstandardized estimated coefficientsindicate the direction of the association between the feature
Demographics Patients with FSHD Non-FsHD Controls and the classification label.
Sex, n(%)
Female 23(61) 11 (55) Feature category  Features Unstandardized estimated coeffi-
ient
Male 15 (39) 9 (45) - y clents
Activit: M t tivit ti -0.04
Age (years), mean (sb: range) 45 (14.5; 18-64) 33 (12; 23-69) ctvity oderate activity dura '°nl
R A Ti t ti -0.53
Weight (kg), mean (sp: range) 80 (16; 52-130) 78 (18; 56-129) sz \A;mehSpekn on recreationa’ apps
ight -0.45
BMI (kg/m?), mean (sb: range) 26 (4; 20-44) 25 (5; 19-35) L° y De'g ( fg) v— e
- ocation istance from home: 95 .85
FSHD clinical score, mean (sb: range) 5(3;1-13) 0 (0; 0-0) T : TI 0 - 2 00
me spent ravel location 1.
Timed Up-and-Go test (seconds), mean (sp: range) 8.8 (35;5-15.81) 7.8(1.55; 6-12.09) : l p v !
atlocation Home location 0.67
Unknown location 0.53
Health location 0.29
TABLE3 Overview of datacompleteness. The data completeness shows what percentage of data Public location 012
was collected amongthe participants during the 42 days of the study; hence, in total, there should be Social location -0.14
2436 daily instances and 232 weekly instances. Commercial location -0.94
Sleep Average total sleep duration 0.65
Sensor Feature Overall data completion N (%) Light sleep duration 0.35
Patients with FSHD Controls without FSHD Number of awake periods during a sleep session  -0.61
n (%) N n (%) N Maximum total sleep duration -0.69
Microphone Voice activation 1181 (74) 1596 688 (81.9) 840
(smartphone)
Accelerometer Phone Acceleration 1260 (78.95) 1596 656 (78) 840
(smartphone)
Google Places Places 1109 (69.49) 1596 616 (73.33) 840
(smartphone) TABLES Summaryof numberofselectedfeaturesand therespective performance metricforeach
GPs (smartphone) Relative Location 1373(86.03) 1596 785(93.45) 840 ofthe data sets used to classify the patients with FsHD from the controls without facioscapulohumeral
App use (smartphone)  Use event aggregate 1404 (87.97) 1596 779 (92.74) 840 dystrophy.
Withings blood Blood pressure and 1452 (91.15) 1596 630 (75 840
'thing . pressu ( ) (75) Dataset Number of selected Accuracy (%) Sensitivity Specificity Matthews Correla-
pressure monitor heart rate . .
— — Features (%) (%) tion Coefficient (%)
Withings scale Body composition 173 (75.88) 228 88 (73.33) 120 B
Weight 205 (89.91 228 108 (90 120 Composite 1 % 100 % 8
Withi tch A etl'g't durati 1505( 9;1 3) 1596 744 (88)57 840 Biometric > 7 5 0 21
ithings watc ctivity duration (94.3) (88.57) Social 10 79 9 60 5
Heart rate 1181 (74) 1596 588 (70) 840 . -
Physical Activity 13 71 78 60 38
Step count 1491 (93.42) 1596 708 (84.29) 840
Sleep Summary 1408 (88.22) 1596 685 (81.55) 840
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FIGURE 1 Feasibilityand perceived burden of remote monitoringin patients with facioscapulo-
humeral dystrophy using smartphone-based technologies.
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FIGURE 2 Selected featuresfor classifying patients with facioscapulohumeral dystrophy and those
without FSHD based on the composite data set using all 6 weeks of data and the least absolute shrinkage
and selection operator-penalized logistic regression model. Unstandardized estimated coefficients
indicate the direction of the association between the feature and the classification label.
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FIGURE 3 Performance of theincremental classification predictions for 3 classifiers (logistic
regression, random forest, and support vector machine). The x-axis shows the time window for
training the classification models starting from day 1to day 42. The error bands represent the sp of the

classification performance for the 5-fold cross-validation.
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FIGURE 5 sHAPleyadditive explanations (SHAP) summary plot based on arandom forest classifier PART 111

thatwas trained on the week 1data. The x-axis shows the feature importance, where features are ranked

in descending order. The y-axis shows the sHAP value that illustrates the direction of the association
& / ESTIMATION OF SYMPTOM SEVERITY

between the feature and facioscapulohumeral dystrophy severity. The color scheme reflects the

probability of a participant being classified as a patient with facioscapulohumeral dystrophy.

Menn distance raveled (km) | *“'
Mistance traveled from home (93th percentile)
Total distance wraveled (km) - -
Heart rate (951h percentile)
Maximum sicps per hour
Ape
Number of awake peniods
Commercinl bocation duration (hours)
Mean s1eps per bour
Muoderate activity dursison |
Teal call durstaon
Intense activity durstion {hloursh
Toanl steps
Socinl app duration (hours)
Mumber of massed calls
Iravel bocation duratsen |
Mumber of calls fron kneown callers
Percentage of time human voice ks preseat
Number of oulgoing calls

Timee since previows sleep pervod {bours)

alue (1

DEVELOPMENT OF MACHINE LEARNING - DERIVED MHEALTH COMPOSITE BIOMARKERS FOR TRIAL@HOME CLINICAL TRIALS




CHAPTER 4

Smartphone and wearable sensors for the
estimation of facioscapulohumeral muscular
dystrophy disease severity: cross-sectional study

Ahnijili Zhuparris,' MSc; Ghobad Maleki,' BSc, MD; Ingrid Koopmans,'
MSc; Robert J Doll, PhD; Nicoline Voet,> PhD; Wessel Kraaij,® PhD, Prof Dr;
Adam Cohen,' MD, PhD, Prof Dr; Emilie van Brummelen,' PhD;

Joris H De Maeyer,* PhD; Geert Jan Groeneveld,' MD, PhD, Prof Dr

JMIR Form Res. 2023;7:€41178. doi:10.2196/41178

1 CentreforHuman Drug Research (CHDR), Leiden, NL
2 Department of Rehabilitation, Rehabilitation Center Klimmendaal, Nijmegen, NL
3 LeidenInstitute of Advanced Computer Science, Leiden University, Leiden, NL

4 FacioTherapies, Leiden, NL



1ns

Abstract

Background: Facioscapulohumeral muscular dystrophy (FSHD) is a pro-
gressive neuromuscular disease. Its slow and variable progression makes
the development of new treatments highly dependent on validated bio-
markers that can quantify disease progression and response to drug
interventions. Objective: We aimed to build a tool that estimates FSHD
clinical severity based on behavioral features captured using smartphone
and remote sensor data. The adoption of remote monitoring tools, such
as smartphones and wearables, would provide a novel opportunity for
continuous, passive, and objective monitoring of FSHD symptom sever-
ity outside the clinic. Methods: In total, 38 genetically confirmed patients
with FSHD were enrolled. The FsHD Clinical Score and the Timed Up and
Go (TuG) test were used to assess FSHD symptom severity at days 0 and
42. Remote sensor data were collected using an Android smartphone,
Withings Steel HR+, Body+, and BPM Connect+ for 6 continuous weeks.
We created 2 single-task regression models that estimated the FsHD Clin-
ical Score and TuG separately. Further, we built 1 multitask regression
model that estimated the 2 clinical assessments simultaneously. Further,
we assessed how an increasingly incremental time window affected the
model performance. To do so, we trained the models on an incrementally
increasing time window (from day 1 until day 14) and evaluated the predic-
tions of the clinical severity on the remaining 4 weeks of data. Results:
The single-task regression models achieved an rR2 of 0.57 and 0.59 and a
root-mean-square error (RMSE) of 2.09 and 1.66 when estimating FSHD
Clinical Score and TuG, respectively. Time spent at a health-related loca-
tion (such as a gym or hospital) and call duration were features that were
predictive of both clinical assessments. The multitask model achieved an
R2 of 0.66 and 0.81 and an RMSE of 1.97 and 1.61 for the FSHD Clinical Score
and TuUG, respectively, and therefore outperformed the single-task mod-
els in estimating clinical severity. The 3 most important features selected
by the multitask model were light sleep duration, total steps per day,
and mean steps per minute. Using an increasing time window (starting
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from day 1 to day 14) for the FsHD Clinical Score, TuG, and multitask esti-
mation yielded an average R2 of 0.65, 0.79, and 0.76 and an average RMSE
of 3.37, 2.05, and 4.37, respectively. Conclusions: We demonstrated that
smartphone and remote sensor data could be used to estimate FSHD clin-
ical severity and therefore complement the assessment of FSHD outside
the clinic. In addition, our results illustrated that training the models on
the first week of data allows for consistent and stable prediction of FSHD
symptom severity. Longitudinal follow-up studies should be conducted
to further validate the reliability and validity of the multitask model as a
tool to monitor disease progression over a longer period.
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Introduction

Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neu-
romuscular disease characterized by the wasting of muscles in the face,
upper body, and legs.' The onset and progression vary greatly between
individuals.? Early symptoms include difficulties in smiling, whistling,
and shutting of the eyelids during sleep. These symptoms are followed by
impaired upper-arm movements and walking. A total of 20% of individ-
uals with FsHD eventually become wheelchair bound.? Less visible FSHD
symptoms include fatigue and chronic pain.? In addition to the physi-
cal burden, individuals with FSHD also experience emotional, social, and
socioeconomic burdens.*® As a result, patients report increased deterio-
ration in quality of life as the disease progresses.®

Currently, there are no therapies or interventions that prevent the
wasting of muscles in patients with FsHD.” Muscle-strengthening drugs
have been shown to have limited effect on the disease progression.? As
a result, patients with FsHD largely rely on symptomatic treatments (eg,
analgesics, exercise, and cognitive therapy). The development of novel
treatment options to delay or halt FSHD disease progression is currently
under investigation.”'® However, measuring the effect of such new treat-
ments is complicated, as disease progression is slow and no objective sur-
rogate end points, predictive for clinical benefit, have been established.

Two common clinical assessments for assessing FSHD symptom sever-
ity are the FsHD Clinical Score and Timed Up and Go (TuG) test. The FSHD
Clinical Score is composed of an evaluation of the extent of the muscle
weakness among 6 regions of the body."" The TuG is a test used to assess
functional mobility.'? The test requires a participant to rise from a chair,
walk 3 m forward, turn around, and return to the chair. These clinician-
rated assessments provide a snapshot of the disease status and are pri-
marily focused on muscular strength and function that are inherently sub-
jective. Identifying novel objective biomarkers for monitoring disease
progression could additionally provide clinically relevant insights and aid
drug development. Novel digital end points for neuromuscular disease
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drug development have already demonstrated to be sensitive to differen-
tiating patients from healthy volunteers and are strongly correlated with
clinician assessments."*'* The widespread adoption of smartphones and
wearables could provide new opportunities for objective and continuous
monitoring of FSHD disease progression outside the laboratory.

This study was designed to identify smartphone-based and remote
sensor-based features that could be used to assess FSHD disease sever-
ity. These features may enable the passive remote monitoring of disease
progression and might potentially facilitate early detection of treatment
effects on FSHD symptoms and the patient’s quality of life. We hypothe-
sized that the behavioral features captured by these remote monitoring
devices would capture the daily physical and social burden that patients
with FSHD experience. Although other neuromuscular disease studies
with similar protocols have used machine learning to construct their dig-
ital end points, until now, different monitoring periods were arbitrarily
selected by various researchers.’®'” Here, we investigated how different
time windows affect the model’s performance to estimate one’s symp-
tom severity over time.'®'® As these features can vary considerably over
time, we assessed the stability and test-retest reliability of the first week
of data to estimate FSHD disease severity for the remainder of the trial. In
this paper, we describe the development of a novel tool based on smart-
phone and remote sensor data to provide remote estimation of FSHD dis-
ease severity.

Methods

OVERVIEW

This study is an extension of a previous longitudinal clinical study that
investigated the feasibility of monitoring and characterizing patients
with FsHD and healthy controls in terms of biometric, physical, and social
activities using data sourced from smartphones and other remote moni-
toring devices. Therefore, additional information regarding the data col-
lection and data quality has been previously published.'®
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PATIENTS

This was a noninterventional, cross-sectional study involving patients
with FSHD. The study was performed between April and October 2019 in
the Centre for Human Drug Research (CHDR) research unit in Leiden, the
Netherlands. Table 1 provides an overview of the demographic distribu-
tion of the patients with FsHD enrolled in this study.

In total, 38 patients with genetically confirmed FSHD from the Nether-
lands and Belgium were included in the study. Eligible patients were 16
years or older, had genetically confirmed FsHD, and had an FsHD Clinical
Score greater than zero. Patients had to be Android smartphone owners
and willing to use either their own smartphone or an Android smartphone
provided by cHDR for the duration of the study period. Patients with inter-
nal medical devices such as a pacemaker or deep brain stimulator were
excluded from the study, as these could interfere with the Withings scale
measurements.? Participants could not be pregnant or have a severe
coexistingillness.

ETHICS APPROVAL

This study was approved by the Ethics Committee of BEBO, Assen, the
Netherlands (NL69288.056.19) and was registered on ClinicalTrials.gov
(NCT04999735). Before any study-related activities, written informed con-
sent was obtained from the patients. Participants received monetary
compensation for their time and effort during the trial.

To preserve the privacy of the patients, we deidentified the data and
limited the amount of personally identified information collected from
the smartphone and the connected devices. The location coordinates of
the Gps or the cellular networks were collected as relative coordinates
(6Ps coordinates with respect to another predetermined location). For
the calls and sms text messaging, only metadata are stored (ie, no actual
phone calls or text is being processed and stored). The call and sms text
messaging logs only store a partial phone number, making it impossible
to identify the original phone numbers. As for the Withings devices, we
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created a unique email address (containing patient identifiers) for each
patient to couple the Withings device with CHDR MORE, thus eliminating
the need for using the patients’ personal email.

INVESTIGATIONAL TECHNOLOGIES

Smartphone and remote sensor data were collected on the CHDR MORE
platform. This customizable platform enables the collection, ingestion,
and management of data sourced from monitoring devices. The CHDR
MORE app was installed on the smartphone of each participant and allows
for the unobtrusive collection of smartphone sensor data (sourced from
the smartphone’s accelerometer, gyroscope, magnetometer, GPs, light
sensor, and microphone) as well as phone usage logs (eg, app usage, bat-
tery level, calls, and sms text messages).

The smartphone sensor data provide insights into a participant’s envi-
ronment, such as location type and travel patterns (Gps), if human voices
are present in the environment (microphone), and their physical activity
(accelerometer and gyroscope). The phone usage logs give an indication
of social activity (through social media and communication apps, calls,
and sMs text messages) and smartphone usage (app usage). The app also
collected Withings health data.

In this study, 3 Withings devices were used: Withings Steel HR smart-
watch (monitors heart rate, sleep states, and a number of steps), Withings
Body+ scale (monitors weight and body composition) and Withings BPm
Connect (monitors heart rate, systolic blood pressure, and diastolic blood
pressure). Together the Withings features reflect the daily physical activi-
ties of each of the participants.

This is the first study that aimed to monitor and estimate FSHD symp-
tom severity using smartphone and wearable data. As this was an explor-
atory longitudinal study, specifically aimed to identify smartphone- and
wearable-based features that were predictive of FSHD symptom sever-
ity, we did not identify any literature with a similar protocol. To identify
these novel features, we decided to collect data from all available sensors
and features from the cHDR MORE platform. As the symptoms of FSHD can
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affect a patient’s travel abilities,?' physical activity, sleep,'’** and social

lives,”® we deemed these features relevant for estimating FSHD symptom
severity.

DATA COLLECTION

Participants were monitored for 6 continuous weeks. On days 1 and 42,
the clinical evaluations (FsHD Clinical Score and TuG) were performed.
On day 1, the cHDR MORE and Withings Health Mate apps were installed
on their smartphones. Participants were asked to use their smartphones
as normal. Participants were asked to continuously wear their Withings
Steel HR smartwatch and weigh themselves and take their blood pressure
weekly.

DATA PREPROCESSING

Before modeling of the data, all sensor data were preprocessed and con-
verted into features using Python (version 3.6.0) and the PySpark (version
3.0.1) library. The raw data were checked for missing values and outliers.
Missing values were defined as the absence of data for a specific feature
for each day, except for 2 types of measurements: the weekly measure-
ments (eg, weight and blood pressure) and the data related to aperiodic
activities (eg, phone calls or sms text messages). Missing data were not
imputed. Outliers were detected by manual visual inspection rather than
automated statistical techniques, as our objective was to identify poten-
tial outliers that were a result of potential measurement errors rather
than participants’ behaviors. Measurement errors were deemed not rel-
evant to our analysis, whereas outliers in behavior could still provide
insights into a participant’s symptom severity; therefore, sensitivity anal-
ysis was not conducted. Outliers would be subsequently excluded at the
discretion of the authors (eg, removing overlapping sleep stages).

FEATURE EXTRACTION

All raw data were collected from the smartphone and Withings devices.
The features were then aggregated per day, as the symptom severity
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exhibited on a given day is the focus of FSHD clinical evaluation. As there
are no FSHD assessments that assess FSHD symptoms over a longer
period, we did not explore other aggregation methods. Discrete features
(eg, step count) were summed per day per participant. Continuous fea-
tures (eg, heart rate) were averaged per day per participant. Table 2 pro-
vides an overview of how the features were aggregated based on the data
type. Table 3 summarizes which features were extracted from the smart-
phone and Withings sensors. In addition, Table 3 shows the features that
were provided from the MORE platform but were notincluded for the anal-
ysis either due to outliers, missing data, or because they were not of clini-
calinterest.

FEATURE SELECTION

Before modeling, both expert-based manual and automated feature
selections were performed. First, features were visually inspected by all
authors. Excluded features were based on the number of available data
points (eg, 9 participants did not have body composition data) and clin-
ical relevance (eg, time spent on parenting apps was deemed clinically
irrelevant). Next, two automated feature selection strategies were com-
pared: (1) stepwise regression and (2) variance inflation factor (viF). The
stepwise regression strategy was an iterative process to select predictive
variables that met a significance criterion (P<.05). Both forward and back-
ward stepwise regression strategies were used. The viF was calculated for
all pairwise combinations of features to identify collinear features. Pairs
of features having a viIF value greater than 10 were identified, and one of
the features was subsequently removed for each of the pairs.** For com-
parison, we also fitted the model without any automated feature selec-
tion strategies. For each regression model, we applied each of the feature
selection strategies.

STATISTICAL ANALYSIS

Python (version 3.6.0) was used for the data analysis and modeling in
conjunction with the Pandas,>®> NumPy,*® Matplotlib,>” and Sklearn
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packages.?® Three regression models were created: 2 single-task regres-
sion models, 1 for each clinical assessment and 1 for each multitask
regression model, simultaneously estimating both clinical assessments.
For the multitask regression model, a dummy variable was included to
denote eitherthe FSHD Clinical Score or TUG.

For all models, linear regression, random forest regressor, and gradi-
ent boost regressor were used. A grid search was performed to optimize
the hyperparameters for each model. For the Elastic Net linear regression
model, we optimized the hyperparameters for the a (range 0-200) and
L1 ratio (range 0.0-1.0). For the random forest and gradient boost regres-
sors, we optimized the hyperparameters for the number of estimators
(range 0-200), maximum depth (range 1-20), maximum features (range:
auto, square root, log2), and maximum leaf nodes (range 2-20). In addi-
tion, we optimized the learning rate (range 0.0-1.0) for the gradient boost
regressor.

Each model was validated using a group 5 outer-fold and 5 inner-fold
nested cross-validation. By using group cross-validation, for each fold, we
ensure that the participants in the validation are not also present in the
training fold. While the data for all participants were used for the model-
ing, the cross-validation procedure was used for out-of-sample testing;
hence, for each fold of the cross-validation procedure, only a subsample
of participants’ data were used. Further, the random forest and gradient
boost regressor models only consider a subsample of participants and
features per decision tree node. The elastic-net linear regression penal-
ization would also reduce the potential features considered in the model.
The cross-validation and models together would improve the generaliz-
ability and robustness of the models and therefore reduce the probability
of spurious correlations.

We applied each of the feature selection strategies to each of the regres-
sion models and compared the results of each model. The model that
provided the highest rR2 (variance explained) and the lowest root-mean-
square error (RMSE) was selected as the best-performing model. The r2
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and the RMSE explain the variance and the error between the true clinical
scores and the predicted scores of the regression models, respectively.

To assess how varying time window affects the model’s estimation of
symptom severity, we used an incrementally increasing time window to
train the regression models, starting with day 1 and adding the follow-
ing days until the first 2 weeks of data were included in the training set.
To train, optimize, and assess each model’s generalizability, we applied
a 5-fold nested cross-validation model. To validate the performance of
these models, we used the remaining 4 weeks of data as an external val-
idation data set. To assess the stability of the trained models to yield
consistent estimations of symptom severity, we trained the FsHD Clin-
ical Score, TuG, and multitask models on the first week of data. We esti-
mated the symptom severity for the subsequent weeks. We selected the
first week, as each patient would have each day of the week represented
intheir data set.

In sum, we investigated 3 final models, 2 single-task models, and 1 mul-
titask model. For each model, we considered 3 types of regression models
(thelinear regression, the random forest regressor, and the gradient boost
regressor). For each model, we considered 3 feature selection strategies
(no automated feature selection, stepwise regression, and viIF); hence, in
total, we compared 27 models. Given that we are mainly interested in the
comparison of the predictions of single-task and multitask models and
the influence of the time windows on the predictions, we reported only
theresults of these models.

Results

No patients dropped out of the study. One patient was wheelchair-bound
and therefore unable to perform the TuG. The FsHD Clinical Scores ranged
between 1and 13, with a median score of 5. The TuG times ranged between
5.5 seconds and 15.8 seconds, with a median time of 7.7 seconds. Before
modeling, several features were manually excluded. Nine patients had
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no body composition (eg, fat and muscle mass) data. As a result, the With-
ings body composition data (except weight) were excluded from the final
analysis. We excluded sms text message-related features as not all the
patients used sms text messaging (less than 30% of patients), and the sms
text message features were not deemed clinically relevant. Further, we
excluded smartphone apps from the analysis that were used by less than
5% of the patients. We did not exclude any outliers as none of the data
points were viewed as potential measurement errors. In a previous pub-
lication, we provided an overview of the proportion of observations that
were missing per feature.”

The FsHD Clinical Score for 24 participants did not change over the
6 weeks. The scores of the remaining 14 participants changed by +1 or —1
point. The average difference between the day 1 and day 42 TuG scores
was 0.38 seconds (95% Cl 0.12-0.63). After reviewing the stability of the
TUG and FSHD scores, we decided to use the averaged clinical assess-
ment scores as the outcomes for all models. Subsequently, each feature
was also averaged over the 6 weeks. These averaged features were used as
inputs for the regression models.

Using all 6 weeks of data, we built a single-task model that used the
CHDR MORE features to estimate the FSHD Clinical Score for each partic-
ipant. Comparing the estimated scores and the true FsHD Clinical Score
yielded an r2 of 0.57 and an RMSE of 2.09. This was achieved using VIF-
selected features and Elastic Net-penalized linear regression. A total of 11
features were predictive of the FsSHD Clinical Score, as seenin Figure 1. The
features were related to app usage, blood pressure, location visits, and
calling behaviors. Figure 2 (top) shows the estimated FsHD Clinical Score
inrelation to the actual FsHD Clinical Score.

Similarly, the comparison of the TuG single-task model estimated TuG
and the actual TuG yielded an R2 of 0.59 and an RMSE of 1.66 (seconds) for
each participant. This was achieved with forwarding selection stepwise
regression and Elastic Net-penalized linear regression. In total, 13 feature
were predictive of the TuG score (Figure 1). The feature categories related
to age, app usage, calling behaviors, sleep, physical activity, and location

DEVELOPMENT OF MACHINE LEARNING - DERIVED MHEALTH COMPOSITE BIOMARKERS FOR TRIAL@HOME CLINICAL TRIALS

visits were predictive of TuG. Figure 2 (bottom) illustrates the relationship
between the predicted and actual TuG times.

The multitask model achieved an r2 of 0.74 and an rRMSE of 1.89 for
the FsHD Clinical Score and TuG prediction together. The same model
achieved an rR2 of 0.66 and an RMSE of 1.97 for the FsHD Clinical Score and
an RrR2 of 0.81and an RMSE of 1.61 for the TUG separately. The gradient boost
regressor selected 50 predictive features. The relative feature importance
is presented in Figure 3. The 5 most important features were light sleep
duration, total steps per day, mean steps per minute, the number of times
the social and communication apps were opened, and the number of
incoming calls. Figure 4 illustrates the relationship between the predicted
clinical scores and the actual clinical scores.

For each clinical score, we evaluated the effect of different monitor-
ing periods on the estimation of symptom severity. The best performing
FSHD Clinical Score single-task model, TuG single-task model, and multi-
task model yielded the highest R2 on day 3 (0.70), week 2 (0.86), and day
1 (0.86), and the lowest RMSE on day 3 (2.8), week 2 (1.9), and day 6 (3.4),
respectively. As seen in Figure 5, although our analysis has identified win-
dows that yielded the highest R2 and RMSE, we found that the mean (sD)
of the R2 and RMSE for the FSHD Clinical Score single-task model, TuG sin-
gle-task model, and multitask model was 0.65 (0.03) and 3.37 (0.19), 0.79
(0.05) and 2.05 (0.09), and 0.76 (0.08) and 4.37 (0.20), respectively. When
evaluating the stability, the models trained on a week’s worth of data were
used to estimate the symptom severity for subsequent days. We found
that the FsHD Clinical Score, TuG, and multitask models achieved median
R2 (median RMSE) of 0.51 (3.66), 0.42 (2.44), and 0.72 (2.61), respectively (as
seeninFiguree).

Discussion

PRINCIPAL FINDINGS

We developed and compared 2 regression models to monitor and esti-
mate FSHD symptom severity outside the clinic with remote sensor data
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to estimate the FsHD Clinical Score and TuG for each participant. For
the first type of model, both clinical assessment scores were separately
estimated using 2 single-task regression models. For the second type of
model, both clinical assessment scores were simultaneously estimated
using a multitask regression model.

The 2 single-task models selected features that were uniquely predic-
tive of each of the clinical scores. In addition, the models’ selected fea-
tures were found to be predictive for both scores (time spent at health
locations and total call duration). Other studies have found that (a mod-
ified version of) the TuG significantly correlated to the FsHD Clinical
Score,’>?? indicating that these clinical scores share mutual informa-
tion. Simultaneously estimating multiple tasks with shared features can
improve the model performance.®°*? This supports the notion that a mul-
titask approach would improve the estimation of FSHD symptom severity.

Indeed, the multitask modeling of both the FsHD Clinical Score and the
TuG outperformed the single-task models. Additionally, the multitask
model identified features not selected as important by the single-task
models (eg, sleep and the resting heart rate). The clinical assessments and
their respective single-task models only captured a limited range of dis-
ease symptoms, which misses the opportunity to model other aspects
of the disease (eg, sleep impairments **** and arrhythmic abnormali-
ties 3%). The multitask model, however, identified features representa-
tive of a broader range of FSHD symptoms. As shown in the SHAP (SHAP-
ley Additive exPlanations) plot (Figure 3), participants with a higher mean
step per minute, light sleep duration, soft activity duration, and total steps
(indicated by the red feature value) had lower SHAP values. This indicates
that participants with more physical activity and better sleep quality had
a lower FsHD Clinical Score and TuG. Although the multitask model out-
performed the single-task models, the multitask model required approx-
imately twice as many features as the single-task models. Using fewer
features could be considered beneficial as it reduces the number of sen-
sors needed. Additionally, it eases the interpretation of the results. There-
fore, there is a tradeoff between the performance of estimation of disease
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severity and the complexity of the data set and model. However, given
that the multitask model showed animportantimprovement over the sin-
gle-task models, we recommend using the multitask model for future esti-
mation of the FSHD Clinical Score and TuG.

