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visits to in­patient facilities like hospitals or clinical research units. This 
approach has several benefits, such as strict control over the study envi­
ronment and standardized data collection. However, a limitation is that 
the data collected only represents a snapshot of the patient’s health and 
disease activity, often in an isolated context. As a result, evidence gaps 
between visits are created, and clinicians’ insight into patients’ overall 
health may be limited.

To overcome the limitations of conventional clinical trials, mhealth 
devices like smartphones, wearables, and tablets offer a unique oppor­
tunity for continuous and longitudinal data collection from clinical trial 
participants under free­living conditions.2–6 Mobile applications (apps) 
installed on smartphones and tablets can be utilized to actively collect 
self­reported outcomes from patients through electronic diaries.7 Simul­
taneously, apps can passively collect data from various sensors such as 
accelerometers, cameras, gyroscopes, microphones, and phone logs, 
providing an additional source of valuable physical and behavioral data.8–
10 Wearables support continuous tracking of physiological responses or 
physical activity, such as heart rate or steps, enable characterization of 
intra­ and inter­individual variability in disease activity and quantification 
of drug response.11–14 This approach of collecting data from multiple sen­
sors acknowledges that a patient’s experience of their disease is a conse­