Itis critical to determine how much data are needed to obtain reliable
inferences without burdening the patients and the clinicians. Insuffi-
cient data can lead to inaccurate extrapolations, whereas excessive data
can lead to wasted time and resources. This study investigated how long a
patient needs to be monitored to estimate symptom severity reliably. Our
results demonstrated that behaviors exhibited that based on our sam-
ple, the optimal time window (based on the highest R2 and lowest RMSE)
varied for each task. The multitask model yielded the overall highest r2
based on a training data set of the first day. Although we identified that
5 days of data seem sufficient for training the multitask model, a longer
or shorter time window would still provide consistent estimation of the
symptom severity. However, our results also demonstrate that selecting
any time window between days 1 and 14 would produce relatively stable
results. Our results also demonstrated that training the multitask model
on the first week of data allowed for constant and reliable estimations of
symptom severity for the subsequent weeks. This further supports the
notion that multitask should be used to estimate the clinical scores for
longitudinal studies.

The agreement between the clinical scores and the remotely mon-
itored features did not achieve 100% adherence. This may be due to the
sensors being unable to capture specific aspects of the clinical score. For
example, features captured by the remote monitoring system may not
provide sufficient proxies for arm, scapular, and abdominal weaknesses
(which the FsHD Clinical Score specifically addresses). Adding additional
sensors and features could potentially allow for more complete model-
ing of FSHD. For example, an additional accelerometer could try to capture
arm swings 3¢ or detect the (limited) shoulder range of motion.*” Another
explanation for the imperfect model fit is that the clinical scores have lim-
ited accuracy in capturing disease severity. There can be variation within
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a specific clinical score, as patients with the same scores may exhibit dif-
ferent FSHD symptoms. For example, patients with scores between 2
and 4 may have impairments related to facial muscles and upper limbs,
whereas others may be unable to walk on their heels."’

The clinical scores provide snapshots of muscular strength and func-
tion, whereas the remote monitoring approach provides a more contin-
uous measure of (FsHD-related) social and physical activity. Additionally,
the clinical scores were assessed at the clinic, whereas the sampling of the
remotely monitored features occurred at home, and in daily practice. Alto-
gether, these 2 clinical scores may not be the optimal clinical assessment
strategies for fully assessing FSHD symptom severity. These are only 2 of
several FsHD-related assessments that can be used in a clinical trial. The
remotely monitored features may show different correlations with other
FSHD-related assessments such as the Clinical Severity Scale for FsHD 3%:3°
and the Pittsburgh Sleep Quality Index.3?*° Although the remotely mon-
itored features may not correlate strongly with the 2 clinical scores, they
still provide relevant insights into FSHD-related symptoms. Our multitask
model could prove to be a promising tool for monitoring the FHSD severity
based on patients’ everyday activities outside the clinic.

Although the models cannot replace the TuG or FsHD Clinical Scores for
estimating the disease severity, these models can potentially be used as
a (complimentary) tool in clinical studies. When validated in longitudinal
studies, given the continuous sampling of data from multiple sensors, this
FSHD tool could potentially be used to track the symptom severity for long
periods of time without patients having to visit a clinic. Previous studies
have demonstrated that this approach of using smartphone-based mod-
els to quantify medication responses can be advantageous.?’*® When
implemented in a clinical trial, the FSHD tool might be evaluated as a
tool to monitor drug effectiveness by tracking drug-induced changes in
FSHD symptom severity.*' Additionally, it might enable the identifica-
tion of improvements in specific aspects of the disease severity (e.g., mus-
cle function or sleep quality). Therefore, remote monitoring might aid

DEVELOPMENT OF MACHINE LEARNING - DERIVED MHEALTH COMPOSITE BIOMARKERS FOR TRIAL@HOME CLINICAL TRIALS

clinicians’ assessments of a patient’s status during a clinical trial based
on the review of the patient’s in-clinic assessments and out-of-clinic daily
activity.

We present an FSHD tool that estimates the FSHD Clinical Score and TuG
using smartphone and remote sensor data. The conclusions drawn from
this study are preliminary in view of the relatively small sample size and
cross-sectional study nature. Given the short observation period, we did
not expect changes in the patients’ FSHD scores. As a result, we could not
validate the use of the model to estimate changes in the FSHD severity
overtime. Atrial where the FsHD clinical scoreis expected to change could
help validate the FSHD tool’s capacity to detect changes in FSHD symptom
severity. Additionally, the FSHD tool could be improved by including more
patients with FSHD and adding other remote sensors. Allin all, the remote
monitoring approach presented here could be a promising tool for moni-
toring FSHD severity outside the clinicenvironment.

Conclusions

We presented a smartphone-based and remote sensor-based FsHD tool
that can estimate a patient’s FSHD symptom severity. This is the first study
to demonstrate how to monitor patients with FSHD remotely and subse-
quently model their FsHD Clinical Score and TuG simultaneously. The tool
holds potential for monitoring disease progression and drug intervention
effects outside the clinic, pending a longitudinal follow-up study to vali-
date the capacity of the FsHD tool to detect changesin the disease severity
score overtime due to disease progression or drugintervention.
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TABLE1 Anoverview of characteristics of the FSHD participants (N=38).

Demographics Values
GENDER, N
Female 23
Male 15
RACE, N
African American
Mixed 1
White 37

Age (years), mean (sb) (minimum, maximum)

14.5) (18, 64)

Weight (kg), median (sp) (minimum, maximum)

a4 (
79 (16) (52, 130)
25

BMI (kg/m2), median (Sp) (minimum, maximum) 4) (20, 44)
FSHD Clinical Score, median (sb) (minimum, maximum) 5(3)(1,13)
Timed Up and Go test (seconds), median (Sp) (minimum, maximum) 7.7(2.4) (5.5, 15.8)

TABLE 2 Asimplified summation of how the features were aggregated based on the data type.

Data Type Time Unit Example Aggregation Example Aggregation
Feature Format
COUNT Per day Steps Sum Total Steps
Per hour Mean Max Steps Per Hour

Max Mean Steps Per Hour

CONTINUOUS Perday Heart Rate Min (5%) Lowest 5% Heart Rate

DATA WITHIN Median Median Heart Rate

A RANGE (50%) Maximum 95% Hr
Max (95%)

DURATION Per day App Usage Total Dura-  Total Duration of Social Apps Opened
tion Mean Duration of Social App Use Per Interaction
Mean Dura-
tion

GPS Per day Location Sum Total Distance Travelled

COORDINATES Max Mean And Max Distance From Home
Mean
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TABLE 3 Anoverview of thefeatures provided from the MmoRE platform and the features that were

subsequently aggregated per day (with the exception of the body measurements as that was measured

once aweek).
Category MORE Features Derived Features (Per day) Excluded Fea-
tures
DEMO- Age Age
GRAPHICS  Gender Gender
ACCELERA-  Acceleration magnitude 98% Acceleration magnitude Mean
TION Gyroscope Acceleration
Magnetometer Magnitude
ACTIVITY Steps STEPS: Total steps, max steps per hour, mean steps Calories
Heart Rate per hour HEART RATE: 5%, 50% & 95% beats per Distance
Physical activity minute (BPMs), standard deviation of BPMs, % time Travelled
duration spent in resting state PHYSICAL ACTIVITY: soft, Distance Per
Calories moderate and intense activity duration Step
APPS APP CATEGORIES: Duration House & Home
Health & Fitness, Times Open Libraries &
Recreational, Demo
Communication & Reading
Social, Tools, Shopping Travel
BODY Diastolic Blood Pres- Diastolic blood pressure Height (M)
sure Systolic blood pressure Fat mass (kg)
Systolic Blood Pressure Heart pulse (bpm) Fat ratio (%)
Heart Pulse (Bpm) Weight Hydration
Weight Muscle Mass
LOCATION  LOCATION CATEGORIES: Total duration at place
Commercial, Health, Total distance travelled
Home, Leisure, Public, Total no of unique places visited
Social, Travel Max distance from home
Time spent commuting
SOCIAL Calls Number of calls Text messages
Voice Number of unique numbers (sms)
Number of incoming, outgoing and missing calls
Number of calls from known & unknown numbers
Total duration of calls
Average duration of calls
% Time human voice is detected
SLEEP Number of sleep sessions

Total sleep duration

Number of sleep phases (awake, light sleep and
deep sleep)

Duration of sleep phases (awake, light and deep
sleep)

Time between sleep sessions

Time to fall asleep
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FIGURE 1 Linearregression coefficients forthe features selected by the single-task FsHD Clinical Score
and TuG models. Features with a coefficient of zero are not shown.
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FSHD: facioscapulohumeral muscular dystrophy; TUG: Timed Up and Go.
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FIGURE 2 TruefrsHD Clinical Scores and TuG times against the predicted scores using the respective
FSHD Clinical Score and TuG regression models. The lines represent a regression line with a 95% Cl band.
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FSHD: facioscapulohumeral muscular dystrophy; TUG: Timed Up and Go.
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FIGURE 3 SHAP (SHAPley Additive exPlanations) variable importance plot showing the feature
importance of the top 20 most important features, in which the features are ranked in descending order.
Each scatter point represents one prediction. The color of the scatter point reflects the value of the real
data. Ifthe actual value of the data point was high, then the color was red. Ifthe value was low, then

the colorwasblue. The sHAP value, asillustrated on the x-axis, shows the direction and magnitude of
each feature’s contribution toward predicting the facioscapulohumeral muscular dystrophy symptom

severity.

Mean steps per minute

Light sleep duration

Soft activity duration

Age

Total steps

Mo, of unique calls

Mo. of awake periods

Heart rate (standard deviation)
Mo, of times all apps opened
Social apps times opened

Mo. of incoming calls

Health location duration

Heart rate (1op 95 percentile)
Home location duration

Mo of calls

Health & fitness app times opened
Mo. of deep sleep periods

Mo, of outgoing calls

Max steps per hour

Time to sleep duration
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FIGURE 4 Scatterplot ofthe estimated FsHD Clinical Scoresand TuG timesin relation to the actual FIGURE 5 FEvaluatingthe performance of the single-task FsHD Clinical Score, TuG, and the multitask
FSHD Clinical Scores and TuG using the multi-task learning regression model. The lines represent the FSHD Clinical Score and TuG regression models trained on anincrementally increasing time window. The
regression lines with a 95% Cl band. colored lines represent the 3 types of regression models trained on the data (Elastic Net, Random Forest
Regressor, and Gradient Boosting Regressor). For each model and each incremental time window, the
top and bottom plots show the R2 and RMSE, respectively. The lines represent the median performance,
andthe bands represent the 95%Cl.
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FIGURE 6 [valuatingthe performance ofthe single-task FsHp Clinical Score, TuG, and the multitask
FsHD Clinical Score and TuG regression models trained on the first week of data to estimate symptom
severity for the subsequent weeks. The colored lines represent the 3 types of regression models trained
on the data (Elastic Net, Random Forest Regressor, and Gradient Boosting Regressor). For each model
and each week, the top and bottom plots show the R2 and RMSE respectively. The lines represent the
median performance, and the bands represent the 95% Cl.
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FSHD: facioscapulohumeral muscular dystrophy; RMSE: root mean square error; TUG: Timed Up and Go.
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Abstract

Drug development for mood disorders can greatly benefit from the devel-
opment of robust, reliable, and objective biomarkers. The incorporation
of smartphones and wearable devices in clinical trials provides a unique
opportunity to monitor behavior in a non-invasive manner. The objec-
tive of this study is to identify the correlations between remotely moni-
tored self-reported assessments and objectively measured activities with
depression severity assessments often applied in clinical trials. 30 unipo-
lar depressed patients and 29 age- and gender-matched healthy controls
were enrolled in this study. Each participant’s daily physiological, physi-
cal, and social activity were monitored using a smartphone-based appli-
cation (CHDR MORE) for 3 weeks continuously. Self-reported Depression
Anxiety Stress Scale-21 (DASS-21) and Positive and Negative Affect Sched-
ule (PANAS) were administered via smartphone weekly and daily respec-
tively. The Structured Interview Guide for the Hamilton Depression Scale
and Inventory of Depressive Symptomatology-Clinical Rated (SIGHD-
IDSC) was administered in-clinic weekly. Nested cross-validated linear
mixed-effects models were used to identify the correlation between the
CHDR MORE features with the weekly in-clinic SIGHD-IDSC scores. The
SIGHD-IDSC regression model demonstrated an explained variance (R2) of
0.80, and a Root Mean Square Error (RMSE) of £15 points. The SIGHD-IDSC
total scores were positively correlated with the DAss and mean steps-per-
minute, and negatively correlated with the travel duration. Unobtrusive,
remotely monitored behavior and self-reported outcomes are correlated
with depression severity. While these features cannot replace the siGHD-
IDsc for estimating depression severity, it can serve as a complementary
approach for assessing depression and drug effects outside the clinic.
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Introduction

An ideal biomarker would serve as a dynamic indicator of disease activity.
The biomarker should be capable of predicting changes in disease pro-
gression over time, regardless of the treatment intervention.* By lever-
aging advanced machine learning algorithms, researchers can integrate
multiple objective biomarkers into composite biomarkers, enabling a
more comprehensive and multifaceted understanding of disease activ-
ity and the impact of treatment interventions. Drug development for the
treatment of depression is expected to benefit greatly from robust bio-
markers that reflect the etiology, phenomenology, and treatment man-
agement of the disorder. Depression is not only associated with subjec-
tive symptoms such as sadness, despair, and anhedonia, but also with
negative behavioral and neurovegetative effects such as decreased psy-
chomotor activity and changes in appetite and sleep. A combination of
objective physiological indicators and frequent subjective assessments
can potentially be used as features to create a composite biomarker to
estimate the presence or severity of depression, or even to quantify the
effects of therapeuticinterventions with drugs and/or psychotherapy.

The current gold standards for assessing depression severity and treat-
ment effects, such as the Hamilton Depression Rating Scale (HAMD) and
the Montgomery & Asberg Depression Rating Scales (MADRS), are clini-
cian-administered questionnaires.®* As these questionnaires require an
interview with a clinician, they are applied infrequently, and thus real-time
behavioral assessments of depressed individuals cannot be obtained.> Fur-
ther, retrospective self-reported appraisals can be compromised by recall
bias and altered by socially desired reporting from patients.®’ By relying
on the current gold standards for the assessment of depression severity,
researchers routinely miss out on real-time and real-world behavioral pat-
terns associated with depression, which may potentially attenuate treat-
ment effects. To address such limitations, there is a demand for developing
and validating methodologically sound biomarkers to quantify depression
severity in real-time under free-living conditions.
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Mobile health (MHEALTH) biomarkers are biomarkers derived from mobile
health technologies, such as smartphones, wearables, and other porta-
ble devices that can be worn outside a controlled setting.® Emerging lit-
erature on depression and MHEALTH biomarkers supports the notion that
smartphones and wearable devices can overcome the limitations of tra-
ditional depression rating scales. The sensors embedded in these devices
(e.g., accelerometers, Global Positioning Systems (GPs), and micro-
phones) provide real-time, unobtrusive, passively collected data relat-
ing to behavioral patterns exhibited under free-living conditions.?"*? In
turn, these data can offer insights into an individual’s sleep rhythms,*
social interactions,'® and daily physical activities,'® all of which can be
useful for quantifying depression severity. While the existing body of evi-
dence demonstrates that these digital MHEALTH biomarkers can be used
to identify the presence of depressive symptoms or the estimation of daily
mood, however, there are still three major critical gaps that remain to be
understood. First, several studies in this field have relied on self-reported
psychometric assessments, such as the Depression Anxiety and Stress
Scale (DAss), the Positive and Negative Affect Schedule (PANAS), and
Quick Inventory of Depressive Symptomatology (QIDSs), for document-
ing depression severity.'”'® To date, we have only identified two studies
that correlated digital MHEALTH biomarkers sourced from smartphone
and wearable data with clinician’s assessment of depression among uni-
polar depressed patients.'®2° Therefore, more evidence is required for
corroborating the clinical validity of these remotely monitored biomark-
ers in depression clinical trials. Next, these studies rarely include age- or
sex-matched non-depressed controls. Healthy controls can also present
behaviors and symptoms observed among depressed patients.?’ Observ-
ing behaviors exhibited by both depressed and non-depressed controls
enables the identification of behaviors specific to depressed patients.
This allows for the discovery of new candidate drugs that target the core
symptoms of unipolar depression. Lastly, determination of the optimal
monitoring period and data resolution needed for developing depres-
sion biomarkers has been overlooked in previous studies. Depression is
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a highly variable and heterogenous disorder;? thus, an effective depres-
sion biomarker should consistently correspond with the heterogenous
changes in depression over time. While the advances of remote sensing
can provide researchers with fine-grain longitudinal datasets, it can be
operationally and financially burdensome for patients and researchers to
collect, store, and process such expansive and information-dense datas-
ets. Therefore, evaluating how much data is required to identify the ear-
liest, reliable, and minimally observable changes in the patients’ clinical
status is crucial. This evaluation is necessary to minimize the impact of
data collection on both the patients and researchers.

The current study consisted of two research objectives. First, we inves-
tigated the correlation of clinical ratings of depression, among unipo-
lar depressed patients and healthy controls, with remotely self-reported
psychometric assessments and smartphone- and wearable-based fea-
tures. Here, we defined features as individual measurable variables, such
as average heart rate or total steps. Second, we examined how many data
points are required to develop a reliable statistical model that can con-
sistently estimate the longitudinal variability of depression. The primary
objective allows for the identification of reliable and clinically relevant
depression biomarkers that can be monitored continuously in real-world
conditions. The secondary objective focuses on the validation of a mini-
mum dataset required to maintain the accuracy, sensitivity, and spec-
ificity of the biomarkers. To achieve these objectives, we adopted linear
mixed effects models to estimate the weekly Structured Interview Guide
for the Hamilton Depression Scale and Inventory of Depressive Symptom-
atology (s1GHD-1DsC) clinician ratings using one, two, and three weeks of
remotely collected data. Together, such correlated features can poten-
tially represent a composite digital MHEALTH biomarker for monitoring
depression severity in longitudinal clinical trials.
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Methods

STUDY OVERVIEW

This was a cross-sectional, non-interventional pilot study conducted by
Centre for Human Drug Research (CHDR) and Transparant Centre for Men-
tal Health in Leiden, The Netherlands. The participants were monitored
between March 2019 to March 2020. Prior to any assessments, patients pro-
vided written informed consent. The trial was approved by the Stichting
Beoordeling Ethiek Biomedisch Onderzoek ethics committee, Assen, the
Netherlands, and was conducted in accordance with the Declaration of
Helsinki at the Centre for Human Drug Research, Leiden, the Netherlands.

PARTICIPANTS

Eligible patients and healthy controls were between the ages of 18-65
years old and had a Body Mass Index (BMI) between 18 to 30 kg/m.>
Patients and healthy controls with severe coexisting illnesses that might
interfere with study adherence or pregnant were excluded. Patients and
healthy controls were required to use their own Android smartphone (ver-
sion 5.0 or higher) as the cCHDR MORE app was only available on Android
App Store. Due to the Apple operating systems restrictions, the iPhone
user device logs could not be accessed by the app.

Eligible patients had either a diagnosis of Major Depressive Disor-
der (MpD) without psychotic features or Persistent Depressive Disorder
(pDD) according to the psm-1v (Diagnostic and Statistical Manual of Men-
tal Disorders) or bsM-v. The diagnosis was provided by an attending gen-
eral practitioner, psychologist, or psychiatrist and was confirmed with
the Mini International Neuropsychiatric Interview (MINI) version 7.0. To
be included in the study, each patient must have had a Structured Inter-
view Version of Montgomery-Asberg Depression Rating Scale (MADRS-
SIGMA) score of more than 22 at screening. Further, the patients either
received no antidepressant drug treatment at least 2 weeks prior to
screening, or they were receiving an antidepressant drug treatment with a
stable dose for at least 4 weeks prior to screening. Patients were excluded
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if they presented specific psychiatric co-morbidities (psychotic disorder,
bipolar disorder, mental retardation, or cluster B personality disorders),
presented a Columbia-Suicide Severity Rating Scale (c-SSRs) greater than
5, alterations of antidepressant drug (including dose) during the trial
period or use of sedative medications within 2 weeks of the beginning of
the clinical trial. This was confirmed by their general practitioner, psychol-
ogist, or psychiatrist.

Eligible healthy controls were included if they had no previous or cur-
rent history (or family history) of psychiatric disorder or chronic co-mor-
bidities. Healthy controls were age and sex-matched with the mpp and
PDD patients.

Participants received monetary compensation for their time and effort.
The reimbursement was determined by a schedule approved by the Eth-
ics Committee and was based on the amount of time the participants had
to spend participating in the study. This compensation was not linked to
the quantity or quality of the data obtained.

CHDR MORE AND WITHINGS DEVICES

On Day o of the trial, the cHDR MORE,**** Withings Healthmate,*® and
CHDR Promasys EPRO smartphone applications were installed on the par-
ticipant’s Android smartphones. The participants were also provided
with a Withings Steel HR smartwatch. Training sessions were provided for
the Withings devices and the Promasys EPRO application. All participants
were monitored for 21 days continuously.

The cHDR MORE app enables the unobtrusive collection of data from
multiple smartphone sensors (the accelerometer, gyroscope, Global
Positioning System, and microphone) and the smartphone usage logs
(app usage and calls). The Withings Healthmate app collects data from
the Withings devices provided to the participants. The Steel HR smart-
watch monitors the participants heart rate, sleep states, and step activity.
The EPRO app prompted participants to fill in the Positive and Negative
Affect Schedule (PANAS) twice daily and Depression, Anxiety and Stress
Scale-21 (DASS-21) weekly. PANAS is a validated self-reported, brief and
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easy to administer, 20-item questionnaire that assess positive and nega-
tive affect.?® DAss-21is a validated self-reported, 21-item measure of three
negative emotional states: Depression, Anxiety and Stress.?”?® More infor-
mation about the apps and their respective sensors and features can be
foundin Supplementary Table1.

CLINICAL ASSESSMENTS

The Structured Interview Guide for the Hamilton Depression Scale and
Inventory of Depressive Symptomatology (SIGHD-IDSC) assessments
were conducted weekly (Day 7, 14, and 21) for all participants in-person
at CHDR by trained raters. The SIGHD-IDSC is a single and multi-faceted,
and therefore efficient, assessment of depression. The SIGHD-IDSC inter-
view is a combination of the 17-item Hamilton Depression Rating Scale
(s1GH-D) and the 30-item Inventory of Depressive Symptomatology-Clini-
cian Rated (1Ds-¢).2%*° The sIGH-D assesses single symptoms on a contin-
uous scale. It is a multidimensional scale that assesses a profile of factors
relating to agitation, anxiety (psychic and somatic), guilt, libido, suicide,
work, and interest.>’ However, the 17-item scale is still limited in terms
of scope. Some symptoms which are often associated with depressed
behaviors (such as hypersomnia, weight gain, and reactivity of mood)
are not rated.*> The 1Ds-c provides additional ratings relating to anxiety,
anhedonia, mood, cognitive changes, and vegetative symptoms (relat-
ing to sleep, appetite, weight, and psychomotor changes).>*> Hence, we
included the IDs-C as a complementary assessment to provide a broader
assessment of depressive symptomatology. IDS-C has been shown to
have a higher sensitivity to detect changes in depression severity, there-
fore deeming it more advantageous for monitoring changes in symptom
severity, especially for depression-related drug trials.**

SIGHD-IDSC DIMENSIONS For this study, we investigated the corre-
lation between the remotely monitored features with the total depres-
sion severity scores (SIGHD-IDSC) and the scores of individual symptom
dimensions. Multiple approaches can be taken to transform the raw data,
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collected from smartphones and wearable devices, into clinically relevant
features. As illustrated by Mohr et. al, raw sensor data can be converted
in low-level features and high-level behavioral markers.?* These features
and behavioral markers can be used to identify a clinical state or disorder.
Low-level features represent descriptive activities, such as time spent at
home and total calls per day. High-level behavioral markers can reflect
cognition (e.g., distractibility), behaviors (e.g., social avoidance), and
emotions (e.g., depressed mood), which can be measured or estimated
by the low-level features. For this study, we developed low-level features
(e.g., total number of steps per day) that we correlated directly with the
clinical state (i.e., depression severity) and to create high-level behavioral
markers (e.g., mood) that could be correlated with the clinical state (as
described in Supplementary Table 2).

In Table 1, we defined the high-level behavioral markers as SIGH-IDSC
symptom dimensions. The categorizations were manually grouped based
on their conceptual similarities. In total, the authors created 15 dimen-
sions relating to Agitation, Anxiety (Psychic), Anxiety (Somatic), Guilt,
Hypochondria, Interpersonal relationships, Mood, Retardation, Sex,
Sleep, Somatic (General), Somatic (Gastrointestinal), Suicidal Ideation,
Weight, and Work. In addition, the authors defined global dimensions as
the total scores of SIGH-D, IDS-C, and SIGHD-IDSC (the SIGH-D and IDS-C
combined) individually.

DATA PRE-PROCESSING All data were inspected and preprocessed
using Python (version 3.6.0) and the Pyspark (version 3.0.1) library. Raw
data were inspected for missing data, outliers, and normality by the
authors AZ and RJD. Missing data were defined as the absence of data for
periodic features on a given day or given week (e.g., weight, blood pres-
sure, and the DAsS). No missing data definition was provided for the ape-
riodic activities (e.g., phone calls) as there was no method to distinguish
between missing data or no activity. As we used weekly aggregates for the
modelling (for more information see p. 154: Feature engineering), miss-
ingvalues were notimputed. The advantage is that when missing data are
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limited to a small number of observations, we can still achieve a compre-
hensive analysis with incomplete data without adjustment. The disadvan-
tage is that if participants were missing several days of data within one
week, then the weekly aggregate would be biased towards days contain-
ing data. Outliers were removed if they were deemed illogical and impos-
sible (such as walking more than 70,000 steps per day). Log- or square
root-transformation was applied if the distribution of the feature was not
normally distributed.

FEATURE ENGINEERING

The features were provided by the Withings devices and CHDR MORE app
at different sampling frequencies (varying from each interaction to every
10 minutes). Feature engineering is the process of selecting and trans-
forming features from raw data to extract and identify the most informa-
tive set of features. These engineered features represent a summarized
measure of the collected data. For this study, cumulative parameters,
such as step count, were summated per day per subject. Averaged fea-
tures, such as the heart rate (average beats per minute), which was pro-
vided every 10 minutes, were averaged per day per subject. Supplemen-
tary Table 1illustrates how all the features were aggregated for each data
type. The design of these features was based on available data provided
by the smartphone and wearable devices, and on a previous published
study that had a similar protocol.**

SIGHD-IDSC scores represent the depression severity over the last
week. To create a dataset that is representative of activity over the last
week, we transformed the daily activities into weekly averages. Hence,
each patient and control had three data points, each point representing
an average day in a single week. We have defined a ‘week’ as 6 days prior
tothe siGHD-IDSC assessment and the day of the SIGHD-IDSC assessment.

FEATURE SELECTION

Feature selection is the process of identifying relevant features that can
be used for model construction. The elimination of irrelevant features

DEVELOPMENT OF MACHINE LEARNING - DERIVED MHEALTH COMPOSITE BIOMARKERS FOR TRIAL@HOME CLINICAL TRIALS

would increase the interpretability of the final statistical models.*® Typ-
ically, domain knowledge plays a pivotal role in selecting the most rele-
vant features. However, domain knowledge may not be sufficient when
dealing with a multi-dimensional dataset. Hence, automatic feature selec-
tion techniques can be used to remove features that are highly correlated,
exhibit low variance, or provide a limited amount of information about the
dependent variable.**® Prior to the feature selection, 61 features were
provided by the cHDR MORE and EPRO platform (as seenin Supplementary
Table 2). The number of features was reduced in atwo-step approach. First,
we used domain knowledge to eliminate features. We visually inspected
features to remove features which exhibited a high degree of missing data
(e.g., if the majority of subjects had missing values or had no data) or had
limited clinical relevance (e.g., time spent on the ‘comics’ apps category
was deemed irrelevant). Second, we used and compared three automated
feature selection techniques: Correlation-based Feature Selection,* Vari-
ance Thresholding,* and Variance Thresholding in combination with Vari-
ance Inflation Factor (VIF).*" Each feature selection technique was used to
select a subset of relevant features (based on the weekly aggregated fea-
tures) and these features were subsequently fitted to the regression mod-
els (see section Statistical Analysis).

Statistical analysis

ESTIMATION OF SIGHD-IDSC R (version 3.6.2) was used for statistical
analysis. While the Pearson’s correlations are typically employed to esti-
mate the correlation coefficient between two outcome variables, corre-
lation coefficients in longitudinal settings (with possible missing values)
cannot be obtained with this approach. Hence, we used Linear Mixed-
Effects models (LMM) to account for the between- and within-subject vari-
ation overtime.

We compared the LMM from the Ime4 R package**** and the generalized
linear mixed models with Li-penalization from the glmmLAsso rR pack-
age.** The glmmLAsso models allow for further feature selection by reduc-
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ing the weight of irrelevant features to zero.** As seen in Equation 1, each of
the employed LMMs included a subject-specific random effect to account
for the intra-subject correlations between the dependent and indepen-
dent variables. All other variables were included as fixed effects. No inter-
action terms were included in the model as we already had more unique
features than unique participants, adding more interaction terms would
only increase the complexity of the model, as observations within partic-
ipants may be autocorrelated. To assess if model assumptions were met,
each model was visually inspected using quantile-quantile (Q-Q) plots.*®

EQUATION 1 Depression severity linear mixed effects model. Y is the vector that represents
the weekly depression scores. X is the fixed effects design matrix, which includes columns for
the intercept and the features. Z is the random effects design matrix, which includes columns
for the subject-specific random effects. B and b represent the vectors for the fixed effects
and subject-specific random effects coefficients respectively. € represents the vector of the
Independentand Identically Distributed (1.1.D.) error terms.

Y=XB+Zb+e

While a LMM of the SIGHD-1DSC total score would provide a broad assess-
ment of depression severity, LMMs of the SIGHD-IDSC dimension scores
would provide insights into an individual’s depression symptom pro-
file. In total, we developed 18 LMMs, one for each of the global dimen-
sion scores, SIGH-IDSC total score, SIGH-D total score, IDs-C total score,
and one for each of the sIGH-IDSC symptom dimensions scores (as seen
in Table 1). We did not develop a LMM for the insight dimension as there
was no variation in this assessment during the study period and only one
participant had a score of one (the remaining participants had a score of
Zero).

All LMMs were validated using a repeated nested stratified shuffle split
100 outer-fold (and 50 inner-fold) cross-validation. Cross-validation is a
resampling method to assess the generalizability of a statistical model.*’
Nested cross-validation consists of having two non-overlapping cross-val-
idation layers. The inner cross-validation loop optimizes the model con-
figuration, and the outer cross-validation loop assesses the performance
of the model generated in the inner loop.*® In each outer loop, 80% of the
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data was used for model training, while the remaining 20% was used for
modelvalidation. For each loop, all features were standardized (by scaling
to the unit variance after subtracting the mean), using the training data
only. The 80% training data in the outer loop was used for the train and
test split in the inner loop. By using stratification, each dataset split had
the same distribution of patients and controls in each fold. This approach
mitigates the risk of biased model evaluation due to class imbalance. The
limitation of nested cross-validation is that the validation procedure gen-
erates a model for each outer-fold. For this study, we reported the average
R2 and RMSE (Root Mean Square Error) of the 100 outer-fold models. The
R2 represents the percentage of variance that is explained by the remotely
monitored features. The RMSE represents the standard deviation of the
error between the true depression severity scores from the predicted
depression severity scores.

Training LMMs with 1,2, and 3 weeks of data

For the secondary objective, we examine the impact of the number of
data points used to train the model would affect the model performance.
To do so, we trained the regression models on the first week, the first two
weeks, and three weeks of data. Here, we assume that an individual’s
week-to-week behavior is habitual and therefore one week of data would
constitute a minimally sufficient dataset for model building. We adopted
a weekly aggregation approach for each model, where the data were
aggregated on a weekly basis. Specifically, for the week 1 model, we had
one aggregated weekly observation per subject. As for the week 2 mod-
els, we expanded the observations to two aggregated weekly data points
per subject. For the training of the LMMs, the dependent variable was the
SIGHD-IDSC scores for each week. For the evaluation of the model for the
hold-out dataset, the dependent variable was the siGHD-1DSC for the
third week of data (as shown in the Supplementary Figure 1). As shown in
the Supplementary Figure 1, we validated the performance of the models
using a hold-out validation dataset consisting of the third week of data.
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To ensure that there was no data leakage between the training and vali-
dation datasets, we used 70% of the participants for the training dataset,
and the remaining 30% for the validation dataset. The dataset was strati-
fied based on the depression symptom severity to ensure that the popu-
lation distribution was the same in each training and validation datasets.
To assess the generalizability of the regression models, we applied 100
outer-fold (50 inner-fold) nested cross validation, with each of the inner-
folds creating the optimal regression models based on the training datas-
etsand outer-folds consisting of the third week validation dataset.

Discussion

PARTICIPANT CHARACTERISTICS 30 patients and 29 healthy con-
trols were enrolled in the study. Data was collected between March
2019 to March 2020. Supplementary Table 3 provides an overview of the
demographic characteristics of the enrolled patients and healthy con-
trols. In total, 177 sIGHD-IDSC total scores were collected (3 weeks for
all 30 patients and 29 healthy controls). The last healthy control was not
included due to the covip-19 lockdown.*® The patients had a mean MADRS
total score of 29 (and standard deviation of + 3.5), and MADRS was not col-
lected for the healthy controls as it was only used to screen the unipolar
depressed patients. The patients had a mean sIGH-D total score of 14.5 (+
4.5) and amean IDS-C total score of 30.5 (+ 8.5). The healthy volunteers had
a mean SIGH-D total score and IDs-C total score of 1 (+ 2) and 1(x 3) respec-
tively. Figure 1illustrates the distribution of the SIGHD-1DS, SIGH-D, IDS-C,
and sIGHD-IDSC symptom dimensions total scores for both the patients
and healthy controls.

DATA QUALITY To assess the quality of our data, we examined the num-
ber of days, features, and participants with missing data. In Supplemen-
tary Table 4, we found that most of the missing data were from the sleep
and location features, however the percentage of missing days were less
than 5% of the days and related to 12% of the participants. In the case of
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the DASS, our expectation was to receive 4 responses per person, total-
ing 236 responses. However, we received only 196 responses, resulting
in an 83% completion rate. Similarly, for the PANAS, we anticipated 42
responses per person, amounting to a total of 2478 responses. However,
we obtained 1585 responses, indicating a completion rate of 66%. We
found that 64% of the 61 features had no outliers, 29% of the features (con-
cerning 15% of the participants) had one outlier, and the remaining 5% of
the features (concerning 5% of the participants) had two outliers.

PERFORMANCE OF LMMS Among the different feature selection meth-
ods and LMMs used, the Variance Thresholding in combination with the
LMM consistently yielded the highest R2 and lowest RMSE across all the
dependent variables. Hence, we only reported the results of these Vari-
ance Thresholding LMM depression severity models. When including both
the healthy controls and the patients, the SIGH-D, IDS-C, and SIGHD-IDSC
LMMs achieved an rR2 of 0.80, 0.80, and 0.73 and a scaled RMSE of 5.3, 9.9,
and 15.1 respectively. Table 2 provides an overview of the performance of
the 18 SIGHD-IDSC dimension LMMs. The LMMs with the highest R2 were the
SIGHD-IDSC dimensions related to mood (0.72) and work (0.65). While the
LMMs with the lowest R2 were the SIGHD-IDSC dimensions related to retar-
dation (0.40) and hypochondria (0.40). Supplementary Table 1 highlights
the advantages of including healthy controls in the LMMs. When examin-
ing the predictive performances separately for patients and healthy con-
trols, it is observed that the R2 and RMSE are lower compared to when
they are combined. However, it is important to note that the overall pre-
dictive performance may still be valuable in both cases.

CORRELATIONS Foreachofthe LMMs, weidentified the correlation coef-
ficients and their significance between the remotely monitored features
and the depression severity scores. As seen in Figure 2, there was a sig-
nificantly positive correlation between the mean siGH-D total score with
the DAsS-Anxiety and DASs-Stress (p<.05). Both the IDS-C and the SIGHD-
IDSC total scores were significantly positively correlated with the pAss-
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Depression, Anxiety, and Stress total scores and significantly negatively
(p<.05) correlated with the mean steps-per-minute and time spent travel-
ling. We found that the Depression, Anxiety, and Stress total scores (from
the bAss) and location features were significantly correlated with 7 (Agita-
tion, Anxiety (Psychic), Anxiety (Somatic), Guilt, Interpersonal, Mood and
Sex) and 6 (Agitation, Anxiety (Psychic), Guilt, Hypochondriasis, Retarda-
tion, and Sex) of the mean sIGHD-IDSC symptom dimensions respectively.

TRAINING LMMS WITH 1,2, AND 3 WEEKS OF DATA Overall, we found
that training the models on three weeks of data consistently yielded the
highest rR2 and the lowest RMSE for each of the siGHD-IDSC global and
symptom dimensions compared to the models trained on the first week
and first two weeks of data with the exception one dimension, Agitation
(as seen in Figure 3). For the Agitation dimension, the models trained on
the first two weeks of data yielded the highest R2. The difference in rR2
between the first week and the third weeks models was relatively mar-
ginal (a difference of 0.07) for the sIGHD-1DSC global dimension. However,
the difference in the scaled RMSE between the two models was notable,
with a difference of 0.13.

Discussion

In this pilot study, we provided a comprehensive assessment of the rela-
tionship between depression severity and subjective and objective fea-
tures sourced from data collected by smartphone and wearable devices
under free-living conditions. Our results illustrate that features related
to self-reported depression, anxiety scores, stress scores, physical activ-
ity, and not social activities, were significantly correlated with depression
severity. These features can collectively serve as a composite biomarker
to estimate the gold standard in-clinic assessment, the SIGHD-IDSC.

DATA QUALITY The missing and outlier data only impacted a minority
of the participant’s data and did not lead to the exclusion of any weekly
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aggregated features used in the analysis (Supplementary Table 4). Given
the low number of missing data and outliers, we did not observe any dif-
ferences in data quality between the depressed patients and controls.
While we could not identify any similar trials to compare data quality, we
deem that our protocol led to the collection of a robust and reliable data-
set. However, the aggregation of the data undermines the opportunity
to identify potentially nuanced daily behaviors and higher order interac-
tions between multiple features. For example, social and physical activ-
ity behavior most likely differs per location and between weekdays and
weekends, but these daily interaction features are not reflected in the cur-
rent dataset. The identification of higher order behavioral patterns or rou-
tines per location and per day could enrich the sensitivity of the compos-
ite biomarkers.

ESTIMATION OF THE SIGHD-IDSC Our findings indicate that a combi-
nation of remotely monitored self-reported and objective features can
serve as a composite biomarker to estimate weekly depression severity.
We found our approach was better suited for evaluating the global dimen-
sions (SIGH-D, IDS-C, and SIGH-IDSC total scores), rather than the manually
defined sIGHD-IDSC symptom dimensions, such as mood, weight, or sex
(Table 2). The symptom dimension models were a moderate to strong rep-
resentation of work, somatic (general), interpersonal, anxiety (psychic)
and mood dimensions and a poor representation of the hypochondria
and retardation dimensions. This illustrates that the features obtained
correspond to some but not all the SIGHD-1DSC dimensions. One explana-
tion for the limited agreement between the remotely monitored biomark-
ers and the sIGHD-IDSC dimensions is the comparison of objective mea-
sures with subjective assessments. For example, we compared objective
sleep measurements (such as sleep duration, and the number of light
and deep sleep periods) to the subjective interpretations of sleep qual-
ity by the patient or the clinician as reflected in the siIGHD-IDSC. Despite
having several objective measures relating to sleep, we found that the
sleep model captured less than half of the variance. Previous studies have
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illustrated that objective sleep assessments are not strongly correlated
with subjective reports of sleep.>®*! Discrepancies between the objective
and subjective measures of sleep could be influenced by several factors,
such as mood at the time of awakening,’ insomnia, negative bias, and
impaired memory.>® These findings highlight that those subjective expe-
riences are not always represented by objective measures. Hence, in the
context of clinical trials for depression, the identified relevant features are
better suited for monitoring overall depression severity rather than moni-
toring specific depression symptoms.

INCLUSION OF HEALTHY CONTROLS Theinclusion of health controlsin
the models provides several benefits. Firstly, by incorporating more par-
ticipants, the number of observations available for analysis increases.
This larger sample size enhances the statistical power of the LMMs, which
leads to more reliable and robust predictions. Additionally, the inclusion
of healthy controls introduces a broader range of depression severity
scores, spanning from zero to minimal symptomes. In addition to enhanc-
ing the model’s ability to capture the full spectrum of depression severity
and improving its generalizability, the wider range of scores also allows
for the inclusion of potential remission in depressed patients. As their
scores move towards zero, the model can accurately capture the possibil-
ity of their condition improving and reaching a state of remission.

CORRELATION WITH THE SIGHD-IDSC DIMENSIONS Both the
self-reported DASs and daily travel routines were consistently signifi-
cantly correlated with the sIGH-D, IDS-C and SIGHD-IDSC global dimen-
sion total scores (Figure 2). More specifically, we found that depression,
anxiety, and stress total scores were positively correlated with over-
all depression severity. In addition, participants with higher depression
scores were more likely to walk faster, however, spent less time travelling.
Our findings are supported by previous studies that found correlations
between both smartphone-based self-reported assessments and loca-
tion-based behaviors '®>*%* with in-clinic depression rating scales.'®*¢°7
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Notwithstanding, we have not identified any research that supports the
notion that unipolar depressed patients have increased walking speeds,
rather, the current literature suggests that depressed patients exhibit
more motor disturbances and thus reduced walking speeds.*® However,
these inferences were based on instrumented gait assessments per-
formed in controlled settings, and not based on real-world evidence.
This implies that inferences regarding gait or other motor disturbances
assessed in the clinic may not always correspond with behaviors outside
the clinic. Together, our findings highlight the importance of collecting
both self-reported subjective and objective behavioral features, such as
DASS, gait and travel patterns, in depression drug trials as they represent
amore holistic biomarker of depression. Further, behaviors characteristic
to depression that were identified within a clinical setting may not corre-
spond to behaviors exhibited outside a clinical setting.

NUMBER OF WEEKS OF DATA FOR TRAINING Our findings indicate
that the models overall performed better when trained on three weeks
of data, rather than one or two weeks (Figure 3). However, for the SIGHD-
IDSc global dimensions, the difference in the variance explained between
the first week and three weeks of data was marginal. While the inclusion
of three weeks of data notably reduced the prediction error. Depend-
ing on the mechanism of action of any given antidepressant drug, thera-
peutic effects may only become evident after several weeks of treatment
with, for example SSRIs, or may rapidly occur and then dissipate over a
week or two as with the NMDAR antagonist ketamine.®®%° It is therefore
crucial to determine how long and how often patients need to be moni-
tored to extract reliable and meaningful inferences from the data follow-
ing an intervention. Collecting excessive data can be time-consuming
and resource-demanding, however having insufficient data can under-
mine the accuracy of the extrapolations. Although the present study
was of non-interventional nature, this suggests that a minimum of three
weeks of data are required to create a representative dataset that would
build an accurate model that represents depression severity in future
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interventional trials. However, the trade-off between the number of
weeks used for training and the model performance was marginal.

LIMITATIONS There are several limitations to our approach. Due to the
small sample size, relatively short observation period, and the number of
technical devices used (Android smartphone and Withings wearables),
there is a limited understanding of what degree our findings are general-
izable to other cohorts, technical devices, and clinical assessments. A fol-
low-up study is needed to assess how well our findings can translate to
other depressed patients whose data are collected in a different time
period using different devices (such as an iPhone and Apple Watch). Fur-
ther, given the limited agreement between the objective measures of
sleep and the sIGHD-IDSC sleep dimension scores, a follow-up study may
choose to incorporate both objective and subjective measures of sleep
such as polysomnography and self-report questionnaires related to sleep
to furtherimprove the reliability of the features.

APPLICATION Based onourfindings, remotely monitored features can-
not substitute the clinical assessment of depression severity. However,
our approach can potentially serve as a complementary tool to assess
clinical symptoms of depression over time in free-living conditions, since
anumber of subjectively reported indicators of depression can be missed
between assessments and/or may be subject to recall bias during inter-
views. Remotely monitored composite biomarkers therefore are strong
candidates for filling-in and complementing the retrospective gaps that
are typical of in-person clinical assessments. Hence our approach is
expected to benefit drug development for mood disorders, since it could
aid the monitoring and assessment of depression severity during clini-
cal trials based on both in-clinic rater-based interviews and out-of-clinic
activities and self-reported outcomes.
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Conclusion

We presented a novel approach to monitoring depression severity among
unipolar depressed patients using data sourced from smartphone and
wearable devices. In this longitudinal non-interventional study, we col-
lected a relatively robust dataset, consisting of a few missing data points
and outliers. We identified the relevant smartphone- and wearables-
based features that collectively create a biomarker that could estimate
the SIGH-D, IDS-C and SIGHD-IDSC global and symptom dimension total
scores. Together, these findings suggest that objective and subjective fea-
tures captured by these remote monitoring devices can collectively serve
as a composite biomarker to estimate depression severity under free-liv-
ing conditions.
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TABLE1 Overviewof the SIGHD IDS-C symptom and global dimensions and theirassociated SIGH-D TABLE 2 PerformanceoftheVariance Thresholdingand LmMm to estimate the total scores of the
and IDs-c questions. SIGH-D, IDS-C, SIGHD-IDSC global dimensions, and each of the SIGHD 1DS-Csymptom dimensions.

SIGHD-IDSC symptom dimensions SIGH-D IDS-C SIGHD-IDSC global and symptom dimensions Marginal R2 Mean Mean RMSE
Agitation 09. Agitation 24. Psychomotor agitation SIGH-D 0.73 (x0.01) 5.30 (+0.17)
Anxiety (Psychic) 10. Anxiety (Psychological) 06. Mood (Irritable) IDS-C 0.80 (+0.01) 9.90 (+0.32)
07. Mood (Anxious) SIGHD-IDSC 0.80 (+0.01) 15.1 (+0.48)

27. Panic/phobic symptoms AGITATION 0.47 (0.01) 0.99 (+0.04)

Anxiety (Somatic) 31. Anxiety (Somatic) 26. Sympathetic arousal ANXIETY (PSYCHIC) 0.63 (£0.01) 1.70 (+0.06)
Guilt 02. Feelings of Guilt ANXIETY (SOMATIC) 0.57 (+0.01) 1.16 (+0.06)
Hypochrondia 15. Hypochondriasis GUILT 0.57 (+0.02) 1.01 (+0.04)
Insight 17. Insight HYPOCHRONDIA 0.40 (+0.02) 0.27 (+0.02)
INTERPERSONAL RELATIONSHIPS 29. Interpersonal sensitivity INTERPERSONAL 0.60 (+0.01) 0.56 (+0.02 )
oL Depeedmond o g (S OSELS) 07202001
09. Mood variation RETARDATION 0.40 (+0.02) 0.61 (10 03 )

10. Quality of mood SEX 0.45 (+0.02) 1.01 (+0.05)

16. Outlook (Self) SLEEP 0.47 (x0.02) 2.34 (£0.07)

17. Outlook (Future) SOMATIC (GENERAL) 0.62 (+0.02) 1.88 (+0.07)

PsychomotoRr retardation 08. Retardation; Psychomotor 23. Psychomotor slowing SOMATIC (GASTROINTESTINAL) 0.43 (+0.02) 0.71 (+0.03)
Sexual function 14. Genital symptoms 22. Sexual interest SUICIDE 0.50 (£0.01) 0.32 (+0.02)
o e e oL sesp ot o 0300 03100
WORK 0.65 (+0.01) 2.02 (+0.07)

06. Insomnia (Late)

03. Early morning insomnia
04. Hypersomnia

Somatic (General)

12. Somatic Symptoms General

20. Energy/Fatigability
25. Somatic complaints
30. Leaden paralysis / physical energy

Somatic (Gastrointestinal)

12. Somatic Symptoms (Gastro-

11. Appetite decreased

intestinal) 12. Appetite increased
28. Gastrointestinal
Suicidal Ideation 03. Suicide 18. Suicidal Ideation

Weight

16. Loss of Weight

13. Weight decreased
14. Weight increased

Activity/reward/hedonic tone

07. Work and Activities

15. Concentration/decision making
19. Involvement
21. Pleasure/enjoyment

Global dimensions

SIGH-D global score: Sum of all
SIGH-D dimension scores

IDS-C: Sum of all Ips-c dimension
scores

SIGH-D IDS-C: Sum of SIGH-D and IDsS-C
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FIGURE 1 A)Distribution ofthe SiGH-D, IDS-C,and SIGHD-IDSC global dimensions total scores for
patientsand healthy controls. (B) Distribution of the total scores of the sIGHD-IDSC symptom dimensions
for patientsand healthy controls. In both figures, red represents the healthy controls while blue

FIGURE 2 Overview of all significantly correlated features (p<0.05) for each of the (A) SIGHD-IDSC
globaland (B) symptom dimensions. The bars represent the correlation coefficients for each of the
significant features. The color of the bars represents each of the siGHD-1DsC globaland symptom

nminiinhnini i nanmammmmmamumuamamauaanaamamanmumannmmnmmmne

represents the patients. The lower and upper box boundaries of the boxplots represent the 25th and 75th
percentile range respectively. The line within the boxplot represents the median score. The black scatter
plots represent the outliers. The width of the violinplot represents the population distribution of each of

dimensions.
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FIGURE 3

bars represent the standard deviation across each of the 100 outer-fold predictions.
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(A) and (B) represent the mean r2 and mean scaled RMSE for each of the siGHD-1DSC global
and symptom dimension Lmms. Each color represents the dataset used for training the models. The error

SUPPLEMENTARY TABLE1 Asummaryof how the features were aggregated based on the data type.

Data Type Time Unit Example Feature  Aggregation For- Example Aggregation
mat
Count Per day Sum Total steps
Mean Max steps per hour
Max Mean steps per hour
Continuousdata  Per day Min (5%) Lowest 5% heart rate
within a range Median (50%) Median heart rate
Max (95%) Maximum 95% heart rate

Duration Per day

Total Duration

Mean Duration

Total duration of social
apps opened

Mean duration of social app
opened perinstance

GPs coordinates  Per day

Sum
Max
Mean

Total distance travelled
Mean and max dis-
tance from home
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SUPPLEMENTARY TABLE 2 Anoverview of the CHDR MORE ™M extracted features.

Category

MORE Features

Derived features

Excluded Features

DEMOGRAPHICS

Age; Gender

ACCELERATION

Acceleration Magnitude

98% Acceleration magnitude

Mean acceleration

(SMARTPHONE)  Gyroscope magnitude
Magnometer
ACTIVITY Steps STEPS: total steps, max steps per Calories
(SMARTPHONE)  Heart Rate hour, mean steps per hour HEART Distance travelled
Physical activity duration RATE: 5%, 50% & 95% eats per min- Distance per step
Calories ute (bpms), standard deviation of
BPMs, % time spent in resting state
PHYSICAL ACTIVITY: soft, moder-
ate and intense activity duration
APPS APP CATEGORIES Duration House & Home App
(SMARTPHONE)  Communication & Social Times open Libraries & Demo App
Health & Fitness, Recre- Reading App
ational, Shopping, Tools, All duration features
Travel
BODY Diastolic blood pressure Height (M)
(WITHINGS) Systolic blood pressure Fat mass (kg)
Heart pulse (Bpm) Fat ratio (%)
Weight Hydration
Muscle Mass
LOCATION LOCATION CATEGORIES Total duration at place
(SMARTPHONE)  Commercial, Health, Total distance travelled
Home, Leisure, Public, Total no of unique places visited
Social, Travel Max distance from home
Time spent commuting
SOCIAL Calls Number of calls Text messages (SMs)
(SMARTPHONE)  Voice Number of unique numbers
Number of incoming, outgoing
and missing calls
Number of calls from known
and unknown numbers
Total duration of calls
Average duration of calls
% Time human voice is detected
SLEEP Number of sleep sessions
(WITHINGS) Total sleep duration
Number of sleep phases (awake,
light sleep and deep sleep)
Duration of sleep phases (awake,
light and deep sleep)
Time between sleep sessions
Time to fall asleep
EPRO Self-assessments Twice daily PANAS
(SMARTPHONE) Weekly bAss-21
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SUPPLEMENTARY TABLE 3 Anoverview of demographic characteristics of the enrolled patients and

healthy controls

Demographics Descriptor Patients Healthy controls
GENDER Female 24 25
Male 6 4
RACE African American or Black 2 1
Asian 2 3
Mixed 4 0
Other 1 1
White 21 25
AGE Mean (STD) 35(13) 35(13)
Min, Max] 18, 64] 20, 63]
BMI (KG/M?) Mean (sTD) 24(3) 24(3)
Min, Max] 20, 31.5] 18, 31]
MADRS Mean (sTD) 29 (4) N/A
Min, Max] 23, 38]
SIGH-D TOTAL Mean (STD) 14.5(4.5) 1(2)
Min, Max] 6, 25] 0, 8]
IDS-C TOTAL Mean (STD) 30.5(8.5) 1(3)
Min, Max] 10, 62] 0,21]
SIGH-1DSC TOTAL Mean (STD) 45(12) 3(5)
Min, Max] 16,71] 0,29]
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SUPPLEMENTARY TABLE 4 Asummarytable of the number of missing days ordays containing
excluded outliersand number of participants with missing or outlier days are shown. Features with no

missing data or excluded outliers are not shown. Foraperiodic features, it is not possible to differentiate

between missing data and no data, thus missing data for these features are not represented.
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ACCELEROMETER Acceleration Magnitude 98% 1.12 2 0 0

APPS Times Open Shopping App - - 2 1

Times Open Travel App - - 1 1

Total Times App Open - - 1 1

CALLS Calls from known contact - - 1 1

Missed Calls - - 1 1

Calls from unknown contact - - 1 1

LOCATION Total unique places visited 4.49 7 1 1

Total km travelled 3.93 5 1 1

Time spent travelling 3.93 5 1 1

STEPS All steps parameter 1.69 3 1 1

HEART RATE All heart rate parameters 2.25 4 0 0

SLEEP Light and deep sleep duration and count 3.93 7 0 0

Longest sleep session 3.93 7 0 0

Time since previous sleep session 3.93 7 1 1

Time to fall asleep 3.93 7 1 1

Total sleep duration 3.93 7 0 0

SUPPLEMENTARY TABLE5 Comparison of R2 and RMSE Values for Patients and Healthy Controls

Across SIGH Dimensions

Population SIGHD-1DSC Dimensions Marginal R2 Mean Mean RMSE

PATIENTS ONLY SIGH-D 0.64 6.54
IDS-C 0.80 19.07
SIGH-D IDSC 0.75 16.67

HEALTHY CONTROLS ONLY  SIGH-D 0.65 5.62
IDS-C 0.71 6.53
SIGH-D IDSC 0.70 7.13
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Abstract

Introduction: Coughing is a common symptom in pediatric lung disease
and cough frequency has been shown to be correlated to disease activ-
ity in several conditions. Automated cough detection could provide a
non-invasive digital biomarker for pediatric clinical trials or care. The aim
of this study was to develop a smartphone-based algorithm that objec-
tively and automatically counts cough sounds of children. Methods: The
training set was composed of 3228 pediatric cough sounds and 480,780
non-cough sounds from various publicly available sources and contin-
uous sound recordings of 7 patients admitted due to respiratory dis-
ease. A Gradient Boost Classifier was fitted on the training data, which
was subsequently validated on recordings from 14 additional patients
aged 0-14 admitted to the pediatric ward due to respiratory disease. The
robustness of the algorithm was investigated by repeatedly classifying a
recording with the smartphone-based algorithm during various condi-
tions. Results: The final algorithm obtained an accuracy of 99.7%, sen-
sitivity of 47.6%, specificity of 99.96%, positive predictive value of 82.2%
and negative predictive value 99.8% in the validation dataset. The corre-
lation coefficient between manual- and automated cough counts in the
validation dataset was 0.97 (p <.001). The intra- and inter-device reliabil-
ity of the algorithm was adequate, and the algorithm performed best at
an unobstructed distance of 0.5-1 m from the audio source. Conclusion:
This novel smartphone-based pediatric cough detection application can
be used for longitudinal follow-up in clinical care or as digital endpoint in
clinicaltrials

DEVELOPMENT OF MACHINE LEARNING - DERIVED MHEALTH COMPOSITE BIOMARKERS FOR TRIAL@HOME CLINICAL TRIALS

Introduction

Coughing is a physiological mechanism of the respiratory system to clear
excessive secretions. It can be caused by various acute and chronic dis-
eases, such asviral upper respiratory tractinfections, bacterial infections,
asthma, protracted bacterial bronchitis or tic cough, and isacommon rea-
son for parents to seek medical consultation for their children."* Several
studies have shown that cough severity is correlated with disease activity
in asthma and other pulmonary diseases,*"® making cough frequency an
attractive candidate biomarker for respiratory disease severity. Although
coughing is traditionally quantified via self- or parent-report in the form
of questionnaires, technological advances allow for more sophisticated
(semi-) automatic cough monitoring methods. Indeed, several commer-
cial and academic entities have endeavoured to develop cough detection
algorithms, with varying success.” The most notable and reliable examples
are the Leicester Cough Monitor and the VitaloJak, which record sounds
with a dedicated body-contact device and microphone, and subsequently
use semi-automated counting methods.®° Several completely automated
cough counting algorithms have been developed, mostly for an adult
population, but none have proceeded towards widespread availability.”
A summary of the key principles of automatic cough detection and a thor-
ough overview of cough counting technologies used in a clinical setting is
provided by Hall et al. '° A notable disadvantage of body-contact devices
is that they are inconvenient in the field of pediatrics, especially in infants
and toddlers. Additionally, pediatric cough sounds exhibit more variability
across different ages due to the developing respiratory-and vocal system,
which can make robust detection more challenging. ' An ideal algorithm
would require no manualinput, be able to monitor from adistance, and be
operational on low-cost consumer devices that are readily available, such
as smartphones. To date, no such algorithm has been developed in the
field of pediatrics. This study aimed to develop an algorithm that objec-
tively and automatically counts cough sounds in children based on audio
features collected via asmartphone application.
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Materials and methods

ETHICS AND LOGISTICS

This study was conducted at the Centre for Human Drug Research (CHDR,
Leiden, The Netherlands) and the Haga Teaching Hospital, Juliana Chil-
dren’s Hospital (The Hague, The Netherlands). Institutional review board
approval was obtained (registration number: T19-080), and the study was
conducted in compliance with the general data protection regulation. The
algorithm was developed as part of the CHDR MORE® system, a remote
monitoring clinical trial platform. Reporting was performed in accordance
with EQUATOR guidelines.'

DATA COLLECTION

A comprehensive training dataset was obtained from multiple sources.
First, audio was extracted from 91 publicly available videos on YouTube
that contained coughing children with an estimated age between o and 16
years old. Furthermore, 334 non-coughing audio clips were gathered from
YouTube, GitHub, and the British Broadcasting Corporation sound library.
The non-coughing set contained various sounds that were expected
to occur in real-life settings, such as talking, breathing, footsteps, cats,
sirens, dogs barking, cars honking, snoring, glass breaking, and church
clocks. Additionally, 21 children aged 0-16 and admitted due to pulmonary
disease were included, after obtaining informed consent from parents, on
the general ward of Juliana Children’s Hospital. Children were recorded
during a day or night during the admission with a e (Motorola) smart-
phone. The smartphone contains two microphones and runs on Android
8.0 Oreo. Data of the first 7 children (3 diagnosed with bronchiolitis, 2 diag-
nosed with pneumonia, 1 with viral wheezing and 1 with an upper respi-
ratory infection, age range from 2 weeks to 15 years) were used to sup-
plement the training dataset, with a maximum of the first 150 coughs per
child to avoid overrepresentation of a single subject. Remaining cough
sounds of the 7 children were discarded. Data from the other 14 subjects
were used as validation dataset. All audio clips were manually annotated
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by an investigator using Audition software (Adobe). No filter was applied
to remove ‘silent’ sections of the recording to ensure that the estimated
accuracy reflects real-life conditions. As a result, the proportion of cough
sounds in the validation dataset was 0.7%. The composition of the final
training- and validation datasetare displayed in Table1.

AUDIO FEATURE EXTRACTION AND SELECTION

Audio feature were extracted from all audio clips using the Open-sMILE
software (version 2.3.0, audEERING).”® The software converted all audio
clipsinto 1582 features per epoch. Epoch length was fixed at 0.5 s since the
average cough duration in the training dataset was 0.3 s. The extracted
features included several audio domains, such as Mel-frequency ceps-
tral coefficients and fundamental frequencies (Fo) (Supporting Informa-
tion Text S1). Using manual inspection, the most robust features across
multiple conditions were selected (Supporting Information Text S2) and
only these features were included in the final dataset used for algorithm
development.

ALGORITHM DEVELOPMENT AND VALIDATION

For the cough detection algorithm, we compared the classification per-
formance of two ensemble-based decision-tree classifiers: Random For-
ests and Gradient Boosting Machines. Both differ in their process to build
learners (also known as ‘trees’). Random Forests classifiers build multi-
ple trees simultaneously, each tree learnings a random subsample of the
data. This subsampling makes the final model more robust as it is less
likely to be biased towards the training data. Gradient Boosting Machines
classifiers build one tree at a time, and each new tree corrects the pre-
diction error of the previous tree. Five fold cross-validation was used to
select the optimal features and hyperparameters for the model. Given
that the number of coughs and non-coughs are imbalanced, the optimal
classifier was selected based on the highest overall Matthew’s Correlation
Coefficient (Mcc). The Mmcc score provides a more informative and reliable
evaluation of binary classifications compared to accuracy as Mmcc takes
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into account the number of true and false positives and negatives when
assessing classification performance. The selected model was then used
to classify all 0.5-s epochs in the validation dataset. The sensitivity, spec-
ificity, Mcc, positive predictive value (PPv), and negative predictive value
(NPv) were calculated for the complete validation dataset and per subject.

INITIAL ROBUSTNESS TESTS

Limited robustness tests were conducted to ensure the algorithm per-
forms comparably across a range of different conditions when applied
as a smartphone application. First, a 27-min long audio-clip was gener-
ated whichincluded coughing- and household sounds, as well as sections
with silence. The clip was subsequently played repeatedly from a speaker,
while a 6 smartphone (Motorola) with the CHDR MORE® application was
placed in proximity. The application has incorporated opensMmILE soft-
ware and is able to calculate and transmit the generated audio features.
The following conditions were tested: first, the intra-device variability
was tested by repeating the assessment 7 times with the same device; sec-
ond, the inter-device variability was tested by repeating the assessment 4
times with different devices of the same type; third, the effect of device dis-
tance (0.5,1,and 4 m) from the audio source was assessed and finally accu-
racy was assessed when a small (plant and book) or large (loft bed) barrier
was placed in front of the audio source and when television sounds were
played in the background. Because the 0.5-s epochs from the original file
and the output of the MORE® application could not be paired, cumulative
cough count plots were generated and compared across conditions.

RESULTS

ALGORITHM TRAINING

The training set consisted of 3424 0.5-s cough epochs of various sources,
as well as 431,622 0.5-s non-cough epochs. The final algorithm, fitted
through a Gradient Boost Classifier, achieved an accuracy of 99.6%, mcc
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of 73.7%, sensitivity of 99.6% and specificity of 99.9% in the training set
(Table 2). The most important audio features the algorithm relied on were
derived from the mel frequency and loudness categories (Supporting
Information Text S3).

ALGORITHM VALIDATION

For validation, 14 patients with respiratory disease aged 0-14 were
recorded during a hospital admission. The median recording duration was
632 (interquartile range [IQR]: 477-775) minutes. In total, 4123 0.5-s epochs
contained coughing. The median cough count per subject was 150 (1QR:
38-446). Table 2 displays the overall accuracy of the algorithm in the val-
idation dataset. Overall sensitivity was 47.6% and specificity was 99.96%.
Dueto therelatively low frequency of cough countsin the dataset, the NPV
and ppv in these real-world settings were 99.78% and 82.2%, respectively.
The performance of the algorithm differed between subjects. Individual
patient characteristics and classification accuracies are displayed in Table
3. The correlation coefficient between manual cough count and auto-
mated cough count was 0.97 (p<.001, Figure 1).

LIMITED ALGORITHM ROBUSTNESS TESTS

Repeated (N = 7) tests with the same device and show comparable perfor-
mance during each iteration (Figure 2A), while the inter-device variabil-
ity tests show some variability in cumulative cough count across devices
(Figure 2B). The effect of the distance of the device to the audio source
was assessed (Figure 2C) and demonstrated comparable accuracy for 0.5
and 1 m distance. The accuracy was lower when the distance of the moni-
toring device from the audio source was increased. Finally, the effect of a
small- and large barrier was investigated, as well as the effect of ambient
television sounds playing in the background (Figure 2D). During this test,
it appeared that a small physical barrier did not impact algorithm perfor-
mance, but a large physical barrier and background television sounds led
to alower cumulative cough count.

PART III/CHAPTER 6

NAAH-ITITITHIHHHTHHTHHHHHHHHlHHHHHHHHHHHHHH HHHH HHH T H i



Discussion

The current manuscript described the development and initial valida-
tion of a novel cough detection algorithm in pediatrics. Publicly available
audio recordings were combined with real-life recordings to fit an algo-
rithm that had excellent classification capability in the training dataset. In
the validation dataset, a sensitivity of 47.6% and specificity of 99.96% was
obtained, which resulted in a ppv of 82.2% and an NPV of 99.8% in these
real-world conditions. There was a strong correlation between manual
cough count and automatic cough count. The accuracy of the algorithm
in the validation set was confirmed by several robustness tests, which
repeatedly showed a cumulative cough count that was roughly half of the
true cough count across various conditions. The algorithm performed
best when there was a relatively unobstructed maximum distance of 0.5-1
m from the audio source.

The current sensitivity is suboptimal but does not disqualify the algo-
rithm, and we envision the current algorithm is already suitable for appli-
cation in several settings. Algorithm-derived cough count could be incor-
porated as (secondary) digital endpoint in pediatric pulmonary disease
trials. Forthisapplication, clinical validation of cough count as digital end-
points should be performed first, focusing on demonstrating a difference
between patients and healthy children, correlation of the novel endpoint
with traditional endpoints or patient reported outcomes, and sensitivity
to change in disease activity.'* In addition to clinical trials, applying this
algorithm in clinical care is likely to be much more reliable than patient-
or parent recall regarding cough frequency.>'® The strong correlation
between manually- and automatically- counted coughs means the algo-
rithm can discriminate children that cough excessively from children that
do not and can uncover individual trends over time, e.g., to characterize
clinical recovery after a hospital admission, or to assess the effect of treat-
ment in excessively coughing patients with persistent bacterial bronchi-
tis. This is further supported by the very high specificity of the algorithm
thatis maintained in all validation tests. For example, change in nocturnal
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cough frequency in the case of an asthma exacerbation could be identified
reliably with the current algorithm, and subsequent treatment leading to
a significant decrease in nocturnal coughing will also be detectable even
with the current sensitivity. In the future, algorithm output could be com-
bined with other non-invasive assessments known to be related to pulmo-
nary disease activity, such as physical activity, heart rate and pulmonary
function monitoring, as well as electronic patient reported outcome mea-
sures. Together, this could provide a holistic overview of multiple aspects
of pulmonary disease severity and quality of life."”

Multiple research groups have developed cough detection algorithms
in recent years. However, only one was developed specifically for a pedi-
atric population.’® Although this algorithm was not applied in a mobile
device. Still, pediatric cough detection is theoretically more challeng-
ing due to changing vocal cord acoustics during various stages of devel-
opment. In adults, the most widely reported cough detection devices
are the Leicester cough monitor and the VitaloJak.” These methods have
been validated in independent datasets and appear both sensitive (91%-
99%) and specific (99%), but the use of dedicated microphones is less
user-friendly in general, and the use contact-devices precludes their use
in several age categories in pediatrics. Furthermore, the semi-automated
counting method used by both devices remains laborious and requires
training, which means that widespread use in large-scale clinical trials or
in general care is not feasible. Other algorithms that count coughs auto-
matically have reported sensitivities of 78%-99% and specificities of 92%-
99%,"'8°2% but only a few have been applied on a smart phone.?"?*2* The
one that most resembles the current study is a smartphone-based algo-
rithm developed by Barata et al.,>’ who use a convolutional neural net-
work to classify nocturnal sounds in adult asthmatics and obtained a sen-
sitivity of 99.9% with a specificity of 91.5%.2" In addition, other projects
are often based on data obtained in tightly controlled environments and
lack validation in independent or clinical datasets,'®2272* and may show
a similar drop in accuracy during validation as was observed for the algo-
rithm developed here. For example, the PulmoTrack® device, designed for
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automatic clinic-based monitoring, showed a reduced sensitivity of 26%
compared to human annotation during validation in a new cohort.?®

A major advantage of the algorithm developed in this study is the con-
version of raw audio into audio features on the smartphone before trans-
mission to the study center, which ensures the privacy of participants.
The automated classification is another advantage, allowing devices to
analyze and transmit cough counts in real-time. This study focuses on
detecting single coughs, which was the reason for using a 0.5 s epoch dur-
ing algorithm development. In the future, aggregation of data into ‘cough
bouts’ could add additional value in measuring the impact and severity
of respiratory diseases.?® For real-world application of the algorithm, we
envision that parents could use a spare phone to run the algorithm and
leave the phone close to their child. Additionally, miniaturization of cur-
rent technology could lead to a dedicated clip-on device to attach to (the
bed of) infants with respiratory illness. A limitation was the manual fea-
ture selection performed, which introduces a potentially subjective fac-
tor to the analysis. Furthermore, a laptop speaker was used during the ini-
tial robustness tests and using a higher quality speaker may have led to
slightly different performance during these tests. However, we believe
the device quality is sufficient for the purpose of testing repeatability and
investigating the effects of differing conditions. During this study, a sin-
gle smartphone type (Motorola G6) was used, and the observed perfor-
mance may vary when other devices are used.?” Another potential prob-
lem would arise when the sensitivity of the algorithm would be highly
dependent on the underlying disease that is studied, although there is no
evidence of this in the validation dataset, such factors need to be studied
further during clinical validation for which we can supply the algorithm
to other interested academic groups. The current algorithm is devel-
oped as a one-size-fits-all solution that can classify coughs of all pediatric
patient groups and ages and that only used sound features as input vari-
ables. Although the current accuracy appears sufficient to include as digi-
tal biomarker in the applications mentioned above, the accuracy of future
algorithms could improve significantly with the cost of added complexity.
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First, accuracy could improve by addition of additional covariates such
as age, sex, and diagnosis, although this would require some user input
before use. Second, the exponential increase in processing power of
mobile devices could allow for the development of personalized models
in the future, which would both be trained, validated, and deployed on
the participants’ own smartphones. A personalized classification model
that is tuned to the cough characteristics of an individual could poten-
tially be much more accurate, considering the intra-individual variabil-
ity in cough sounds is assumed to be smaller compared to inter-individ-
ual variability. Future studies could also aim to quantify cough intensity,
as this characteristic may have greaterimpact on quality of life than cough
frequency.

CONCLUSION

This novel smartphone-based cough detection application is one of the
first of its kind and able to count coughs in pediatric patients with a sensi-
tivity of 47%, specificity of 99.96%, PPV of 82% and NPV of 99.8%. Although
the observed sensitivity in the intended use must be improved in the
future, the current algorithm may be reliable enough for longitudinal
monitoring in the context of clinical trials- or care, which will be evaluated
duringaclinical validation process.

PART III/CHAPTER 6

-
©
©

NAAH-ITIH-IHHTHTHTTTTTTTlHHHHHHHHHHHHHHH HH  H HHHH H HHHHHHHH T T H



TABLE1 Composition oftrainingand validation datasets TABLE 3 Performance of thefinalalgorithm amongindividual subjects
Training dataset Validation da- Sub- Age Diagnosis Recording Manual Algorithm  Sens. Spec. mcc
taset ject duration Count count
YouTube  Varioussourc-  Hospital Total Hospital (#) (min) (N) (N)
(91 clips) es (334 clips) (7 children) (14 children) 1 l4years Pneumonia 4 22 7 32% 100% 55%
Cough sounds (n) 2229 - 999 3228 4123 2 4years Wheezing 717 63 49 73% 100% 73%
Noncough sounds (n) 9702 39,456 431,622 480,780 100,522 3 5years Pneumonia 237 29 21 2% 100% 85%
Total (n) 11,931 39,456 432,621 484,008 104,645 4 1.5years Pneumonia 609 16 6 19% 100% 31%
Cough proportion (%)’ 18.5% 0% 0.2% 0.7% 0.4% 5 6 weeks Bronchiolitis 727 85 70 58% 100% 63%
Mean cough duration (s) 0.3 - 0.3 0.3 0.3 6 3years Pneumonia 792 454 344 69% 100% 79%
1. Proportion of 0.5-s epochs that contain cough sounds. 7 9weeks __Bronchiolitis 967 895 436 34% 100% 69%
8 4years Pneumonia/ 497 29 17 52% 100% 88%
wheezing
9 llyears Asthma 598 171 98 56% 100% 73%
TABLE2 Performance of the final algorithm 10 5 weeks Bronchiolitis 873 1038 516 37% 100% 53%
11 2years Pneumonia 434 474 355 70% 100% 81%
Training dataset Validation dataset 12 3years Pneumonia 470 420 256 54% 100% 68%
Parameter Mean (sp) performance’ Overall performance 13 13weeks  Bronchiolitis 654 128 45 34% 100% 57%
Accuracy 99.61% (+0.13%) 99.74% 14 4years Pneumonia 791 299 166 40% 100% 53%
mcc 73.67% (+0.16%) 62.40%
Sensitivity 99.62% (+0.13%) 47.56%
Specificity 99.89% (+0.09%) 99.96%
PPV 99.65% (+0.08%) 82.16%
NPV 99.82% (+0.02%) 99.78%
1. Mean (SD) performance of fivefold cross-validation.
MCC, Matthew’s Correlation Coefficient; NPV, negative predictive value; PPV, positive predictive value.
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FIGURE 1 Correlation manual-and automatic cough countin validation dataset. Pearson correlation
between manually counted coughs and automatically detected coughs. Each dot represents an
individual subjectin the validation dataset..
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FIGURE 2 Performance ofthe algorithm undervarying circumstances. (a) Intra-device repeatability.
Eachindividual line represents a different session with the same device. (B) Inter-device repeatability.
Eachindividual line represents a different session with a different device of the same type. (c) Influence
of device distance from the audio source. (D) Influence of physical barrier orambient background noise.
In each of the panels, the light-blue line is the reference from the audio file.
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SUPPLEMENTARY TEXT S1

OPENSMILE AUDIO features
OpensMILE generated features from each 0.5 second epoch in the following domains: for each domain,
the following statistics were derived by the opensmiILE software:

Feature group Description
Fundamental frequency (F0) Pitch
Jitter and shimmer Voice quality

Mel-frequency cepstrum (coefficients) Power spectrum

Line spectral frequencies Frequencies

Loudness Sum of auditory spectrum. (Intensity & approximate loudness)

Voicing Probability of voicing

Statistics obtained from each feature during each 5-second epoch

Arithmetic mean

Quartiles and I1QR ranges (1-2, 1-3, 2-3)

Skewness and kurtosis

Linear regression slope, offset and approximation error

Relative position of minimum and maximum

Percentile 1%, percentile 99% and range

Standard deviation

Percentage of frames above 75/90% of range

SUPPLEMENTARY TEXT S2

OpensMILE feature selection

Feature selection was performed using the audio file generated during the robustness tests. The file
was played back through a laptop speaker (B&0 PLAY, incorporated in HP Pavilion 15-Ck094ND) during
differing ambient conditions (see paragraph Initial robustness tests in Materials & Methods), once more
through adedicated speaker (Luxman L-114Aamplifier, Dali 6006 SE speaker), and finally also processed
using opensMILE software on a personal computer. Considering the data was derived from the exact
same audio file, the frequency distribution of features should be identical during all conditions (see
Supplementary Figure S2a below). However, this was not the case for all features, particularly those
that were derived from the extremes of each feature (e.g. Percentile 1% percentile 99%). Therefore,
distribution plots were judged visually by the authors and each feature that demonstrated a clear
difference in means or standard deviations across conditions was excluded from the final dataset.
Manual selection was preferred over statistical methods to compare distributions, as the large size of the
dataset meant that statistical tests such as the Kolmogorov-Smirnovwould have too much statistical
power and irrelevant deviations would be flagged as significant difference.
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SUPPLEMENTARY FIGURE S2A Example of distribution plots of each feature used during the

feature selection process. Each color represents a different condition. Of the displayed features, the top
right (mfcc_sma”_linrege1) and bottom left (mfcc_sma’_skewness) features were included in the final

datasets.

vanable = micc_smal 7] amean

2750
La2s
U ]
oors
D050
0025
LUinc]

50 o =0

wariable = micc smal 7] skewnass

wanable = micc_sma| 7] _linregel

|

2 -1 0 1 2

wvariable = mfce smal7] percentilel

DEVELOPMENT OF MACHINE LEARNING - DERIVED MHEALTH COMPOSITE BIOMARKERS FOR TRIAL@HOME CLINICAL TRIALS

SUPPLEMENTARY FIGURE $3 Featureimportance plot ofthefinal algorithm. On the y-axis, the
10 mostimportant features derived from the opensmiLE software are displayed. The bars and the x-axis
represent the relative importance of each feature.
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Abstract

Introduction: The duration and frequency of crying of an infant can be
indicative of its health. Manual tracking and labeling of crying is labori-
ous, subjective, and sometimes inaccurate. The aim of this study was to
develop and technically validate a smartphone-based algorithm able to
automatically detect crying. Methods: For the development of the algo-
rithm a training dataset containing 897 5-s clips of crying infants and 1,263
clips of non-crying infants and common domestic sounds was assembled
from various online sources. OpensMILE software was used to extract
1,591 audio features per audio clip. A random forest classifying algorithm
was fitted to identify crying from non-crying in each audio clip. For the
validation of the algorithm, an independent dataset consisting of real-
life recordings of 15 infants was used. A 29-min audio clip was analyzed
repeatedly and under differing circumstances to determine the intra- and
inter- device repeatability and robustness of the algorithm. Results: The
algorithm obtained an accuracy of 94% in the training dataset and 99% in
the validation dataset. The sensitivity in the validation dataset was 83%,
with a specificity of 99% and a positive- and negative predictive value
of 75 and 100%, respectively. Reliability of the algorithm appeared to be
robust within-and across devices, and the performance was robust to dis-
tance from the sound source and barriers between the sound source and
the microphone. Conclusion: The algorithm was accurate in detecting
cry duration and was robust to various changes in ambient settings.

DEVELOPMENT OF MACHINE LEARNING - DERIVED MHEALTH COMPOSITE BIOMARKERS FOR TRIAL@HOME CLINICAL TRIALS

Introduction

Crying is a primary indicator of decreased infant well-being.' Besides the
normal crying-behavior that is natural for every infant, a change in cry
duration, intensity or pitch can be a symptom of illness.? Cry duration
has been used as a biomarker for diagnostic and follow-up purposes for
a wide range of clinical conditions of infancy, such as gastroesophageal
reflux and cow milk allergy.>* However, traditional methods to record cry
behavior, such as parent- or nurse- reported cry duration, are subjective
and vulnerable to observer bias.”> On the other hand, more objective man-
ual annotating of audio recordings is labor intensive and may be subject
to privacy-concerns by parents. An objective, automated and unobtrusive
method to quantify crying behaviorin an at-home and clinical setting may
improve the diagnostic process in excessively crying infants, allow for
objective determination of treatment effects by physicians, and enable
researchers to include objectively determined cry duration as digital
biomarker in clinical trials. Therefore, a classification algorithm is nec-
essary for the automatic recognition of cries in audio files. Given the
importance for researchers to study the relationship between an infant’s
crying patterns and their health, automatic detection and quantification
of infant cries from an audio signal is an essential step in remote baby
monitoring applications.®

Automatic cry detection has been reported in the form of remote baby
monitors for non-intrusive clinical assessments of infants in hospital set-
tings,’® and several researchers have shown that classification of cry- and
non-cry-sounds is possible with machine-learning algorithms.'°"'? How-
ever,mostalgorithms lack validationin a completely independent dataset,
which is crucial to predict performance in new- and real-world settings,
while data regarding intra- and inter-device variability and other factors
that may influence repeatability is lacking as well.'®'>'* Finally, algorithms
are often developed for use on personal computers or dedicated devices.
Usability of an algorithm would be increased if it were available on low-
cost consumer-devices such as smartphones, which are readily available
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in most households and are easy to operate. Furthermore, smartphones
have adequate processing power to analyse and transmit data continu-
ously for monitoring in real-time. The aim of this study was to develop and
validate asmartphone-based cry-detection algorithm that is accurate, reli-
able, and robust to changes in ambient conditions.

Materials and methods

LOCATION AND ETHICS

This was a prospective study conducted by the Center for Human Drug
Research (cHDR) and Juliana Children’s Hospital. The study protocol was
submitted to the Medical Ethics Committee Zuidwest Holland (1D 19-003,
Leiden, Netherlands), who judged the protocol did not fall under the pur-
view of the Dutch Law for Research with Human Subjects (wmo0). The
study was conducted in compliance with the General data protection reg-
ulation (GDPR). The algorithm was developed and reported in accordance
with EQUATOR guidelines.

ALGORITHM DEVELOPMENT

TRAINING DATASET A training dataset was obtained from various
online sources (Supplementary Table 2) and consisted of both crying-
and non-crying sounds. Non-crying sounds consisted of common real-life
sounds and included talking, breathing, footsteps, cats, sirens, dogs bark-
ing, cars honking, snoring, glass breaking, and ringing of church clocks.
Furthermore, non-crying infant sounds (hiccoughs, wailing, yelling, bab-
bling, gurgles, and squeaking), as well as adult crying sounds, were
included in the training dataset. All sounds were played back through
a loudspeaker and processed into non-overlapping 5-s epochs on a G5
(Motorola, Chicago, IL, USA) or G6 (Motorola, Chicago, IL, USA) smart-
phones and. A total of 1,591 audio features (Supplementary Text 3) were
extracted from each 5-s epoch with opensMILE (version 2.3.0, audEERING,
Gilching, Germany) ' on the smartphone. Each 5-s epoch was manually
annotated as crying or non-crying by a single investigator. A 5-s epoch was

DEVELOPMENT OF MACHINE LEARNING - DERIVED MHEALTH COMPOSITE BIOMARKERS FOR TRIAL@HOME CLINICAL TRIALS

selected because the median cry duration (without a silent break) in the
training dataset was 4s.

ALGORITHM TRAINING

To prevent overfitting of the algorithm on non-robust audio features pro-
vide by the software, manual feature selection was performed to exclude
features that exhibited different distributions when analyzed under
different conditions (Supplementary Text 3). Feature selection was per-
formed using the audio file generated during the robustness tests. The
file was played back through a laptop speaker during differing ambi-
ent conditions with (see paragraph Robustness-tests in section Materi-
als and Methods), a dedicated speaker, and processed to opensMmILE fea-
tures with the cHDR MORE® application. Additionally, the raw file was
processed using opensMILE software on a personal computer. Consider-
ing the data was derived from the exact same audio file, the distribution
of features should be identical during all conditions (Supplementary Text
3). However, this was not the case for all features, particularly those that
were derived from the extremes of each feature (e.g., Percentile 1% per-
centile 99%). Therefore, distribution plots were judged visually by the
authors and each feature that demonstrated a clear difference in means
or standard deviations across conditions was excluded from the final
dataset. After selection, 980 features audio features remained in the data-
set. Two discriminative classifiers Random Forest and Logistic Regres-
sion'""2% and one generative classifier (Naive Bayes) were considered for
the classification of crying and non-crying sounds. For each classifier, a
s5-fold cross-validated grid-search to select the best combination of fea-
tures and hyperparameters was performed to minimize the error esti-
mates in the final model. The primary objective of the model was to iden-
tify crying and therefore, hyper-parameters that optimized for sensitivity
were prioritized. This was followed by 5-fold cross-validation to robustly
estimate the model performance and generalization of the model. The
classifier with the highest Matthew’s Correlation Coefficient (Mcc) was
chosen as the final model and subjected to algorithm validation.
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ALGORITHM VALIDATION

DATA COLLECTION An independent validation dataset was obtained
from two sources. First, audio recordings were made in an at-home set-
ting of 4 babies aged 0-6 months using the G5 or G6 smartphones. Sec-
ond, audio recordings were made with the G5 or Ge smartphones of 11
babies aged 0-6 months admitted to the pediatric ward due to various
reasons. Audio recordings were made after obtaining informed consent
from both parents and were stripped of medical- and personal informa-
tion prior to analysis.

PERFORMANCE ANALYSIS Each 5-s epoch in the recordings was anno-
tated as crying- and non-crying by one annotator. In the case of doubt on
how to classify an epoch, two additional annotators were included, and
a choice was made via blinded majority voting. The developed algorithm
was used to classify each epoch, and annotations and classifications were
compared to calculate the accuracy, Mcc, sensitivity, specificity, positive
predictive value (PPVv) and negative predictive value (NPV) in the complete
datasetandin the hospital-and home datasets separately.

POST-PROCESSING OF CRY EPOCHS INTO NOVEL BIOMARKERS Some
infants are reported to cry often, but with short intervals in between.
Only counting the number of epochs that contain crying for such infants
could result in an underestimation of the burden for infants and parents.
As such, the duration of ‘cry sequences’ (periods during which an infant is
crying either continuously or occasionally) is an important additional fea-
ture. To calculate this, post-processing of detected cries was performed
to calculate the number and duration of cry sequences as separate candi-
date biomarkers. A cry sequence was defined by the authors with a start
criterion (at least six 5-s epochs containing crying within 1 min) and a stop
criterion (no crying detected for 5 min). Individual timelines were con-
structed for true- and predicted cry sequences to determine the reliability
of the algorithm for this novel biomarker.
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ROBUSTNESS TESTS A series of robustness tests was conducted to
ensure that the developed algorithm was robust to varying conditions
when used with a smartphone with the final application (CHDR MORE®)
installed, which is how the algorithm would be deployed in practice. A
29-min-long clip containing 16.7 min of crying was played from a speaker
with a smartphone with the cHDR MORE® application in proximity. This
application, developed in-house, has incorporated opensMILE technol-
ogy and is able to extract and transmit audio features. The following con-
ditions were tested during this phase of the study: intra-device variabil-
ity (N = 10), inter-device variability (N = 10), distance from audio source
(0.5,1, 2, and 4 m) and by placing the phone behind several barriers and
in the presence of background tv sounds. For intra-device variability, a
single phone was used 10 times to determine repeatability within a single
device. For inter-device variability, 10 different devices of the same type
(c6) were used to determine the repeatability across devices. Because it
was not technically possible to pair the application output with the raw
audio features of the original recording, cumulative cry count plots were
construed for each condition and compared with cumulative cries in the
original recording. A schematic overview of the analysis steps is displayed
in Supplementary Figure1.

Results

ALGORITHM TRAINING

The training set consisted of 897 5-s audio clips, as well as 1,263 non-crying
5-s clips. Of the three methods applied to develop the algorithm, the Ran-
dom Forest method achieved the highest accuracy and mcc with 93.8 and
87.3%, respectively (Table 1). The 10 most important audio features for the
algorithm were derived from Mel Frequency cepstral coefficients, Mel fre-
quency bands and Voicing Probability. A variable importance plot of the
10 most important features included in the final algorithm is displayed in
Supplementary Figure 4.
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ALGORITHM VALIDATION

The1sinfants [mean age: 2 months (sp 1.9)] created a total of 150 min (1,805
5-s epochs) of crying and 4,372 min (52,464 5-s epochs) of non-crying. The
median cry duration of the infants recorded at home was shorter (1.4 min,
IQR 0.58-2.6) compared to children recorded during their admission to the
hospital (5.8 min, IQR 2.2-16.7). Performance of the algorithm in the inde-
pendent validation dataset is displayed in Table 1. Overall accuracy was
98.7%, but sensitivity was lower (83.2%) compared to the performance in
the training dataset. Due to the relatively low crying incidence compared
tonon-cryingincidence, the specificity of 99.2% led to a PPv of 75.2%. Sup-
plementary Figure 5 displays individual timelines for each infant, dis-
playing the epochs where crying- and misclassifications were present.
After post-processing of cry epochs into cry sequences, the median num-
ber of cry sequences per infant in the validation dataset was 3 (IQR 1-3),
for a total of 39 cry sequences. The median difference between true and
predicted cry sequences was 1 (IQR 0.25-1). Furthermore, the median
difference between true and predicted cry sequences duration was 6 min
(1QrR 2-15 min, Table 2). Individual timelines and concordance between
true and predicted cry sequences are displayed in Figure 1.

ALGORITHM ROBUSTNESS

To ensure the algorithm and smartphone application performs
sufficiently for the intended use, multiple tests were conducted to test
robustness with the resulting smartphone application. Figure 2A shows
the estimated repeatability of the algorithm by repeatedly classifying the
same recording with the same device. Figure 2B shows the cumulative cry
count of 8 different devices of the same type, which gives an indication of
repeatability. The distance from the audio source, up to 4 meters, did not
appear to impact the accuracy of the algorithm (Figure 2C). Finally, block-
ing the audio signal by placing the phone behind several physical barriers
in front of the audio source demonstrated comparable accuracy across
conditions (Figure 2D). Creating additional background noise generated
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by a television appeared to slightly decrease the specificity of the algo-
rithm, as the final cry count according to the algorithm was higher com-
pared to the true number of cries in the audio file.

Discussion

This paper describes the development and validation of a smartphone-
based cry detection algorithm in infants. A random forest classifier had
the highest accuracy in the training dataset and achieved a 98.7% accu-
racy in an independent validation set. Although the sensitivity of 83.2%
was slightly lower compared to the estimated accuracy in the train-
ing dataset, the individual classification timelines show that this should
not lead to unreliable estimation of cry duration. The fact that most
misclassifications occurred directly before or after crying indicates that
such misclassifications may be due to cry-like fussing, which are difficult
to classify for both the algorithm and the human annotators. Post-pro-
cessing of the detected cry epochs into cry sequences decreased the mis-
match and resulted in excellent performance for each individual infant.
The observed accuracy of the algorithm is comparable to others
described in the literature, although there is large variation in reported
accuracy. Traditional machine learning classifiers and neural network-
based classifiers have been used for infant cry analysis and classifica-
tion.?' We found that several studies that explored the use of minimum,
maximum, mean, standard deviation and the variance of MFCCs and
other audio features to differentiate normal, hypo-acoustic and asphyxia
types using the Chillanto database.® Support Vector Machines (svm) are
among the most popular infant classification algorithms and routinely
outperform neural network classifiers.?*?* Furthermore, Osmani et al.
have illustrated that boosted and bagging trees outperform svm cry clas-
sification.?* Additionally, sensitivities between 35 and 90% with specific-
ities between 96 and 98% have been reported using a convoluted neural
network approach.'®'® Ferreti et al. and Severini et al. also used a neu-
ral network approach and achieved a reported precision of 87 and 80%,
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respectively.’"'? However, algorithms often lack validation in an inde-
pendent dataset as, and real-life performance in new and challenging
environments will most likely be lower. Our algorithm has several advan-
tages compared to other approaches that have been described in the
past. Most importantly, the algorithm was validated on independent and
real-life data obtained from two settings where the application could be
used in the future. Validation invariably leads to a drop in accuracy com-
pared to the performance of the training data but gives reassurance
regarding the generalizability of the algorithm in new settings that were
notincluded duringtraining. Furthermore, the algorithm can be deployed
on all Android smartphones and no additional equipment is needed for
acquiring the acoustic features. Although it is possible to implement com-
plex deep learning algorithms on portable devices, we demonstrated
that a shallow learning algorithm such as a random forest achieves good
classifying capability. This means that audio processing and classifica-
tion can be performed on the device in real-time with the MORE® applica-
tion, and thus, precludes direct transmission of audio to a central location
with inherent preservation of privacy. Finally, the manual feature selec-
tion that was performed should lead to further generalizability of the algo-
rithm in new condition, since the observed variability in the excluded
audio features would most likely result in a drop in accuracy in challeng-
ing acoustic environments. While automated feature selection methods
could have been used, automated feature selection requires a static def-
inition of similarity between distributions within features. This is not a
straightforward task. Given the nature of the features, we chose to man-
ually exclude features that presented a clearly different distribution from
therest of the features.

All in all, the performance of the algorithm in combination with the
mentioned advantages indicate reliability of the algorithm and may be
preferable over manual tracking of cry duration through a diary in sev-
eral situations. Although the literature regarding sources of inaccuracy in
cry monitoring via a diary is sparse, several factors make manual track-
ing through a diary a subjective assessment.®> Observer bias can cause
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parents to overestimate the true duration of crying, and placebo-effects
may cause parents to underestimate true cry duration after an interven-
tion.>® Additionally, parents may underreport nocturnal cry duration
when they sleep through short cry sequences during the night. Current
tracking of cry duration in clinical settings is performed by nurses, who
have other clinical duties as well, possibly making the quality of the cry
diary dependent on the number of patients under their care. While the
consequences of all these factors are not easy to quantify, the combina-
tion of these sources of inaccuracy leads to the conclusion that objective
and automated cry-monitoring could significantly improve the reliability
of objective follow-up of cry duration in both clinical trials and -care. Still,
parental report of cry duration and cry behavior will remain an important
component of follow-up.

A technical limitation of any Android application, including the MORE®
application, is that continuous recording can be interrupted by other
smartphone applications apps that also access the microphone, like
phone calls. However, using a dedicated smartphone for the purpose of
cry monitoring will diminish this limitation. Only Motorola G5/G6 phones
were used during each phase of algorithm development and validation.
Although performance on other smartphones is uncertain, the approach
used in this paper could easily be replicated to adapt the algorithm to
other devices and obtain a similar accuracy. In the future, incorporation
of covariates such as age, sex or location in the model may improve classi-
fying capability even further, and further stratification could allow to dis-
criminate different types of crying. In this manner cries from asphyxiated
infants,® pre-terminfants,?” or infants with respiratory distress syndrome
could be differentiated from healthy infants.”® One potential technical
limitation of our approach is the use of loudspeakers to create the train-
ing dataset. An ideal training dataset would include smartphone-based
audio recordings of multiple subjects under different conditions over a
long period of time. We found the most appropriate alternative was to re-
record open-sourced cry corpus using smartphone. While the playback
could have potentially hindered the quality of the opensMmiLE features
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and thus the classification, it resulted in excellent classification perfor-
mance of the home and hospital recordings. Hence the impact of the qual-
ity of the loudspeaker-based dataset was deemed acceptable. A follow-up
study that uses an original smartphone-based cry corpus could poten-
tially improve the accuracy of the classification algorithm. The start- and
stop criteria used to determine the beginning and end of a cry sequence
are a new proposal that was not previously described in the literature.
However, the criteria appear reasonable and individual timeline figures
demonstrated that this post-processing step was able to generate a solid
high-level overview of individual cry behavior. Still, alternative criteria
could obtain similar accuracy and may be explored in the future.

The developed algorithm already provides an excellent overview of
the cry behavior of infants and preliminary tests of the robustness of the
resulting algorithm show inter- and intra-device repeatability and reli-
ability up to 4 m from the audio source. The algorithm can replace current
methods to track cry behavior, such as cry diaries, in clinical and at-home
settings. However, more research is needed before implementing the cry
duration and the amount of cry sequences as digital endpoint in trials.
Clinical validation of cry duration and cry sequence count as digital bio-
marker in a patient population is necessary, and should focus on estab-
lishing new normative values for objectively determined cry sequence
duration and count, the difference between patients and healthy con-
trols, correlation with disease-severity and sensitivity to change after an
intervention.?®

Conclusion

The proposed smartphone-based algorithm is accurate, robust to vari-
ous conditions and has the potential to improve clinical follow-up of cry
behavior and clinical trials investigating interventions to enhance infant
well-being.
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TABLE1 Performanceofthefinalalgorithm

Training Dataset

Validation Dataset

Parameter Performance Hospital Subjects Home Subjects All Subjects
[Mean (sp)]* (N=11)(%) (N=4) (%) (N=15)(%)
Accuracy 93.8% (+1%) 98.5 99.7 98.7
mcc 87.3% (+2.2%) 75.5 98.6 78.4
Sensitivity 93.8% (+1.1%) 80.6 97.5 83.2
Specificity 94.8% (+1.1%) 99.1 100 99.2
PPV - 72.2 100 75.2
NPV - 99.4 99.6 99.5
TABLE 2 Individual Algorithm Performance
Characteris- Cry Epochs Cry Sessions
tics

. c = E- £ 2 5 § = = § = B § c £ § c
E 8¢ £= £ 35 85 22 > ESS £3%3= H88 58358
T TE B8E Tt HE& T8 &8 & ©FE 5FE SFE STE
» 37 £8 28 § & £28 228 £23 213

< < ) ) <Z < g < g <
Hospital Dataset
1 764 145 120 80 99.5 66.2 99.7 3 5 37 59
2 610 65 43 90.7 99.6 60 99.9 3 3 19 21
3 245 12 11 90.9 99.9 83.3 99.9 1 1 5 6
4 648 52 20 80 99.5 30.7 99.5 3 3 17 25
5 540 17 12 91.7 99.9 64.7 99.9 1 1 7 8
6 317 721 711 82.3 95.6 81.1 95.9 7 7 117 122
7 16.5 26 24 87.5 97.1 80.7 98.2 1 1 6 8
8 441 200 148 66.5 98.2 52.5 98.9 7 8 55 72
9 77.5 70 80 75 98.8 85.7 97.7 3 3 18.5 26
10 365 99 79 62 98.8 49.5 99.2 3 3 22 36
11 452 320 290 87.9 98.7 79.7 99.2 6 7 64 80
Home Dataset
12 36 38 40 95 100 100 99.5 1 1 2.8 2.4
13 13 7 7 100 100 100 100 0 0 0
14 2 25 25 100 100 100 100 0 0 0
15 1 8 8 100 100 100 100 0 0 0
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FIGURE 1 Trueand predicted crysequence perinfant
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FIGURE 2 Cumulative cry countduringrobustnesstests. () Intra-device repeatability. Each individual
lineisadifferent runwith the same phone. (B) Inter-device repeatability. Each individual lineis a run with
adifferent phone of the sametype. (c) Influence of device distance from the audio source. (p) Influence
of physical barrier orambient background noise. In each of the panels, the light-blue line is the reference
fromthe audiofile.
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SUPPLEMENTARY FIGURE S1 Schematic overview of analysis steps
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SUPPLEMENTARY TABLE 2 Audiosources

Dataset Source Crying Non-crying**
(5-second epochs) (5-send epochs)
Training Datasets Github repository: *** 146 216
https://github.com/giulbia/baby_cry_detection
Freesound.org: *** 102 15
https://freesound.org/search/?qg=infant+cry
British Broadcasting Company 207 336
sound library: ***
https://sound-effects.bbcrewind.co.uk/
Home Validation Home Recordings 78 549
Dataset
Hospital Validation ~ Hospital recordings 350 594
Dataset
Merged epochs* 92 102
Total 975 1812

“Merged crying sounds with additional background noise. ** The non-crying sound included common baby sounds
(babies hiccoughing, gurling, babbling and yelling), common human sounds (breathing, coughing, talking), general
indoor sounds (doors closing, footsteps and vacuuming) and general outdoor sounds (birds, thunder, sirens).
“*Thisis alabelled collection of environmental audio recordings. The audio recordings have been extracted from

public field recordings.
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SUPPLEMENTARY TEXT S3 Audio features and feature selection.

OpenSMILE generated features from each 5 second epoch in the following domains:

Feature group Description

Fundamental frequency (F0) Pitch

Jitter and shimmer Voice quality

Mel-frequency cepstrum (coefficients) Power spectrum

Line spectral frequencies Frequencies

Loudness Sum of auditory spectrum (Intensity & approximate
loudness)

Voicing Probability of voicing

Foreach domain, the following statistics were derived by the openSMILE software:

Statistics obtained from each feature during each 5-second epoch

Arithmetic mean

Quartiles and I1QR ranges (1-2, 1-3, 2-3)

Skewness and kurtosis

Linear regression slope, offset and approximation error

Relative position of minimum and maximum

Percentile 1%, percentile 99% and range

Standard deviation

Percentage of frames above 75/90% of range

DEVELOPMENT OF MACHINE LEARNING - DERIVED MHEALTH COMPOSITE BIOMARKERS FOR TRIAL@HOME CLINICAL TRIALS

SUPPLEMENTARY FIGURE S3A Exampleofdistribution plots of each feature used during the feature
selection process. Each color represents a different condition. Of the displayed features, only the bottom

left feature (mfcc_smal(1] skewness) was included in the final dataset.
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SUPPLEMENTARY FIGURE $4 Variableimportance Featureimportance plot of thefinal algorithm.
On they-axis, the 10 most important features derived from the openSMILE software are displayed. The
bars and the x-axis represent the relative importance of each feature.
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Abstract

The validation of objective and easy-to-implement biomarkers that can
monitor the effects of fast-acting drugs among Parkinson’s disease (PD)
patients would benefit antiparkinsonian drug development. We devel-
oped composite biomarkers to detect levodopa/carbidopa effects and to
estimate PD symptom severity. For this development, we trained machine
learning algorithms to select the optimal combination of finger tap-
ping task features to predict treatment effects and disease severity. Data
were collected during a placebo-controlled, crossover study with 20 PD
patients. The alternate index and middle finger tapping (IMFT), alternative
index finger tapping (IFT), and thumb-index finger tapping (TIFT) tasks
and the Movement Disorder Society-Unified Parkinson’s Disease Rat-
ing Scale (MDs-UPDRS) lll were performed during treatment. We trained
classification algorithms to select features consisting of the MDS-UPDRS
111 item scores; the individual IMFT, IFT, and TIFT; and all three tapping
tasks collectively to classify treatment effects. Furthermore, we trained
regression algorithms to estimate the MDS-UPDRS Il total score using
the tapping task features individually and collectively. The IFT compos-
ite biomarker had the best classification performance (83.50% accuracy,
93.95% precision) and outperformed the MDS-UPDRS 111 composite bio-
marker (75.75% accuracy, 73.93% precision). It also achieved the best per-
formance when the MDS-UPDRS 111 total score was estimated (mean abso-
lute error: 7.87, Pearson’s correlation: 0.69). We demonstrated that the IFT
composite biomarker outperformed the combined tapping tasks and the
MDS-UPDRS Il composite biomarkers in detecting treatment effects. This
provides evidence for adopting the IFT composite biomarker for detecting
antiparkinsonian treatment effectin clinical trials.
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Introduction

Parkinson’s disease (PD) motor impairments can be characterized as
slow and rigid and can lead to a gradual reduction in movement speed
over time." The recommended instrument for assessing the severity of
PD motor symptoms is the Movement Disorder Society’s revised version
of the Unified Parkinson’s Disease Rating Scale, Part Il (MDS-UPDRS I11).?
The MDS-UPDRS 111 offers a reliable and valid metric for evaluating motor
manifestations in each body area affected by pp.*>”® There are two main
limitations of the MDS-UPDRS 111, First, the MDS-UPDRS Il requires approx-
imately 15 minutes to complete with a trained rater, therefore making it
time consuming and labor intensive.® Thus, MDS-UPDRS 111 is not ideal for
demonstrating the time of onset of fast-acting dopaminergic drugs, such
as the inhaled and intranasal forms of levodopa (L-dopa)/carbidopa and
apomorphine.”® Second, the MDs-UPDRS Il provides only a coarse rating
of motor function and therefore cannot identify or differentiate between
specific kinematics of finger movements.? As fine motor control abnor-
malities are typically the first manifestations of motor impairmentsin pp
patients, it is important to develop composite biomarkers that are sensi-
tive to these changes.’ To address these limitations, there is a demand for
biomarkers that detect fine-grained changes in motor function and are
congruentwith the MDS-UPDRS.

Finger tapping tasks provide insights into fine motor activity '®'" and
have been shown to be quick, effective, and simple assessments for esti-
mating MDS-UPDRS motor disability’>'® and assessing antiparkinso-
nian drug effects.’*'® These tasks provide insights into fin- ger and fore-
arm movement speed, accuracy, amplitude, frequency, rhythm, and
fatigue.'®'*2%2! pp patients often experience tremors, stiffness, and
difficulty with movement, which can significantly impact their ability to
perform daily activities, including buttoning a shirt, typing on a keyboard,
or using utensils.?>** As patients want treatments that will improve their
ability to carry out daily activities, measuring motor function through tap-
ping biomarkers can provide a more direct and meaningful assessment of
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the impact of treatments on patients’ lives. Therefore, the tapping tasks
could be considered of interest to both clinicians and patients.

The complexity of parkinsonism motor impairment manifestations
cannot be captured by a single biomarker. By exploiting machine learn-
ing algorithms, we can combine multiple objective biomarkers into a sin-
gle composite biomarker that would represent a multi-dimensional char-
acterization of PD.?* Previous studies have demonstrated that composite
biomarkers could effectively differentiate between pp and healthy con-
trols and estimate MDS-UPDRS 111 symptom severity.>*>" This study inves-
tigates the accuracy and sensitivity of composite tapping biomarkers to
detect drug effects and to estimate disease severity among pPD patients.

Patients and Methods

This is an extension of a previous study that investigated the reliability of
tapping tasks to detect the longitudinal effects of L-dopa/carbidopa and
to determine the correlation of the tapping features with the Mps-uPDRS
m.'* The study was conducted at the Centre for Human Drug Research
(cHDR) in Leiden, the Netherlands, between July and November 2020 and
isregistered inthe Netherlands Trial Register (trial NL8617).

STUDY OVERVIEW

We conducted a double-blind, placebo-controlled, randomized, two-way
crossover study with L-dopa/carbidopa in 20 pPD patients that had recog-
nizable off episodes (symptoms not adequately controlled by their med-
ication).?® Patients received a semi-individual dose of the investigational
drug. To ensure an off-on transition, the patients were given a supramax-
imal dose that was at least 25% higher than their usually administered
morning dose.*®

PATIENT CRITERIA

Enrolled patients had a clinical diagnosis of PD, as confirmed by a neu-
rologist, and a classification of a Hoehn-Yahr stages | to Ill during their

DEVELOPMENT OF MACHINE LEARNING - DERIVED MHEALTH COMPOSITE BIOMARKERS FOR TRIAL@HOME CLINICAL TRIALS

on state by an investigator. Patients were included if they were between
ages 20 and 85 years during screening, experienced self-described motor
fluctuations, and were taking oral antiparkinsonian medication. Patients
were excluded if they had known conditions that would affect L-dopa/car-
bidopa treatment or study compliance, such as previous intolerance, drug
dependence, or psychiatric disease.

ASSESSMENTS

MDS-UPDRS Il Weselected the MDS-UPDRS 111 as the gold standard for
the purposes of this study. The MDS-UPDRS 111 was conducted by trained
raters at CHDR. The examination took on average 15 minutes to complete.
It was performed pre-dose and at 10, 30, 60, and 90 minutes after dosing.

FINGER TAPPING TASKS All the tapping tasks were performed twice
pre-dose and once at 10, 25, 45, 60, 75, 90, and 105 minutes after dosing. If
the tapping tasks and MDs-UPDRS 11l were planned simultaneously, then
tapping tasks were performed first.

ALTERNATE INDEX AND MIDDLE FINGER TAPPING AND ALTERNATE
INDEX FINGER TAPPING Each patient was provided with atouchscreen
laptop equipped with the alternate index and middle finger tapping
(IMFT) and alternate index finger tapping (IFT) tasks.'® The patients were
instructed to use the hand that was most affected (if both hands were
equally affected, to use their dominant hand) and to perform each task as
fast and accurately as possible for 30 seconds. For the IMFT, patients were
asked to tap between the two targets (2.5 cm apart) with their index and
middle fingers. For the IFT, patients were asked to tap the targets (20 cm
apart) with theirindexfinger. The IMFT and IFT require two different move-
ments; the IMFT and IFT are dependent on fine finger and forearm move-
ments, respectively.'® Each of the two tasks generated 43 features relat-
ing to speed (eg, total number of taps), accuracy (eg, spatial error), rhythm
(eg, intertap interval), and fatigue (eg, change in velocity) (Table $1).'%'*
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THUMB-INDEX FINGER TAPPING A wireless goniometer (Biometrics
Ltd, Newport, uk) was placed on the metacarpal and proximal phalanx
of the index finger of the most affected hand (if both hands were equally
affected, to use their dominant hand).'®'*3° Each patient was instructed
to sitcomfortably, hold up the hand, and tap theindex finger on the thumb
aswidely and quickly as possible continuously for 15 seconds. The thumb-
index finger tapping (TIFT) assesses unilateral sequential fine finger move-
ments. The 25 features of the TIFT include progressive changes in ampli-
tude, hesitations, and tapping speed during the task (Table $1)."

STATISTICAL ANALYSIS

All data preprocessing and statistical analyses were conducted using
Python (version 3.8.0) (31) and the Scikit-Learn library (version 1.0.1).3?

DATA PREPROCESSING All features were visually and statistically
inspected for normality using histograms and Shapiro-Wilk tests, respec-
tively. Log or square root transformations were applied when the features
were not normally distributed. Only features that were normally distrib-
uted were included in the analysis. Missing values were not imputed, and
only complete cases were considered.

As the tapping composite biomarker is designed to be a proxy for over-
all motor function, we did not account for laterality of the tapping task in
the biomarkers. The need for assessing the tapping tasks with both hands
is therefore avoided, which could streamline the assessment process and
reduce the burden on patients.

COMPOSITE BIOMARKERS We developed 10 composite biomark-
ers. The composite biomarkers represented the baseline-uncorrected or
baseline-corrected MDS-UPDRS 111 18-item scores; all three tapping tasks
combined; and the IFT, IMFT, and TIFT tasks individually. From a statisti-
cal viewpoint, we corrected for baseline to remove any concomitant vari-
ability in the treatment response, which would therefore improve the
precision of the treatment detection.®® From a practical viewpoint, we
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considered using the baseline-uncorrected values to reduce the num-
ber of measurements needed for treatment classification. The base-
line-uncorrected model would require only a single tapping assessment,
whereas the baseline-corrected model would require two.

CROSS-VALIDATION We applied a nested k-fold cross-validation strat-
egy to assess the performance and the generalizability of the composite
biomarkers.?* In nested cross-validation, the outer fold assesses the per-
formance of the model, whereas the inner fold performs the model and
hyper-parameter selection. In our study, the outer-fold step was repeated
100 times, with each iteration containing a different combination of train-
ing (80% of the data) and test sets (20%). Each outer training set was fur-
thersplitinto aninnertraining (80% of the data) and validation sets (20%).
The inner-fold step was repeated 50 times, and the best-performing
inner model would be evaluated in the outer fold. The final results would
be represented as the averaged and standard deviation of the models
selected by each outer fold.** For the classification and regression mod-
els, we applied a group-shuffle split (same distribution of placebo and
active treatments in each split) and a stratified-shuffle split (same dis-
tribution of MDS-UPDRS 111 scores in each split), respectively. To stratify
the MDS-UPDRS 111 scores, we assigned each score to one of three binned
ranges (eg, the baseline-corrected MDS-UPDRS I11 binned ranges were [-13,
-8.76], [-8.76, -4.53], and [-4.53, 0.3]). Each outer fold had the same distri-
bution of binned ranges. Stratification was not applied to the inner fold,
as the small sample size would limit the number of samples available per
bin. Within each inner fold, all features were standardized by subtract-
ing the mean and scaling to the unit variance. To identify the features that
were predictive of the outcomes, we identified features that were selected
at least once by all outer-fold models.?*

CLASSIFICATION OF ACTIVE OR PLACEBO TREATMENTS Classification

models were trained to classify the active or placebo treatments. As we
intended to predict the probability of treatment at all time points, we
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chose the last measurements to train the models. The MDS-UPDRS 111
classification model was trained on the 90-minute MDS-UPDRS 111 item
scores.'* The tapping classification models were trained on measure-
ments taken immediately after the MDS-UPDRS 111 starting at 105 minutes.
To identify the optimal classification model, we compared three
classification models: support vector machines, logistic regression,
and linear discriminant analysis (LDA). These classification models were
selected as they are easy to implement and to interpret.®*=" Previous
studies have also used these algorithms to classify Pp diagnosis or esti-
mate MDS-UPDRS 111.>%*" Models were compared based on their mean
accuracy, precision, and F1 scores.*°

In addition, each model selected by the outer folds was used to predict
the treatment at the other time points, with 20% of patients who were
not used for training. This would allow researchers to identify at which
time point treatment effects are detected. For each time point, the mean
and standard deviation of the class probabilities were based on the pre-
dicted log-odd ratios from each fold. Additionally, these probabilities
were used to estimate the repeatability and effect size. The repeatability
was assessed by calculating the intraclass correlation coefficients (icc)
using the placebo results only. Using a random intercept model with the
intercept and time point as fixed effects, the 1cc was calculated by divid-
ing the between-subject variance by the sum of the between-subject and
within-subject variances. The effect size was calculated using all avail-
able data and a random intercept model with intercept, time point, treat-
ment, and interaction between time point and treatment as fixed effects.
In addition, the effect size was calculated as the contrast between the
probabilities after treatment and the averaged baseline probabilities
divided by the square root of the sum of the between-subject and within-
subject variations.

ESTIMATION OF THE MDS-UPDRS Il TOTAL SCORE To assess if the

tapping composite biomarkers (baseline uncorrected and baseline cor-
rected) could estimate the MDS-UPDRS 111 total score, linear regression
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with elastic-net regularization (optimized for a and the l1 ratio) was used
to predictthe MDs-UPDRS 111 total score at 90 minutes using the 105-minute
tapping biomarkers. These two time points were compared, as it was pre-
viously shown that the IFT and TIFT showed significant and moderate-to-
strong correlations with the Mps-UPDRs 111."* Further, the 90- and 105-min-
ute tapping tasks were equally as close to the 90-minute MDS-UPDRS Il in
timing and therefore we assumed would perform equally well.

To assess the performance of the models, we estimated the mean abso-
lute error (MAE) of the outer-fold models. We evaluated the correlation
between the predicted and true MDS-UPDRS 111 scores at all timepoints
for each outer-fold model. Like the classification models, the MDS-UPDRS
111 scores were estimated at other time points with the 20% patients who
were not used for training. Additionally, as for the classification models,
those data were also used to estimate the repeatability and effect size.

Results

DATA COLLECTED

Twenty PD patients participated in this study. An overview of the demo-
graphic and disease characteristics of the patients was published previ-
ously ;'* 14 patients were male, and their ages ranged from 48 to 70 years.
Patients received one to four capsules of 100/25 mg L-dopa/carbidopa as
they had a supramaximal morning levodopa equivalent dose (LED) rang-
ing from 47 to 391 milligrams. The median MDS-UPDRS 111 score when using
regular medication was 23 and 22 on their placebo and active treatment
days, respectively.'*

We analyzed 31 IMFT, 31 IFT, and 25 TIFT features. No features were
excluded due to nonnormal distribution. Due to goniometer damage, we
had missing data for 1 patient in the placebo condition and 2 patients in
the active condition. As 6 patients had difficulties performing the IMFT,
this led to missing data. However, the missing data were equally distrib-
uted across the treatment conditions and therefore deemed missing at
random.
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CLASSIFICATION OF PLACEBO AND ACTIVE TREATMENTS

We found that the LDA classifier consistently yielded the highest accuracy
for all models (for both baseline uncorrected and baseline corrected);
thus, wereported only the LDA results.

CLASSIFICATION OF TREATMENT EFFECTS The best-performing base-
line-uncorrected composite biomarker, the IFT, yielded an accuracy, pre-
cision, F1 score, and large effect size of 68.50%, 70.23%, 68.93%, and 1.60
respectively (Table 1). The best-performing baseline-corrected compos-
ite biomarker, the IFT, achieved a higher average accuracy, precision,
F1 score, and large effect size of 83.50%, 93.95%, 80.09%, and 2.58. Both
models outperformed the MDs-UPDRS I classification models across all
metrics. The IFT features that were mutually identified as important fea-
tures for the baseline-uncorrected and baseline-corrected classification
models were related to accuracy (e.g., spatial errors and the bivariate con-
tour ellipse area), fatigue (e.g., velocity changes), and velocity (e.g., inter-
tapintervals) (Figure).

CLASSIFICATION OF TREATMENT EFFECTS AT ALL TIME POINTS In
Figure 2, the classification models were applied to all time points, show-
ing the mean predicted probability of an active (>0.5) or placebo treat-
ment (<o0.5). In the baseline-corrected IFT, TIFT, and MDS-UPDRS 11l mod-
els, the mean predicted probability of a patient receiving a placebo
treatment was consistently less than 0.5. In contrast, when active treat-
ment was administered, the baseline-corrected IFT and MDS-UPDRS
I model had a mean predicted probability above 0.5 from 60 minutes
onward. The baseline-corrected IMFT and TIFT models crossed the 0.5
thresholds after 45 minutes. We found that the baseline-corrected IFT bio-
marker determined a large effect size (0.81) at 30 minutes, whereas the
baseline- uncorrected IFT biomarker reached a large effect size of 0.84
at 60 minutes. The MDS-UPDRS 111 achieved a large effect size at 60 min-
utes (1.69 and 1.04 for baseline corrected and baseline uncorrected,
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respectively) (Figure S2). The MDS-UPDRS 111 demonstrated higher repeat-
ability than the tapping tasks. Whereas the baseline-uncorrected Mps-
UPDRS 11l biomarker obtained an excellent icc, the IFT and TIFT both
achieved good i1ccs (0.78, 0.80) (42). However, the iccs of the baseline-cor-
rected MDS-UPDRS 111 and the IFT, IMFT, and TIFT biomarkers decreased to
amoderate Icc range between 0.52 and 0.66.*2

ESTIMATION OF MDS-UPDRS 111

The mean MDS-UPDRS Il total scores at 90 minutes for the placebo and
active treatments were 33.5 and 22.0, respectively. When baseline-cor-
rected, the mean MDs-UPDRS 111 scores for the placebo and active treat-
ments were 0.3 and -13.0, respectively (Figure 3).

The best-performing baseline-uncorrected regression models were the
TIFT and IFT composite biomarkers, which achieved the lowest average
MAE of 10.31 and 10.36, respectively. In addition, the TIFT and IFT showed
large effect sizes of 1.47 and 2.23, respectively, when estimating the MDs-
UPDRS IlI. The best-performing baseline-corrected model was the IFT
composite biomarker, which yielded the lowest average MAE of 7.87. For
both the baseline-uncorrected and baseline-corrected models, the best-
performing composite biomarkers outperformed that of the composite
biomarkers of the three tasks. For the IFT features, the features that were
mutually selected by both models were similar to that of the IFT classifica-
tion features (Figure 2; Figure S1).

ESTIMATION OF MDS-UPDRS IIl AT ALL TIME POINTS The predicted
and true MDS-UPDRS 111 scores were significantly correlated for the base-
line-corrected and baseline-uncorrected models (Table 2). Once again,
the best positive correlations were achieved by the TIFT baseline-uncor-
rected composite biomarker (r = 0.58, P < 0.01) and the IFT baseline-cor-
rected composite biomarker (r = 0.69, P < 0.01). The greatest difference in
the true MDS-UPDRS 111 scores between the placebo and active treatment
interventions was at 90 minutes (Fig. 3). The tapping tasks achieved a
moderate to good icc (Table 2).
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Discussion

DETECTION OF TREATMENT EFFECTS

The IFT biomarker (baseline corrected and baseline uncorrected) was, on
average, more predictive of and more sensitive to treatment effects than
the MDs- UPDRS 11l biomarker in terms of accuracy, precision, and clini-
cal significance (as supported by the effect-size performances) (Table 1).
Thisis significant as the ability to detect changesin aspects of motor func-
tion that may be missed by traditional assessments allows for a more sen-
sitive measure of treatment efficacy. This can be valuable for detecting
small and early changes in motor function that are indicative of a treat-
ment response. The mostimportant IFT features used to classify treatment
effects are in concert with previous studies (Figure 1) that also identified
that forearm movements relating to velocity, amplitude, and rhythm are
sensitive to anti- parkinsonian drug effects.'®'>*%** We demonstrated that
treatment effects were detected at 45 and 60 minutes for the TIFT and IFT
composite biomarkers, respectively (Figure 2). This finding is notable as
the mean onset of L-dopa/carbidopa action is about 50 minutes (45). This
suggests that tapping tasks can detect the onset of oral L-dopa/carbi-
dopa. The MDs-UPDRS II1 was not performed at 45 minutes, so it could not
be determined whether the MDs-UPDRS 111 biomarker could detect treat-
ment effects at 45 minutes. These findings further propound that the tap-
ping tasks are practical and sensitive composite biomarkers for detecting
motor response changesinduced by anti- parkinsonian drugs (46). Further,
the large effect sizes can potentially reduce sample size requirements and
enhance power for future tapping task trials that assess treatment effects.

The performance of the classification models (except for the icc)
improved when the features were baseline corrected. Despite this, both
models provide practical and clinical value. The baseline-uncorrected
models required only a single measurement and represented the current
motor function status. The baseline-corrected models require two mea-
surements and represent the changes in motor function over time. The
increased performance suggests that treatment response is dependent
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on the patient’s tapping profile during their off state and adjusting for
baseline removes variation in the L-dopa/carbidopa response.

ESTIMATION OF MDS-UPDRS |11

We found that the baseline-corrected IFT biomarker, despite yielding the
best performance among all the biomarkers, achieved a prediction error
of approximately eight points and was significantly moderately corre-
lated using the MDS-UPDRS I11. The prediction error is comparable to exist-
ing sensor-based composite biomarkers used to estimate the MDS-UPDRS
I11. Studies using data sourced from an Axitvity Ax3 (placed on the wrist
and back or only the wrist) to estimate the gold standard achieved an MAE
ranging from 4.29 to 6.29 points.*”*® The tapping biomarkers predicted a
smaller range of MDS-UPDRS 111 scores compared to that of the true Mps-
UPDRS 111 scores (Figure 3). It is likely due to using only hand and forearm
motor function assessments to predict the MDS-UPDRS 111 total scores,
which includes motor assessments of other regions affected by pp, such
as gait, facial expression, and speech.* As the correlations of the true and
predicted MDS-UPDRS 111 scores were moderate (Table 2), the tapping bio-
markers still showed concurrent validity with the gold standard. This sug-
gests that the tapping biomarkers could provide clinicians with an under-
standing of the acute effects of drugs on motor fluctuations within a short
monitoring period.

Despite the discrepancies between the true and predicted MDS-UPDRS
111 total scores, with the advancements in technology, it is not unusual
for the performance of new clinical assessments to outperform the cur-
rent gold standard. However, the discrepancy between the two assess-
ments influences the accuracy estimates of the new clinical assessments,
and as it would be interpreted as a prediction error.*® Therefore, we argue
that accurate estimation of the MDS-UPDRS 111 score is not essential for the
adoption of the composite biomarker as a new complementary assess-
ment for estimating symptom severity. Rather, the consequences result-
ing from the disagreement between the gold standard and the tapping
composite biomarkers should be investigated.
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FUTURE WORK

We demonstrated that the tapping composite biomarkers could detect
the onset of oral L-dopa/carbidopa at 45 minutes. A follow-up study could
investigate if the tapping composite biomarkers could detect an earlier
onset of an even faster-acting antiparkinsonian drug, such asinhaled apo-
morphine that has an onset as early as 8 minutes.® This would further vali-
date the sensitivity of the tapping composite biomarker to detect fast-act-
ing dopaminergic drug effects.

Our sample size may limit the generalizability of this study’s findings
as a small sample size may not be representative of the broader popu-
lation of patients with PD, making it difficult to generalize its results to a
larger population.®® This is particularly relevant for pp studies, where
the disease can manifest in different ways and progress at different rates
in different patients. To mitigate the effect of the small sample sizes, we
employed cross-validation to bootstrap and validate the models against
different groups of patients. We propose conducting a follow-up trial to
implement the tapping tasks among more pD patients with more diverse
MDS-UPDRS 111 profiles. The data collected from the trial can be used as
an independent data set to assess the validity, reliability, and generaliz-
ability of our current methods. Although composite biomarkers have the
advantage of capturing multiple aspects of motor function, the effects of
individual components within the composite biomarker must be care-
fully examined to avoid misleading interpretations of the results. For
example, a treatment that improves tapping speed but worsens tapping
rhythm may result in an overall neutral effect, making it difficult to inter-
pret the treatment’s efficacy. Like other composite measures, such as the
MDS-UPDRS Il total score, it is crucial to examine the effects of each fea-
ture of the composite biomarker separately, as well as in conjunction with
the overall composite score, to better understand the treatment’s impact
on finger motor function.
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Conclusion

In conclusion, the IFT biomarker was more predictive of and sensitive to
the detection of treatment effects than the mbps-uPDRS 111 biomarker;
therefore, the tapping biomarkers appear to hold promise for evaluating
the early and rapid effects of antiparkinsonian drugs. Moreover, the tap-
ping task is easy to perform and can be done in clinical settings as well
as at home by patients themselves, making it a practical and convenient
method for monitoring disease progression and treatment response.
Using tapping biomarkers, clinicians can obtain accurate and reliable
datathat caninform treatment decisionsinreal time.
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TABLE1 Themeanandstandard deviationsofthe accuracy, precision, F1score, and effect size for SUPPLEMENTARY TABLE 1 Overview of features forthe Alternate Indexand Middle Finger Tapping
each biomarker (at90 minutes forMmps-uPDRS 111 and 105 minutes for the tapping task) are based on the (IMFT), Alternate Index Finger Tapping (IFT), Thumb-Index Finger Tapping (TIFT)(8)
100 outer folds of the nested cross-validation
Task Endpoint (UNIT) Acronyms
Tasks Accuracy Precision F1-score — Effect-size TIFT Amplitude: Slope from linear regression Mean (TAM)
BASELINE- IMFT 56.90% 61.67% 56.56% 0.60 0.64 of each tap’s amplitude against time. Change (TAC)
UNCORRECTED (+15.09%) (+22.53%) (+18.07%) (+0.25) (£0.57) (degrees and degrees/seconds)
IFT 68.50% 70.23% 68.93% 0.78 1.60 TIFT Angle frequency change: Change in peak Frequency Mean (AFM)
(+12.56%) (+16.31%) (£14.9%) (x0.21) (£0.82) tapping frequency over time (Hz/min) Frequency Change (AFc)
TIFT 67.72% 65.55% 67.51% 0.78 114 Angle change (degrees®/s) Angle Mean (AAwm),
(£15.84%)  (£21.03%)  (£18.22%)  (+0.22) (0.80) Angle Change (aAc)
All 3 Tasks 63.0% 64.35% 59.82% 0.68 0.91 IMFT, IFT Bivar!ate contour ellipse angle (degree) BCEA angle (BcT)
(+16.91%) (+27.32%) (+23.16%) (+0.29) (+0.68) Bivariate contour ellipse area (mrT1 ) ' BCEA area (BCA)
63.75% 61.200% 68.90% 0.92 103 BCEA represents the area of an ellipse which
MD,S_UPDRS (1970 iy o0 * ’ encompasses the fixation points
111 item scores (+11.25%) (£10.9%) (£11.52%) (+0.10) (+0.60) - -
IMFT, IFT Distance travelled between consecutive taps  Total (DTT)
BASELINE- IMFT 66.86% 70.83% 69.01% 0.57 1.44 timet A
+1523%)  (£17.25%)  (£15.04%)  (:0.17) (£0.98) (centimetres) verage (1)
CORRECTED (+15. — = - - Standard Deviation (DTS)
IFT 83.50% 93.95% 80.09% 0.53 2.58 Covariance (DTV)
(+10.74%)  (+11.25%) (+14.92%) (+0.16) (+0.90) Change between first/last (bTp)
TIFT 77.86% 82.32% 74.72% 0.52 1.14 Change between intervals (DTC)
(£14.97%) (£21.43%) (£18.44%) (£0.17) (+0.80) IMET, IFT, TIFT  Inter-Tap Interval: Time between two Average (1TA)
All 3 Tasks 77.98% 81.85% 74.66% 0.48 0.91 consecutive taps (milliseconds) Standard Deviation (1Ts)
(+13.26%) (£21.15%) (£19.17%) (+0.18) (£0.61) Covariance (1Tv) Change between (1T¢)
MDS-UPDRS  75.75% 79.95% 73.93% 0.66 2.12 Change between first/last (17p)
111 item scores  (+14.45%) (+17.64%) (+16.42%) (+0.11) (+1.25) IMFT, IFT Missed Taps: Total number of double/missed  Total number of double/missed taps (DBLTT)
taps (DBLTT) Ratio good taps: total taps (DBLTR)
Ratio good taps: total taps (DBLTR) (count)
TABLE 2 Averagecorrelationandicc (95% Cl) between thetrue and predicted MDs-UPDRS scores IMET, IFT Number of Halts: Number of taps where the ~ NOH
across alltime pointsforthe repeated nested cross-validation 100 outer-fold predictions. inter-tap interval is larger than 2 * ITMm (count)
TIFT Peak frequency area under the curve: Amplitude (FPA)
Tasks Correlation p-value icc Effect-size The total power around the peak frequency ~ Frequency (FPF)
coefficient (r) in the power spectrum around the peak Area under the curve (FPP)
BASELINE- IMFT 0.10[0.03,0.16]  p<.05[<.05,0.05]  0.69[0.65,0.73] 0.67[0.53,0.81] frequency (degrees®)
UNCORRECTED IMFT, IFT Ratio good taps:total taps: Taps on the TNT
IFT 0.52[0.45,0.59]  p<.01[<.01,<.01]  0.80[0.76,0.83] 1.02[0.91,1.14] correct side (left/right) of the screen
TIET 0.58[0.53,0.63] p<.05[<.01,<.05]  0.78[0.74,0.82] 1.47[1.27,167] IMFT, IFT spatia]'cer:m“ ideand X Total (SE(T) |
Sum of the Euclidean distances between Average (SEA
All 3 Tasks 0.11[0.04,0.18] p<.05 [<.05, 0.05] 0.66[0.61,0.71] 0.75[0.62,0.88] cach tap and the center of the target Standard Deviation (SEs)
BASELINE- IMFT 0.34[0.27, 0.40] p<.05 [<.01, 0.06] 0.48[0.44,0.52] 1.10[0.92,1.28] (millimeters) Covariance (SEV)
CORRECTED Change between (sED)
IFT 0.69[0.65,0.73] p<.001[<.001,<.005] 0.45[0.42,0.48] 2.23[2.01,2.45] Change between first/last (SEC)
TIFT 0.65[0.60, 0.69] p<.001[<.001,<.001] 0.50[0.46,0.54] 1.37[1.20,1.54] IMFT, IFT, TIFT  Total number of taps TNT
All 3 Tasks 0.56 [0.52, 0.61] p<.05[<.001,<.05]  0.43[0.39,0.47] 1.06[0.91,1.21] IMFT, IFT Total taps inside and outside target Taps within the target circle (T1T)
Taps outside the target circle (ToT)
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[continuation of Supplementary Table 1]

Task Endpoint (UNIT) Acronyms
IMFT, IFT Mean of each finger tap’s velocity Average (VEA)
(centimetres/minute) Standard Deviation (VES)
Covariance (VEV)
Change between first/last (VED)
Change between intervals (VEC)
TIFT Mean of each finger tap’s velocity Mean (TvM)
(degrees/second)? Change (TvC)
TIFT Velocity Amplitude (degrees/second)? Velocity Amplitude Mean (vam)
Change (vac)
TIFT Velocity Closing: Average of the amplitude Mean (cvm)
(i.e. angle) travelled per second foreachtap ~ Change (cvc)
when moving the index finger towards the
thumb (closing); velocity extracted from the
derivative of the amplitude (degrees/second)
TIFT Velocity Frequency (Hz) Mean (VEM)
Change (vFc)
TIFT Velocity Opening: Average of the amplitude Mean (ovM)

(i.e. angle) travelled per second for each tap
when moving the index finger away from the
thumb (opening); velocity extracted from the
derivative of the amplitude (degrees/s)

Change (ovc)
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SUPPLEMENTARY FIGURE 1 Theaverage feature coefficients selected by the elastic-net linear

regression models for each of the composite biomarkers under baseline-uncorrected and baseline-

corrected conditions. The errors represent the 95% confidence intervals.
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SUPPLEMENTARY FIGURE 2 Effectsizesof each ofthe tappingtasks and the Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale, Part Ill, composite biomarkers at each time point.
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Introduction

This discussion chapter will unpack the motivation behind the develop-
ment and adoption of MHEALTH biomarkers for clinical diagnosis, symp-
tom severity estimation, and treatment effect detection. As with any
novel biomarker, there are multiple implications and limitations span-
ning the ethical, privacy, and practical domains. These considerations,
especially for clinicians and their potential broader applicability to other
CNs disorders, will be discussed. Moreover, | will discuss the potential of
MHEALTH composite biomarkers for future clinical trials. The conclusion
will provide a clear grasp of the present state, obstacles, and potential
future of MHEALTH biomarkersin clinical environments.

MHEALTH biomarkers: from research to clinical
application

Central Nervous System (cNs) diseases have profound impacts on various
facets of daily functioning. Traditionally, the evaluation of disease sever-
ity is largely reliant on temporally confined assessments conducted indi-
rectly by clinicians who only intermittently engage with patients, poten-
tially supplemented by auxiliary information sourced from patient’s close
acquaintances, such as spouses. Consequently, the current approaches
inherently yield a relatively episodic and potentially distorted view of
disease progression. Traditionally, the evaluation of disease severity
is largely reliant on temporally confined assessments conducted indi-
rectly by clinicians who only intermittently engage with patients, poten-
tially supplemented by auxiliary information sourced from patient’s close
acquaintances, such as spouses. Consequently, the current approaches
inherently yield a relatively episodic and potentially distorted view of dis-
ease progression. In contrast, objective evaluation of Activities of Daily
Living (apL) facilitated by smartphone, wearables, and tablets offers
a more immediate, continuous, and accurate portrayal of a patient’s
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condition. By capturing real-time data on a patient’s everyday function-
ing, these devices can provide a nuanced, longitudinal view of disease
severity, which, in turn, allows for the potential to track the symptomatic
impact of therapeutic interventions. Thus, the utilization of these mobile
technologies for the objective quantification of ADLs not only offers a
more direct, reliable, and comprehensive measure of disease severity but
also illuminates the dynamics of disease progression and the potential
efficacy of pharmacological interventions.

As illustrated by the literature review in Chapter 2, these mobile health
(MHEALTH) biomarkers offer a multi-faceted and data-driven approach
towards monitoring disease status, disease progression, and treatment
responses, which enables a better understanding and management of
these neurological and psychiatric disorders. These MHEALTH biomarkers
involve the integration of multiple MHEALTH features ranging from data
from smartphone, tablets, wearables, and clinical measures. Machine
Learning (ML) can be valuable when there is an ambiguity or a lack of con-
sensus regarding which features are relevant (or to what extent they are
relevant) in predicting an outcome. Such novelty and ambiguity are inher-
ent when dealing with MHEALTH data, due to the diversity of sensors used
for data collection, as well as the complex interactions between disease
profiles, lifestyles, environmental factors, social interactions, and other
uncontrolled external factors. While the current scientific literature and
clinicians’ understanding of disease profiles can aid the identification of
relevant features, the interplay between these features for a given indi-
vidual or population can be difficult for experts to discern. Given this diffi-
culty, clinicians may be less enthusiastic about including these new mea-
sures into clinical trials. This thesis proposes that for MHEALTH devices
and ML to truly benefit healthcare, they must provide substantial benefits
to patients and clinicians beyond a digitized gold standard measurement.
This thesis argues that these MHEALTH biomarkers can provide a nearly
continuous, remote, unobtrusive profile of disease in a way that tradi-
tional gold standard measurements, digital or not, cannot.

PARTV  CHAPTER 9

N
wu
L]

N -ITMTITHHTHTHTHTHTHHHHHHHllHHHHHHHHH_HHHHH HHHHH H T H H i



256

Classifying a diagnosis

Evaluating the classification performance of a MHEALTH composite bio-
marker in distinguishing patients from healthy controls is a crucial fac-
tor in assessing its suitability for the intended purpose. The magnitude
of difference between the two groups can provide insights into the level
of change in disease activity and aid in estimating sample sizes for future
clinical trials." However, the premise that a specific treatment will ren-
der a patient with a cNs more like a healthy individual is not always via-
ble, especially in the context of cNs disorders, thus comparison to healthy
controls is not always necessary or meaningful. Instead, a crucial factor
liesin identifying differences between someone with mild symptoms and
someone at a more advanced stage of the disease. Nevertheless, for the
initial development and validation process, we have created classifiers
capable of distinguishing between control subjects and patients. If suc-
cessful classification is achieved, the MHEALTH features used to develop
the composite biomarkers can provide valuable information for under-
standing disease activity. This information can further inform the devel-
opment of targeted interventions and monitoring strategies for patients
with these conditions.

For a biomarker to have clinical utility, it must demonstrate clinical
validity. Clinical validity refers to the ability of a biomarker to accurately
identify, predict, or estimate the presence or severity of a disease or condi-
tion. MHEALTH biomarkers currently aim to approximate clinicians’ deci-
sions based on the available training data. While a clinical diagnosis has
long been the gold standard, the diagnostic potential of MHEALTH bio-
markers may offer novel insights into disease and treatment activities.
The selection of an appropriate reference gold standard measurement
significantly influences the clinical validation process of MHEALTH bio-
markers, as the biomarker’s performance is inherently tied to the qual-
ity and validity of the chosen gold standard. The reliance on a gold stan-
dard measure with limited validity or substantial interrater variability can
introduce potential biases and undermine the accuracy and reliability of
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the biomarker. For FSHD, a genetic test is required for a diagnosis,?* while
a MDD patient would be diagnosed if they persistently demonstrate five
or more depressive symptoms (such as depressed mood, anhedonia,
lack of energy, poor concentration, or sleep disturbances).’ The subjec-
tive and descriptive nature of the MDD clinical scales reduces its sensitiv-
ity to subtle psychomotor symptoms. Chapters 3 successfully developed
classification models that could distinguish between Facioscapulo-
humeral dystrophy (FSHD) patients and healthy controls. This study lev-
eraged remotely collected multi-faceted data, including information
on social interactions, location, and sleep activity, to classify a clinical
diagnosis that was assessed on genetic, functional, or behavioural fac-
tors. This innovative approach expands our knowledge beyond the lim-
ited measurements obtained within the confines of a clinical setting. By
harnessing the power of MHEALTH technologies and data analytics, we
can now capture real-life experiences and behaviours that were previ-
ously unexplored. However, it is crucial to assess the clinical validity of
these biomarkers to ensure their effectiveness and accuracy in real-world
applications.

Given that MHEALTH devices mainly collect real-world data, these
biomarkers may be influenced by real-world factors, such as location,
weather, life-style factors, and concomitant drug use.! Individual vari-
ations in behaviour can potentially affect the reliability of the biomark-
ers. If a composite biomarker can accommodate the inherent variabil-
ity observed in real-world settings, while consistently producing reliable
results, it can be considered a viable and validated measurement. Thus,
longitudinal studies and test-retest reliability analyses can help deter-
mine the stability and consistency of these biomarkers. As addressed in
Chapter 2, research on the consistency and repeatability of a compos-
ite biomarker, as well as its ability to account for long-term variability, is
currently limited. To ensure that the biomarkers developed in this the-
sis were reliable and consistent, Sections 2 to 4 explored the compos-
ite biomarkers’ ability to consistently achieve consistent and repeatable
results across subjects and time windows. Specifically, Chapters 3 to 5
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demonstrated that using the first week of data for the development of a
ML-biomarker allowed for consistent and stable prediction of symptom
severity for the remainder of the trial period. This finding highlights the
importance of collecting enough data for the development of a reliable
composite biomarker and at least one week of data appears to be neces-
sary for the accurate estimation of clinical severity and the monitoring of
disease activity outside the clinic. Chapters 6 and 7 demonstrated con-
sistent intra- and inter-device reliability of the cough and cry biomarkers
across different audio recording settings. Chapter 8 illustrated that train-
ing the composite biomarkers on a single timepoint enabled repeatable
and reliable estimations of treatment effects and MDs-UPDRS 111 scores
across other time points. In conclusion, the studies included in this the-
sis, conducted under different settings and with different clinical popula-
tions, suggest that composite MHEALTH biomarkers show promise regard-
ing measurement validity.

Estimating symptom severity

Symptom severity estimation based on composite biomarkers provides
an objective and standardized measurement for tracking disease pro-
gression and treatment response. The development and validation of
composite biomarkers for the estimation of symptom severity in clini-
caltrials play a crucial role in determining if the composite biomarker can
serve as a meaningful endpoint in clinical trials. The robust relationship
between the composite biomarker’s predicted symptom severity score
and the gold standard score indicates the relative effectiveness of the
biomarker in capturing and quantifying symptom severity, thereby sup-
portingits utility in clinical trials. While a perfect correlation may never be
achieved due to the nature of the data collected, further research should
determine if the observed discrepancy is acceptable and if the cause of
the discrepancy is due to the limitations of the composite biomarker or of
the gold standard. Chapters 4, 5, and 8 were aimed at developing com-
posite biomarkers that could estimate the symptom severity of patients
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with FSHD, MDD, and Parkinson’s Disease (PD). While the composite bio-
markers demonstrated in each of these chapters showed a certain degree
of promise and applicability, their alignment with the gold standards was
not perfect. This highlights potential gaps for investigation and areas for
refinement in measurement and predictive accuracy. Based on the stud-
iesaddressed in thesis, there may be three causes for the discrepancy.

First, the MHEALTH sensors cannot monitor all behaviours that are
assessed by the gold standard. For example, in Chapter 4, the MHEALTH
sensors may have failed to capture arm, abdominal, and scapular weak-
nesses (which are assessed by the FsHD Clinical Score).® The identified
limitation underscores the importance of discerning the specific aspects
of disease activity that can and cannot be effectively monitored using
MHEALTH sensors. However, despite this limitation, the study demon-
strated the potential of MHEALTH-derived biomarkers in measuring the
extent of disease severity beyond the confines of the clinical setting. This
capability offers valuable insights into the manifestation of disease activ-
ity and itsimpact on a patient’s daily quality of life.

Secondly, objectively monitored behaviour and subjective percep-
tion of behaviour are not always correlated. As shown in Chapter 5, the
daily, detailed, and objective measures of sleep were not well-correlated
with the subjective and weekly reported sleep quality. Several factors can
influence the subjective reporting of sleep, including mood at the time of
awakening,” insomnia, impaired memory, and negative bias.® Previous
studies have also confirmed that objective sleep assessments do not cor-
relate with subjective reports of sleep.®'° This indicates that while objec-
tive measures may provide more accurate and reliable data about disease
activity, subjective reports may still provide valuable insights into an indi-
vidual’s perception and experience of their own behaviours.

Thirdly, it is conceivable that the composite biomarker offers supe-
rior capabilities in measuring disease activity than the gold standard
or at least captures distinct dimensions of disease activity that are not
quantified by the gold standard. The tapping composite biomarkers pre-
sented in Chapter 8 offer a more objective, nuanced, and comprehensive
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depiction of a PD patient’s fine finger movement than the MDS-UPDRS 111.
It is important to acknowledge that composite biomarkers may exhibit
advantages over the gold standard in terms of sensitivity and specific-
ity. Through the utilization of MHEALTH data and ML, these composite bio-
markers have the potential to identify subtle disease markers that may be
overlooked or missed by conventional clinical observations. By leverag-
ing these advanced approaches, researchers can gain deeperinsightsinto
the complexities of disease activity and potentially enhance the precision
and effectiveness of monitoring disease activity and treatment effects.

Further studies are needed to bridge the gap between MHEALTH sen-
sors and traditional clinical assessments. Understanding the relation-
ship between objective data, the gold standards, and patient feedback is
pivotal. Additionally, refining composite biomarkers will drive more pre-
cise clinical monitoring. These steps are crucial for seamlessly integrating
MHEALTH toolsin clinical trials.

Detecting treatment effects

To evaluate if the composite biomarker is fit-for-purpose for assessing
treatment effects, the biomarker needs to be evaluated for its ability to
respond to changes in disease activity in response to a treatment. Chap-
ter 8 explored the ability of a tablet-based composite finger tapping bio-
marker to detect anti-parkinsonian (dopaminergic) treatment effects
among PD patients. This study investigated if a composite biomarker
demonstrates comparable or superior performance to the gold standard
in the detection of treatment effects. The approach taken in this chap-
ter introduces a unique perspective compared to previous chapters, as
the gold standard measurement was not the predicted outcome itself.
Instead, the focus was on comparing the sensitivity and efficacy of the
biomarker in relation to the gold standard in the detection of treatment
effects. This novel approach presents a fresh methodology for evaluat-
ing the validity of a biomarker in clinical trials as it offers a broader per-
spective on biomarker evaluation, going beyond the traditional notion
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of a biomarker as solely a predictive or diagnostic tool. This focus shifts
towards providing an additional layer of evidence of the biomarkers’
unique ability to capture clinically relevant changes and potentially high-
lighting the limitations of the gold standard.

Limitations of mhealth composite biomarkers

The nature of the MHEALTH devices used raises questions regarding the
accuracy and reliability of the data, as factors such as device quality, sen-
sor reliability, data collection protocols, and user adherence can lead to
inconsistent or complete data. In turn, this can affect the reliability and
validity of the composite biomarkers, and their subsequent predictions.
To overcome theseissues, this thesis proposes two main methodologies.
First, given that MHEALTH data is collected under free-living environ-
ments and requires patients’ consent and engagement, seamless inte-
gration of MHEALTH data collection tools into existing clinical workflows
is crucial. The tools should be user-friendly, compatible with the patient’s
lifestyle and mobile phone, and should be able to provide consistent, and
formative results to the clinicians. Hence, it’s crucial to report the quan-
tity of missing data for each study and if possible, as shown in Chapters
3, report the study participants’ experience with the remote monitoring
platformto understand the causes of the missing or poor-quality data.
Second, alarge and representative datasetis necessary to build arobust
and generalizable biomarker. With a larger sample size, the model can cap-
ture a wider range of patterns, relationships, and variations in the data,
leading to improved accuracy and generalizability of predictions. The
larger sample size reduces the variability in the performance estimates,
providing more reliable assessments of the model’s strengths and weak-
nesses. Further, it provides a broader range of instances for the model
to learn from, facilitating the identification of more intricate and subtle
relationships between features. A representative dataset would reflect
a true distribution of the target population, including various demo-
graphic factors, characteristics, and potential confounding variables. By
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incorporating diverse samples, the model becomes more robust to vari-
ations and biases present in the data, ensuring its predictions are reliable
acrossdifferent subgroups or settings.

Reflecting on the chaptersin this thesis, to estimate the minimum data-
set size for MHEALTH-based clinical trials, consider the desired effect size,
statistical power, variability in the specific outcome, type of outcome (e.g.,
classification vs. severity), potential data collection issues, and the com-
plexity introduced by external factors and free-living conditions. Adjust-
ments should be made based on real-world constraints and the quality of
MHEALTH data. For example, in a follow-up study, the objective would be
to detect a 10% improvement in FSHD symptoms under free-living condi-
tions. We recognize that sleep activity can affect the FSHD assessments,
and hence a larger sample size would be needed to account for the sleep
variability. If the study spans a long period, environmental or behavioral
factors such as seasons, physiotherapy sessions, or living conditions may
affect the physical activity measurements. Therefore, researchers may
choose to stratify their sample based on seasons, therapy, or living condi-
tionsto account for these variations.

Due to the limited sample sizes of the studies in this thesis and the liter-
ature review, it’s difficult to claim if the composite biomarkers may gener-
alize well to diverse populations, settings, or clinical trial protocols. As a
result, the performance of composite biomarkers may vary across differ-
ent trials and patient populations, which highlights the need to validate
their effectiveness across different contexts.

Implications for clinicians

The benefits of using of MHEALTH technologies and ML to provide a clin-
ical prediction include efficiency, consistency, accessibility, and data-
driven insights. As these technologies do not experience fatigue or inter-
rater variability, they can ensure more consistent and less variable clinical
outcomes. The collection and analysis of diverse data sources, including
patient-reported outcomes, physiological measurements, and behav-
ioral data can enable a more comprehensive and faster understanding of
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disease status, disease activity, and treatment response. These biomark-
ers can potentially help clinicians refine or redefine how they view disease
beyond traditional siloed disease-specific definitions. Further, the auto-
mated processing of large volumes of data could enable fast predictions,
which would save valuable time for clinicians.

Despite their promise, it’simportant to note that composite biomarkers
should not be considered as a replacement for traditional clinical assess-
ments. Traditional clinical assessments, which typically involve a compre-
hensive evaluation of a patient’s medical history, physical examination,
and laboratory tests, are crucial in providing an accurate diagnosis and
monitoring of disease activity. Further, they can infer an understanding of
subjective and contextual factors that may not be easily captured in the
medical datasets. ML rely on understanding the patterns within a train-
ing data, which may not represent all possible scenarios, and less likely
to represent rare or complex cases. The critical thinking of clinicians may
allow them to adapt their knowledge to diagnose challenging or atyp-
ical conditions. While MHEALTH biomarkers has shown promise for clini-
cal assessment, this thesis argues that it is essential to view ML as a tool to
augment human expertise rather than a complete replacement.

The objective of a remotely monitored clinical trial should be to
develop a synergistic approach that leverages the strengths of traditional
clinical assessments, MHEALTH devices, and ML. By harnessing the power
of composite biomarkers alongside traditional clinical assessments, we
can better quantify disease activity and provide more effective and per-
sonalized care to patients. This integrated approach has the potential to
aid future developments in clinical research and contribute to significant
advancementsin healthcare.

Implications for other cNs disorders

Developing MHEALTH biomarkers for MpD, PD, FSHD, and hospitalized
infants carries several potential implications for the development and
application of MHEALTH biomarkers for other cNs disorders. The proto-
cols and methodologies for the data collection and MHEALTH biomarker
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development and application can potentially be transferred and applied
to otherareassuch as bipolar disorder, Amyotrophic Lateral Sclerosis, and
Alzheimer’s disease. This cross-fertilization of methodologies can acceler-
atethe progress of biomarker research in these related conditions. It could
allow researchers and clinicians to identify similarities and differences in
symptom severity and treatment responses across various conditions.
Similar physiological and behavioural patterns may exist across different
conditions, and using the same biomarker to monitor both populations
may facilitate comparative analysis between different clinical populations.
For example, the social activity biomarker to identify depressive episodes
among MDD and bipolar patients. This enhances the generalizability of the
research findings and allows for broader application and transferability of
knowledge across a wider range of clinical populations.

Impact on future clinical trials

By identifying the optimal sensors, features, and data collection peri-
ods for the development of composite biomarkers, future clinical tri-
als can be more efficient, less time-consuming, and less costly, which in
turn can alleviate the study burden for both patients and clinicians. reduc-
ing the feature space and the amount of data required also reduces the
need for more complex ML algorithms that may potentially limit interpret-
ability and therefore adoption. More specifically, feature selection tech-
niques can help remove noise and irrelevant data, improving the accuracy
of the analysis and the interpretability of the final biomarker. Parts 2 to
4 of the thesis employed various feature selection approaches to identify
the most relevant features for analysis. This is crucial for informing future
clinical trials about the specific features and corresponding sensors that
are essential for achieving their research objectives. Additionally, in Parts
2 and 3, the studies described determined the amount of data necessary
to develop a reliable composite biomarker. These findings emphasize the
significance of data curation and its role in obtaining a dependable and
informative composite biomarker.
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Ethicalimplications

The ethical governance of MHEALTH biomarkers is a crucial aspect to con-
sider in their integration into clinical trials. Clinicians and healthcare pro-
viders tend to exhibit higher levels of trust in MmL-derived biomarkers that
are explainable and transparent in their decision-making process. Under-
standing how each feature or input influences the final predictions of the
biomarker can be important for its adoption. While deep learning mod-
els have shown remarkable prediction accuracy in various domains,
they often lack interpretability.** Unlike traditional ML models that can
provide insights into the relationships between input features and pre-
dictions, deep learning models operate as black boxes, making it chal-
lenging to explain their decision-making process. This lack of interpret-
ability raises concerns about the accountability and fairness of MHEALTH
biomarkers.

When an inaccurate prediction is made by an MHEALTH biomarker, it
raises questions about who should be held responsible for any harm-
ful or fatal consequences. The lack of interpretability in ML models hin-
ders the ability to understand and address potential biases, errors, or
limitations of the biomarker’s predictions.*® It becomes essential to
ensure that the use of MHEALTH biomarkers in clinical trials follows rig-
orous ethical guidelines, including transparency, accountability, and
mechanisms for addressing potential harms or errors. The integration of
MHEALTH biomarkers in clinical practice requires a balance between the
benefits they offer and the ethical consequences they entail. While high
prediction accuracy is desirable, it should be accompanied by interpret-
ability and transparency to ensure the fair and responsible use of these
biomarkers. Ethical governance frameworks that emphasize explain-
ability and accountability can help address concerns related to poten-
tial biases, errors, or unintended consequences associated with MHEALTH
biomarkers.
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Privacy implications

The integration of MHEALTH biomarkers in clinical trials brings forth sig-
nificant privacy concerns and implications. The utilization of MHEALTH
biomarkers in clinical trials entails the collection of an unprecedented
amount of personal information about study participants.® In this the-
sis, the MHEALTH technologies used were the study participants’ smart-
phones and third-party wearable devices. It is important to acknowledge
that these technologies, although widely available, are not specifically
designed as medical devices, which limits the clinician’s control over their
functionalities. One® aspect of concern is the level of control that individ-
uals, including the study participants and device developers, have over
these devices. Since these technologies are owned and operated by the
participants themselves, the clinician or researcher may have limited
ability to regulate or monitor their usage. This lack of control introduces
potential vulnerabilities in terms of data security and privacy.” Unauthor-
ized access to such sensitive information can have severe consequences,
including identity theft, discrimination, or exposure of personal health
details.” Aggregated and de-identified data, if mishandled or inade-
quately protected, can still carry privacy risks when re-identified or com-
bined with other datasets. This highlights the importance of robust data
anonymization and de-identification techniques to safeguard the privacy
of study participants.

To mitigate these privacy concerns and potential harms, it is essen-
tial to implement stringent privacy protection measures. This includes
obtaining informed consent from participants, ensuring secure data
transmission and storage, and adhering to relevant privacy regulations
and guidelines. Additionally, transparent communication with partic-
ipants about data usage, anonymization practices, and the purpose of
data collection can foster trust and promote participant engagement. By
prioritizing privacy protection and adhering to best practices, clinicians
can strike a balance between leveraging the benefits of MHEALTH bio-
markers and safeguarding the privacy of study participants.
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Conclusion

The development and application of composite biomarkers using
MHEALTH devices and ML holds significant promise for clinical research.
These biomarkers can integrate diverse data sources and provide a more
comprehensive understanding of disease status, symptom severity, and
treatment effects. The use of MHEALTH devices and ML in clinical trials
presents opportunities for real-time data collection, disease symptom
monitoring under free-living conditions, and more accurate and timely
detection of treatment effects. However, there are challenges and con-
siderations that need to be addressed. These include ensuring the clini-
cal validity and reliability of these novel biomarkers, by addressing opti-
mized and standard data collection protocols, and maintaining ethical
and privacy governance in the integration of MHEALTH technologies in
clinical trials. Further, the adoption and acceptance of MHEALTH bio-
markers by clinicians and healthcare providers depend on factors such as
interpretability and explainability. Explainable biomarkers that provide
insights into how features effect the biomarker predictions can enhance
trust and facilitate their integration into clinical (research) practice. Over-
all, these discussions highlight the potential of MHEALTH devicesand ML in
complementing clinical research. While there are challenges to overcome,
the advancements in this field offer exciting opportunities for advancing
thefield of cNS research.
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Introduction

The traditional methods of monitoring Central Nervous System (cNs) dis-
eases often rely on sporadic in-person clinical assessments conducted
under clinical settings, which may offer an incomplete or distorted rep-
resentation of a patient’s condition.”> This episodic and in-person
approach can miss fluctuations in a patient’s condition and doesn’t cap-
ture a complete picture of their daily living. However, advances in mobile
health (mHealth) technologies, including smartphones, wearables, and
tablets, offer a potential solution for addressing these limitations by
enabling continuous, real-time data collection on a patient’s daily liv-
ing.®> These mHealth technologies can monitor a variety of health met-
rics, like heart rate, sleep patterns, and daily physical activity through-
out the day and night, regardless of the patient’s location. Using mHealth
technologies to remotely collect data unobtrusively can provide a clini-
cian a more complete overview of a patient’s clinical status. The integra-
tion of mHealth and ML into clinical trials should be viewed as a comple-
ment to, rather than a replacement for, traditional clinical methodology.
The clinical expertise of humans, which includes clinical experience and
human rapport remains irreplaceable. As both mHealth technologies, ML,
and clinical practices continue to evolve, this integrated approach allows
fora more dynamic and data-driven approach, which may ensure that the
design of clinical trials remain at the forefront of both technological and
medical advancements.

The sheer volume and complexity of data generated through mHealth
devices can present new challenges. It’s not merely the size but the het-
erogeneity of the data that makes manual analysis not just labor-inten-
sive but also difficult to model.** This is where Machine Learning (ML)
comes into play. Chapter 2 underscores the potential for ML algorithms
to develop validated mHealth-based biomarkers that can be deployed in
clinical trials.® ML algorithms can efficiently sift through vast and multi-
faceted datasets to identify patterns or correlations that may aid the clin-
ical interpretation of the data. By combining ML algorithms with mHealth
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data to create remotely monitored biomarkers, we can potentially create
novel mHealth biomarkers that can be used for diagnosis classification,
symptom severity estimation, and quantification of treatment effects.
These biomarkers can potentially generate novel insights that may be
missed by the clinical gold standard assessments, making it possible to
gain a deeper understanding of disease states.* However, this relatively
young field still requires further research and standardization to encour-
age adoption of these technologiesinto clinical trials.

In the following sections, | will summarize the findings and discus-
sions presented in my previous thesis chapters that explore the var-
ied applications and challenges of mHealth biomarkers in clinical trials.
| will address how these biomarkers can be developed and applied for
diagnosis classification, and as a result offer novel insights into disease-
related behavioural profiles that may be elusive in conventional clini-
cal settings. Additionally, the role of mHealth biomarkers in estimating
symptom severity will be discussed, and | will examine the importance of
developing mHealth biomarkers that are reliable across different condi-
tions and populations. | will also speak to how these biomarkers can be
designed for treatment detection, setting the stage for longitudinal mon-
itoring of treatment efficacy. Finally, | will delve into the limitations of
mHealth biomarkers, identifying areas that warrant further research and
standardization.

Disease Classification

In the context of clinical trials, disease severity classification biomark-
ers not only offer a quantifiable measure to assess the baseline severity
of a disease among trial participants, but it can also act as a reference to
track disease progression over time. When evaluating the effectiveness
of investigational drugs, these biomarkers become invaluable. If the drug
aims to influence the trajectory of a disease, a change in the biomarker’s
course over time can be indicative of the drug’s effect. As aresult, leverag-
ing disease severity classification biomarkers can enhance the precision
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and reliability of clinical trial outcomes, ensuring that potential treat-
ments are assessed both for their immediate impact and their influence
onthe longer-term progression of the disease.

Chapter 3 investigated the feasibility of classifying Facioscapulo-
humeral dystrophy (FSHD) patients and healthy controls using the CHDR’s
Trial@Home platform. Key features, such as sleep activity and loca-
tion patterns, were identified that distinguished between FSHD patients
and controls.® This suggests that significant variances observed in sleep
and location patterns might serve as potential novel clinical biomarkers
as they currently are not captured by the gold standard assessments of
FSHD.'® These biomarkers, in turn, can be essential in guiding the process
of drug development, potentially offering a targeted approach for drug
interventions in treating or managing the associated conditions. '

Achieving optimal classification accuracy requires a delicate balance
between the quantity of features and the duration of monitoring. Intro-
ducing a broader range of features from various sensors, such as those
from smartwatches and smartphone GPs systems, can improve the pre-
cision of the predictions. However, increasing the amount of information
into a model also adds complexity to the clinical understanding of these
mHealth biomarkers and increases the patient’s burden of increased data
collection.'»"3

SYMPTOM SEVERITY ESTIMATION

mHealth biomarkers, when utilized for symptom severity estimation,
offer an innovative approach to assessing the effects of drug interven-
tions in clinical trials. As researchers assess new drugs in Phase 2 trials,
understanding the relationship between a drug, its dosage, and its resul-
tant effects over time is pivotal.'* mHealth biomarkers can provide a clear
picture of this relationship, aiding in establishing a safe and effective dos-
age range. mHealth biomarkers also have the potential to serve asimme-
diate indicators of a drug’s efficacy. They can quantify symptom fluc-
tuations over time, offering a more comprehensive view compared to
labor-intensive methods like clinical interviews. This frequent monitoring
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can be especially valuable in discerning even the most subtle changes in
symptom severity, which is fundamental for early identification of the
efficacy of a treatment. By continuously monitoring changes in the bio-
markers, researchers can gain valuable feedback on whether the drug is
having its intended effect, which is especially crucial during Phase 2 trials
where therapeutic effects are under scrutiny. For these biomarkers to be
regarded as clinically valid, it isimperative that they correlate with recog-
nized clinical endpoints. Whether those endpoints concern disease pro-
gression, symptom relief, or other clinically relevant measures, a strong
association assures that the biomarker is a trustworthy measure of the
drug’simpact.

Chapter 4 investigated the performance of multi-task models to simul-
taneously estimate the scores of two clinical assessments, the FSHD clin-
ical score and the Timed Up and Go (TuG) test.'® Traditional single-task
models, while they may be effective for predicting a single outcome, may
fall short when applied to the multi-dimensional symptom profiles that
often encountered in clinical settings. Therefore, the principal advantage
of multi-task models over their single-task counterparts is their ability
to leverage shared representations and insights across multiple clinical
assessments.'®"'® Moreover, the ability of multi-task models to general-
ize from one clinical assessment to another can be critical in evaluating
disease severity across a spectrum of assessments. For example, if the
model identifies a deterioration in the FSHD clinical score, it might also
predict a parallel decline in the TuG score. Finally, multi-task models can
offer a more holistic view of patient health, encompassing various facets
of disease severity in a single, unified framework. By enabling the parallel
assessment of multiple assessments, these models can provide a fuller,
more nuanced picture of disease status, thus guiding more targeted and
effective interventions.

In Chapter 5, the significance of self-reported outcomes, specifically
the Depression Anxiety Stress Scale (DAss) and the Positive and Nega-
tive Affect Schedule (PANAS), emerged as decisive features for the depres-
sion models. Their inclusion served as a robust indicator for subjective
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psychological states, highlighting the irreplaceable value of patient input
in capturing the nuances of mental health conditions. Interestingly, even
though passively collected features like walking speed and location were
not as predictive as DASS and PANAS, they still made valuable contribu-
tions to the overall effectiveness of the models. This finding also under-
scores the importance of integrating real-world, passively collected data,
as it appears to reveal patterns and insights that might be overlooked
in more controlled clinical settings. Additionally, the models’ capac-
ity to accurately represent the full spectrum of depression severity was
augmented by the inclusion of healthy controls. This inclusion not only
enhanced the robustness of the models but also extended the represen-
tation of the potential remission states of depression in the models. This
multidimensional approach, combining both active and passive data col-
lection, thus provides a more comprehensive and nuanced understand-
ing of mental health conditions.

Estimating symptom severity using mHealth biomarkers presents spe-
cific challenges, particularly when considering the inherent variability in
both the devices and the patients themselves. One significant concern
is the inter-device variability.? Difference in mHealth devices may pro-
duce slightly varied measurements, leading to inconsistencies in the col-
lected data. This variation can introduce noise into analyses, potentially
skewing results or diminishing the precision of symptom severity esti-
mations. Additionally, symptom severity and expression itself can vary
within and between patients, adding another layer of complexity to mod-
elling efforts. External factors that cannot be controlled or accounted for
can also confound readings. For instance, while an mHealth device might
detect an increased heart rate as a potential symptom of a health condi-
tion, however this elevation could be attributed to external influences
such as anxiety, physical exercise, or other non-medical causes. Thus, dis-
tinguishing genuine symptom fluctuations from these external factors
remains a challenge in leveraging mHealth biomarkers for accurate symp-
tom severity estimation.
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Treatment effects

For detecting treatment effects, mHealth biomarkers need to dem-
onstrate their ability to detect changes in disease activity following a
drug intervention. In essence, this approach to designing and validat-
ing mHealth biomarker can make them valuable tools not just for under-
standing a disease but also for tailoring and evaluating treatment strat-
egies. Here, the focus isn’t solely on the biomarker as a predictive or
diagnostic tool but also on its sensitivity and efficacy in detecting treat-
ment effects relative to the gold standard. By demonstrating sensitiv-
ity to treatment-induced changes, these biomarkers can serve as more
dynamic endpoints in trials, which can facilitate more immediate and
accurate assessments of a treatment’s impact.

Chapter 8 discusses the development of mHealth biomarkers for mon-
itoring the effects of antiparkinsonian drugs and estimating Parkinson’s
disease symptom severity.'® The alternative index finger tapping (IFT) bio-
marker was found to be more predictive and sensitive to treatment effects
in motor function than the traditional MDS-UPDRS 111 score, both in terms
of accuracy and clinical significance. Treatment effects were detected at
45 minutes for the thumb-index finger tapping (TIFT) biomarker and at
60 minutes for the IFT composite biomarkers. This coincides well with
the mean onset of action for the drug L-dopa/carbidopa, which is around
50 minutes. The findings suggest that IFT and TIFT are sensitive tools for
assessing motor function in the context of symptomatic treatments for
conditions like Parkinson’s disease, potentially identifying small and early
changes missed by traditional measures. The large effect sizes also found
in this study could reduce the sample size requirements and enhance
the statistical power for future studies involving tapping tasks. This pilot
study can advance the understanding of how to accurately detect and
measure treatment effects on fine motor function, particularly in condi-
tions like Parkinson’s disease. It not only validates the efficacy of new bio-
markers but also provides methodological guidance for validating novel
biomarkersin future research focus on investigating drug effects.
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Repeatability of predictions over time and
settings

In the context of clinical research, the term ‘repeatability’ refers to the
ability of a test, measurement, or algorithm to yield consistent results
when it is performed multiple times under the same conditions.?®?! In
both clinical and home settings, consistent monitoring is vital for track-
ing the progression or alleviation of symptoms. For instance, if a cough
detection algorithm is used to monitor the effectiveness of a new asthma
medication in children, inconsistent results would compromise the integ-
rity of the research and could lead to incorrect conclusions. For algo-
rithms designed to monitor biological signals or events—such as coughs
or cries—repeatability across different data collection settings and across
patients is a key attribute that underscores the algorithm’s reliability.?° In
the fields of computer science and ML, repeatability can be interchanged
with ‘robustness’ and ‘external validity.” Essentially, these terms—repeat-
ability, robustness, and external validity—point towards an algorithm’s
consistent performance across varying conditions and datasets. Chap-
ter 6 and Chapter 7 focused on the development of a smartphone-
based algorithm for automated cough and cry detection among infants
and children.?>** Both algorithms show strong repeatability, which is
crucial for consistent monitoring over time. The cry algorithm appears
robust against different types of physical barriers and can be used at var-
ious distances, making it flexible for real-world applications. While both
algorithms show some level of inter-device variability, it is within an
acceptable range that does not severely compromise their utility. Both
algorithms are affected by background noise, albeit to varying extents.
This points to an area for potential improvement. These findings suggest
both algorithms are robust enough for potential use in monitoring cries
and coughs in a clinical setting or for home-based care, although adjust-
ments may be needed depending on the device or environmental condi-
tions used.
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Limitations

Many conditions, like mental health disorders or chronic diseases, are
multifaceted and may not be fully captured by a single gold standard
assessment or a single device. In these cases, both the gold standard
and the mHealth devices may not capture the complexity of the disease,
leading to discrepancies when comparing the true and predicted clinical
scores. These discrepancies can be the result of three causes. First, limi-
tations of mHealth devices to capture all clinically relevant behaviors. For
instance, the mHealth devices failed to capture and therefore failed to
predict the upper arm functionality of FSHD’s patients, as seen in Chapter
3 and 4.%"° Second, shortcomings of the gold standards in capturing all
clinically relevant behaviors. As seen in Chapter 5, we found that walking
and travel behaviors are predictive of MDD, however, these characteristics
are not addressed by the SIGH-D IDSC. Further, the gold standard’s limita-
tions, such as inter-rater variability or a failure to capture the full complex-
ity of a disease, may introduce biases affecting the biomarker’s reliability.
In some cases, the gold standard involves human assessment, which can
vary depending on the rater’s expertise or even day-to-day conditions. For
instance, in Chapter 8, the finger tapping tasks that tracks multiple tap-
ping-related characteristics could offer insights into motor functionality
that might be more comprehensive than traditional Parkinson’s Disease
studies that solely rely on clinical observation.’® Third, there may be dis-
parities between the objective behavioral biomarkers and subjective end-
points. For example, a depressed patient may report feeling more rest-
lesswhenin bed, but the objective sleep data captured by the smartwatch
shows that the patient slept for 8 hours. As a result, the objective measure
of sleep may not correlate well with the subjective experience of sleep as
seen in Chapter 5. Therefore, it’s crucial to consider both objective mea-
surements and subjective experiences when evaluating the effectiveness
of mHealth devices for monitoring and managing conditions like depres-
sion. The objective measurements may not always be a representative
endpoint for subjective experiences.
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The discrepancies between mHealth sensors and the gold standard can
affect how reliable clinicians and researchers perceive these sensors to
be. For anew technology to be integrated into clinical trials, it must either
closely match the gold standard or clearly exhibit its superiority. It’s worth
noting that a lower correlation between mHealth biomarkers and the gold
standard might not indicate poor clinical validity of the novel biomarker;
instead, the mHealth system could be capturing aspects overlooked by
traditional methods. Therefore, understanding the limitations and biases
inherent in both mHealth biomarker and gold standards is critical for
making accurate clinical decisions. If clinicians are aware of these factors,
they can make more nuanced interpretations of the data.

Conclusion

In conclusion, mHealth biomarkers and ML can be expected to cause a
paradigm shift in the monitoring and management of cNs diseases. These
advanced technologies, facilitated by smartphones, wearables, and tab-
lets, can provide a more immediate, continuous, and accurate assess-
ment of disease. Therefore, these mHealth biomarkers could transform
traditional episodic evaluations into nuanced, longitudinal data-driven
analyses. The research findings demonstrate the robust predictive capa-
bilities, accuracy, reliability, and clinical relevance of these developed
biomarkers. However, it’s important to acknowledge the need for further
research, development, and standardization, to fully realize the bene-
fits of these innovations. Ultimately, these advancements not only offer a
more comprehensive understanding of disease severity and progression
but also provide better tools to determine the potential efficacy of phar-
macological interventions.
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Inleiding

De traditionele methoden voor het monitoren van aandoeningen van
het centrale zenuwstelsel (czs) zijn vaak afhankelijk van sporadische kili-
nische beoordelingen in een klinische omgeving, die een onvolledige
of vertekende weergave van de toestand van een patiént kunnen bie-
den.? Deze episodische en persoonlijke aanpak kan schommelingen
in de toestand van een patiént missen en geeft geen volledig beeld van
zijn of haar dagelijkse leven. Deze episodische en persoonlijke benade-
ring kan schommelingen in de toestand van een patiént missen en geeft
geen volledig beeld van het dagelijks leven van de patiént. De vooruit-
gang in mobiele gezondheid (mHealth) technologieén, waaronder smart-
phones, wearables en tablets, bieden echter een potentiéle oplossing
om deze beperkingen aan te pakken door continue, real-time gegevens-
verzameling over het dagelijks leven van een patiént mogelijk te maken.?
Deze mHealth-technologieén kunnen een verscheidenheid aan gezond-
heidsgegevens monitoren, zoals hartslag, slaappatronen en dagelijkse
fysieke activiteit, dag en nacht, ongeacht de locatie van de patiént. Door
mHealth-technologieén te gebruiken om onopvallend gegevens op
afstand te verzamelen, kan een arts een completer overzicht krijgen van
de klinische status van een patiént. De integratie van mHealth en ML in kli-
nische studies moet worden gezien als een aanvulling op, en niet als een
vervanging van, de traditionele klinische methodologie. De klinische
expertise van mensen, waaronder klinische ervaring en menselijke rap-
portages, blijft onvervangbaar. Naarmate zowel mHealth-technologieén,
ML en klinische praktijken zich blijven ontwikkelen, maakt deze geinte-
greerde aanpak een meer dynamische en datagestuurde aanpak moge-
lijk, die ervoor kan zorgen dat het ontwerp van klinische proeven in de
voorhoede blijft van zowel technologische als medische vooruitgang.
Alleen al het volume en de complexiteit van de gegevens die worden
gegenereerd door mHealth-apparaten kunnen nieuwe uitdagingen met
zich meebrengen. Niet alleen de omvang, maar ook de heterogeniteit van
de gegevens maakt handmatige analyse niet alleen arbeidsintensief, maar
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ook moeilijk te modelleren.* Dit is waar Machine Learning (ML) voor kan
zorgen. Ditis waar Machine Learning (ML) om de hoek komt kijken. Hoofd-
stuk 2 onderstreept het potentieel van MmL-algoritmen om gevalideerde,
op mHealth gebaseerde biomarkers te ontwikkelen die kunnen worden
ingezet in klinische onderzoeken.® mL-algoritmen kunnen op efficiénte
wijze enorme en veelzijdige datasets doorzeven om patronen of correla-
ties te identificeren die kunnen helpen bij de klinische interpretatie van
de gegevens. Door ML-algoritmen te combineren met mHealth-gegevens
om op afstand gecontroleerde biomarkers te creéren, kunnen we moge-
lijk nieuwe mHealth-biomarkers creéren die kunnen worden gebruikt voor
diagnoseclassificatie, inschatting van de ernst van symptomen en kwan-
tificering van behandelingseffecten. Deze biomarkers kunnen mogelijk
nieuwe inzichten genereren die mogelijk gemist worden door de klinische
gouden standaardbeoordelingen, waardoor het mogelijk wordt om een
dieper inzicht te krijgen in ziektetoestanden.® Dit relatief jonge veld ver-
eist echter nogverderonderzoek en standaardisatie om de toepassing van
dezetechnologieénin klinische studies te stimuleren.

In de volgende paragrafen zal ik een samenvatting geven van de bevin-
dingen en discussies in mijn vorige hoofdstukken over de verschillende
toepassingen en uitdagingen van mHealth biomarkers in klinisch onder-
zoek. |k zal ingaan op hoe deze biomarkers kunnen worden ontwikkeld
en toegepast voor diagnoseclassificatie, en als gevolg daarvan nieuwe
inzichten bieden in ziektegerelateerde gedragsprofielen die moeilijk te
vinden zijn in conventionele klinische settings. Daarnaast zal de rol van
mHealth biomarkers bij het inschatten van de ernst van symptomen wor-
den besproken, en ik zal het belang onderzoeken van het ontwikkelen van
mHealth biomarkers die betrouwbaar zijn bij verschillende aandoenin-
gen en populaties. lk zal het ook hebben over hoe deze biomarkers kun-
nen worden ontworpen voor de detectie van behandelingen, waarmee de
weg wordt vrijgemaakt voor longitudinale monitoring van de werkzaam-
heid van behandelingen. Tot slot zal ik ingaan op de beperkingen van
mHealth biomarkers en gebieden identificeren die verder onderzoek en
standaardisatie vereisen.
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Classificatie van ziekten

In de context van klinische studies bieden biomarkers voor de classifica-
tie van de ernst van de ziekte niet alleen een kwantificeerbare maatstaf
om de uitgangswaarde van de ernst van een ziekte bij deelnemers aan de
studie te bepalen, maar ze kunnen ook dienen als referentie om de evolu-
tie van de ziekte in de tijd te volgen. Bij het evalueren van de effectiviteit
van onderzoeksgeneesmiddelen zijn deze biomarkers van onschatbare
waarde. Als het geneesmiddel tot doel heeft het ziekteverloop te bein-
vloeden, kan een verandering in het verloop van de biomarker na verloop
van tijd een indicatie zijn van het effect van het geneesmiddel. Als gevolg
hiervan kan het gebruik van biomarkers voor de classificatie van de ernst
van de ziekte de precisie en betrouwbaarheid van de resultaten van kli-
nische onderzoeken verbeteren, door ervoor te zorgen dat potentiéle
behandelingen worden beoordeeld op zowel hun onmiddellijke effect als
huninvloed op de progressie van de ziekte op de langere termijn.

Hoofdstuk 3 onderzocht de haalbaarheid van het classificeren van
FSHD-patiénten (Facioscapulohumerale dystrofie) en gezonde contro-
les met behulp van het Trial@Home-platform van het cHDR. Belangrijke
kenmerken, zoals slaapactiviteit en locatiepatronen, werden geidentifi-
ceerd die onderscheid maakten tussen FSHD-patiénten en controles 9. Dit
suggereert dat significante variaties in slaap- en locatiepatronen kunnen
dienen als potentiéle nieuwe klinische biomarkers omdat deze momen-
teel niet worden vastgelegd door de gouden standaard beoordelingen
van FSHD.'? Deze biomarkers, op hun beurt, kunnen essentieel zijn in het
begeleiden van het proces van geneesmiddelenontwikkeling, mogelijk
bieden ze een gerichte aanpak voor geneesmiddelen interventies in de
behandeling of het beheer van de bijbehorende aandoeningen. '

Het bereiken van een optimale classificatienauwkeurigheid vereist een
delicaat evenwicht tussen de hoeveelheid kenmerken en de duur van de
monitoring. Het introduceren van een breder scala aan kenmerken van
verschillende sensoren, zoals die van smartwatches en smartphone Gps-
systemen, kan de nauwkeurigheid van de voorspellingen verbeteren.
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Het vergroten van de hoeveelheid informatie in een model maakt het
klinisch begrip van deze mHealth-biomarkers echter ook complexer
en vergroot de last voor de patiént als gevolg van de toegenomen
gegevensverzameling.'>'3

Inschatting van symptoomernst

mHealth biomarkers, indien gebruikt voor het schatten van de ernst van
de symptomen, bieden een innovatieve aanpak voor het beoordelen van
de effecten van medicijninterventies in klinische studies. Als onderzoe-
kers nieuwe medicijnen beoordelen in fase 2 studies, is het begrijpen van
de relatie tussen een medicijn, de dosering en de resulterende effecten in
de tijd cruciaal.'"* mHealth biomarkers kunnen een duidelijk beeld geven
van deze relatie, en helpen bij het vaststellen van een veilige en effectieve
dosering. mHealth biomarkers hebben ook het potentieel om te dienen
als directe indicatoren van de werkzaamheid van een medicijn. Ze kun-
nen symptoomschommelingen in de loop van de tijd kwantificeren, wat
een uitgebreider beeld geeft dan arbeidsintensieve methoden zoals klini-
sche interviews. Deze frequente monitoring kan vooral waardevol zijn bij
het onderscheiden van zelfs de meest subtiele veranderingen in de ernst
van de symptomen, wat fundamenteel is voor een vroegtijdige identifi-
catie van de werkzaamheid van een behandeling. Door veranderingen in
de biomarkers continu te monitoren, kunnen onderzoekers waardevolle
feedback krijgen over de vraag of het medicijn het beoogde effect heeft,
wat vooral cruciaal is tijdens fase 2-onderzoeken waar de therapeuti-
sche effecten onder de loep worden genomen. Om deze biomarkers als
klinisch valide te beschouwen, is het noodzakelijk dat ze correleren met
erkende klinische eindpunten. Of deze eindpunten nu ziekteprogressie,
symptoomverlichting of andere klinisch relevante maatregelen betreffen,
een sterke associatie verzekert dat de biomarker een betrouwbare maat-
stafisvoor het effect van het geneesmiddel.

Hoofdstuk 4 onderzocht de prestaties van multi-taak modellen om
gelijktijdig de scores van twee klinische beoordelingen te schatten, de
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FSHD klinische score en de Timed Up and Go (Tug) test.’® Traditionele
enkelvoudige taakmodellen zijn weliswaar betrouwbaar, maar niet altijd.
Traditionele single-task modellen kunnen effectief zijn voor het voorspel-
len van één uitkomst, maar schieten tekort als ze worden toegepast op
de multidimensionale symptoomprofielen die vaak voorkomen in klini-
sche settings. Daarom is het belangrijkste voordeel van multi-taak model-
len ten opzichte van hun single-taak tegenhangers hun vermogen om
gebruik te maken van gedeelde representaties en inzichten over meer-
dere klinische beoordelingen.’®'® Bovendien is het vermogen van mul-
ti-taak modellen om gedeelde representaties en inzichten over meerdere
klinische beoordelingen '®'® te gebruiken. Bovendien kan het vermogen
van multi-taak modellen om te generaliseren van de ene klinische beoor-
deling naar de andere cruciaal zijn bij het evalueren van de ernst van de
ziekte over een spectrum van beoordelingen. Als het model bijvoorbeeld
een verslechtering in de FSHD klinische score vaststelt, kan het ook een
parallelle afnamein de TuG score voorspellen. Tot slot kunnen multi-taak-
modellen een meer holistisch beeld geven van de gezondheid van de pati-
ent, door verschillende facetten van de ernst van de ziekte in één enkel
kader te vatten. Door de parallelle beoordeling van meerdere beoorde-
lingen mogelijk te maken, kunnen deze modellen een vollediger, genuan-
ceerder beeld geven van de ziektestatus, waardoor gerichtere en effectie-
vere interventies mogelijk worden.

In hoofdstuk 5 kwam het belang van zelfgerapporteerde uitkom-
sten, met name de Depression Anxiety Stress Scale (DAsS) en de Positive
and Negative Affect Schedule (PANAS), naar voren als doorslaggevende
kenmerken voor de depressiemodellen. Hun opname diende als een
robuuste indicator voor subjectieve psychologische toestanden en bena-
drukte de onvervangbare waarde van patiénteninput bij het vastleggen
van de nuances van psychische aandoeningen. Interessant is dat, hoe-
wel passief verzamelde kenmerken zoals loopsnelheid en locatie niet zo
voorspellend waren als DASS en PANAS, ze toch een waardevolle bijdrage
leverden aan de algehele effectiviteit van de modellen. Deze bevinding
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onderstreept ook het belang van het integreren van passief verzamelde
gegevens uit de echte wereld, omdat deze patronen en inzichten lijken te
onthullen die mogelijk over het hoofd worden gezien in meer gecontro-
leerde klinische settings. Bovendien werd het vermogen van de model-
len om het volledige spectrum van depressiezwaarte nauwkeurig weer te
geven vergroot door gezonde controles op te nemen. Deze inclusie verbe-
terde niet alleen de robuustheid van de modellen, maar breidde ook de
representatie van de potentiéle remissietoestanden van depressie in de
modellen uit. Deze multidimensionale aanpak, die zowel actieve als pas-
sieve gegevensverzameling combineert, zorgt dus voor een uitgebreider
en genuanceerder begrip van psychische aandoeningen.

Het schatten van de ernst van de symptomen met behulp van mHealth
biomarkers brengt specifieke uitdagingen met zich mee, vooral wan-
neer rekening wordt gehouden met de inherente variabiliteit van zowel
de apparaten als de patiénten zelf. Een belangrijk punt van zorg is de
inter-device variabiliteit.? Verschillen in mHealth-apparaten kunnen licht
verschillende metingen produceren, wat leidt tot inconsistenties in de
verzamelde gegevens. Deze variatie kan ruis introduceren in de analyses,
wat de resultaten kan vertekenen of de precisie van de schatting van de
ernstvan de symptomen kan verminderen. Bovendien kunnen de ernsten
de expressie van de symptomen zelf variéren binnen en tussen patiénten,
wat nog een laag complexiteit toevoegt aan de modellering. Externe fac-
toren die niet kunnen worden gecontroleerd of waar geen rekening mee
kan worden gehouden, kunnen ook metingen in de war sturen. Bijvoor-
beeld, terwijl een mHealth apparaat een verhoogde hartslag zou kunnen
detecteren als een potentieel symptoom van een gezondheidstoestand,
zou deze verhoging echter kunnen worden toegeschreven aan externe
invloeden zoals angst, lichaamsbeweging, of andere niet-medische oor-
zaken. Het onderscheid maken tussen echte symptoomschommelin-
gen en deze externe factoren blijft dus een uitdaging bij het gebruik van
mHealth biomarkers voor een nauwkeurige inschatting van de ernst van
de symptomen.
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Behandelingseffecten

Om behandelingseffecten te detecteren, moeten mHealth biomarkers
aantonen dat ze veranderingen in ziekteactiviteit kunnen detecteren na
een medicamenteuze interventie. In essentie kan deze benadering van
het ontwerpen en valideren van mHealth biomarkers hen waardevolle
hulpmiddelen maken, niet alleen voor het begrijpen van een ziekte, maar
ook voor het aanpassen en evalueren van behandelingsstrategieén. Hier
ligt de focus niet alleen op de biomarker als voorspellend of diagnostisch
hulpmiddel, maar ook op zijn gevoeligheid en doeltreffendheid bij het
detecteren van behandelingseffecten ten opzichte van de gouden stan-
daard. Door hun gevoeligheid voor door behandeling veroorzaakte veran-
deringen kunnen deze biomarkers dienen als meer dynamische eindpun-
ten in onderzoeken, waardoor het effect van een behandeling directer en
nauwkeuriger kan worden beoordeeld.

Hoofdstuk 8 bespreekt de ontwikkeling van mHealth biomarkers voor
het monitoren van de effecten van antiparkinsonmedicijnen en het schat-
tenvan de ernstvan Parkinson symptomen.'? De alternatieve index vinger
tapping (1FT) biomarker bleek voorspellender en gevoeliger voor behan-
delingseffecten in de motoriek dan de traditionele MDS-UPDRS 111 score,
zowel wat betreft nauwkeurigheid als klinische significantie. Behande-
leffecten werden gedetecteerd na 45 minuten voor de TIFT-biomarker
(thumb-index finger tapping) en na 60 minuten voor de samengestelde
IFT-biomarkers. Dit komt goed overeen met het gemiddelde begin van de
werking van het geneesmiddel L-dopa/carbidopa, dat ongeveer 50 minu-
ten duurt. De bevindingen suggereren dat IFT en TIFT gevoelige instru-
menten zijn voor het beoordelen van de motorische functie in de context
van symptomatische behandelingen voor aandoeningen zoals de ziekte
van Parkinson. De grote effectgroottes die in deze studie werden gevon-
den, zouden de vereiste steekproefgrootte kunnen verkleinen en de sta-
tistische power voor toekomstige studies met taptaken kunnen vergroten.
Deze pilotstudie kan bijdragen aan een beter begrip van hoe behande-
leffecten op de fijne motoriek nauwkeurig kunnen worden gedetecteerd
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en gemeten, met name bij aandoeningen zoals de ziekte van Parkinson.
Het valideert niet alleen de werkzaamheid van nieuwe biomarkers, maar
biedt ook methodologische richtlijnen voor het valideren van nieuwe bio-
markers in toekomstig onderzoek dat zich richt op het onderzoeken van
medicijneffecten.

Herhaalbaarheid van voorspellingen over tijd
eninstellingen

In de context van klinisch onderzoek verwijst de term ‘herhaalbaarheid’
naar het vermogen van een test, meting of algoritme om consistente
resultaten op te leveren wanneer deze meerdere keren onder dezelfde
omstandigheden wordt uitgevoerd.?®?" In zowel klinische als thuissitua-
ties moet de herhaalbaarheid van voorspellingen consistent zijn. In zowel
klinische als thuissituaties is consistente monitoring van vitaal belang
voor het volgen van de progressie of verlichting van symptomen. Als bij-
voorbeeld een algoritme voor hoestdetectie wordt gebruikt om de effec-
tiviteit van een nieuw astmamedicijn bij kinderen te controleren, zouden
inconsistente resultaten de integriteit van het onderzoek in gevaar bren-
gen en tot onjuiste conclusies kunnen leiden. Voor algoritmen die zijn ont-
worpen om biologische signalen of gebeurtenissen te monitoren, zoals
hoesten of schreeuwen, is herhaalbaarheid in verschillende instellingen
voor gegevensverzameling en bij verschillende patiénten een belangrijk
kenmerk dat de betrouwbaarheid van het algoritme onderstreept. Op het
gebied van informatica en ML kan herhaalbaarheid worden verwisseld
met ‘robuustheid’ en ‘externe validiteit’. In wezen verwijzen deze termen
- herhaalbaarheid, robuustheid en externe geldigheid - naar de consis-
tente prestaties van een algoritme onder verschillende omstandigheden
en datasets. Hoofdstuk 6 en 7 richtten zich op de ontwikkeling van een
smartphonegebaseerd algoritme voor geautomatiseerde hoest- en huil-
detectie bij baby’s en kinderen.?>** Beide algoritmen vertonen een sterke
herhaalbaarheid. Beide algoritmen vertonen een sterke herhaalbaarheid,
wat cruciaal is voor consistente monitoring in de tijd. Het huilalgoritme

APPENDICES/NEDERLANDSE SAMENVATTING

N
o
-

N ITITHIIIHDRHTTTlHHlHHHHHHHHHHHHH_HH_H HHHHH H HHHHHH T H iy



292

lijkt robuust tegen verschillende soorten fysieke barrieres en kan op ver-
schillende afstanden worden gebruikt, waardoor het flexibel is voor toe-
passingen in de echte wereld. Hoewel beide algoritmen een zekere mate
van inter-device variabiliteit vertonen, ligt deze binnen een acceptabel
bereik dat hun bruikbaarheid niet ernstig in gevaar brengt. Beide algo-
ritmen worden beinvloed door achtergrondruis, zij het in verschillende
mate. Dit wijst op een gebied dat voor verbetering vatbaar is. Deze bevin-
dingen suggereren dat beide algoritmen robuust genoeg zijn voor poten-
tieel gebruik bij het monitoren van huilen en hoesten in een klinische
setting of voor thuiszorg, hoewel aanpassingen nodig kunnen zijn afhan-
kelijk van het gebruikte apparaat of de omgevingscondities.

Beperkingen

Veel aandoeningen, zoals psychische stoornissen of chronische ziekten,
hebben vele facetten en kunnen mogelijk niet volledig worden vastgelegd
door een enkele gouden standaard beoordeling of een enkel apparaat. In
deze gevallen kan het zijn dat zowel de gouden standaard als de mHealth
apparaten de complexiteit van de ziekte niet vastleggen, wat leidt tot dis-
crepanties bij het vergelijken van de werkelijke en voorspelde klinische
scores. Deze discrepanties kunnen het gevolg zijn van drie oorzaken. Ten
eerste, beperkingen van de mHealth apparaten om al het klinisch rele-
vante gedrag vast te leggen. Bijvoorbeeld, de mHealth apparaten slaag-
den er niet in om de bovenarm functionaliteit van FSHD patiénten vast
te leggen en dus ook niet te voorspellen, zoals te zien is in Hoofdstuk 3
en 4.>'° Ten tweede, tekortkomingen van de gouden standaarden in het
vastleggen van alle klinisch relevante gedragingen. Zoals te zien in Hoofd-
stuk 5, vonden we dat loop- en reisgedrag voorspellend zijn voor MDD,
maar deze kenmerken worden niet behandeld door de sIGH-D IDSC. Ver-
der kunnen de beperkingen van de gouden standaard, zoals interbeoor-
delaarsvariabiliteit of het niet vastleggen van de volledige complexiteit
van een ziekte, vooroordelen introduceren die de betrouwbaarheid van
de biomarker beinvloeden. In sommige gevallen is de gouden standaard
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een menselijke beoordeling, die kan variéren afhankelijk van de deskun-
digheid van de beoordelaar of zelfs de dagelijkse omstandigheden. Bij-
voorbeeld, in Hoofdstuk 8, zouden de vingertaptaken waarbij meerdere
tikgerelateerde kenmerken worden gevolgd, inzichten kunnen bieden in
motorische functionaliteit die uitgebreider zouden kunnen zijn dan tra-
ditionele onderzoeken naar de ziekte van Parkinson die uitsluitend geba-
seerd zijn op klinische observatie.' Ten derde kunnen er verschillen zijn
tussen de objectieve gedragsbiomarkers en subjectieve eindpunten. Een
depressieve patiént kan bijvoorbeeld melden dat hij zich rustelozer voelt
als hij in bed ligt, maar de objectieve slaapgegevens die zijn vastgelegd
door de smartwatch laten zien dat de patiént 8 uur heeft geslapen. Het
resultaat is dat de objectieve meting van de slaap mogelijk niet goed cor-
releert met de subjectieve ervaring van de slaap, zoals we in hoofdstuk 5
hebben gezien. Daarom is het cruciaal om zowel objectieve metingen als
subjectieve ervaringen in overweging te nemen bij het evalueren van de
effectiviteit van mHealth-apparaten voor het monitoren en beheren van
aandoeningen zoals depressie. Objectieve metingen zijn niet altijd een
representatief eindpuntvoor subjectieve ervaringen.

De discrepanties tussen mHealth-sensoren en de gouden standaard kun-
nen van invloed zijn op hoe betrouwbaar clinici en onderzoekers deze
sensoren vinden. Om een nieuwe technologie te integreren in klinische
studies, moet deze ofwel dicht in de buurt komen van de gouden stan-
daard of duidelijk zijn superioriteit aantonen. Het is de moeite waard om
op te merken dat een lagere correlatie tussen mHealth biomarkers en de
gouden standaard misschien niet duidt op een slechte klinische validi-
teit van de nieuwe biomarker; in plaats daarvan kan het mHealth systeem
aspecten vastleggen die door traditionele methoden over het hoofd wor-
den gezien. Daarom is het begrijpen van de beperkingen en vertekenin-
gendieinherentzijn aan zowel de mHealth biomarker als de gouden stan-
daard cruciaal voor het maken van nauwkeurige klinische beslissingen.
Als clinici zich bewust zijn van deze factoren, kunnen ze de gegevens genu-
anceerder interpreteren.
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Conclusie

Concluderend kan worden verwacht dat mHealth biomarkers en ML een
paradigmaverschuiving zullen veroorzaken in het monitoren en behe-
ren van cNs ziekten. Deze geavanceerde technologieén, gefaciliteerd
door smartphones, wearables en tablets, kunnen zorgen voor een meer
directe, continue en accurate beoordeling van ziekte. Daarom kunnen
deze mHealth biomarkers traditionele episodische evaluaties veranderen
in genuanceerde, longitudinale gegevensgestuurde analyses. De onder-
zoeksresultaten tonen de robuuste voorspellende capaciteiten, nauw-
keurigheid, betrouwbaarheid en klinische relevantie van deze ontwik-
kelde biomarkers aan. Het is echter belangrijk om te erkennen dat verder
onderzoek, ontwikkeling en standaardisatie nodig zijn om de voordelen
van deze innovaties volledig te realiseren. Uiteindelijk bieden deze ont-
wikkelingen niet alleen een beter begrip van de ernst en progressie van de
ziekte, maar ook betere hulpmiddelen om de potentiéle werkzaamheid
van farmacologische interventies te bepalen
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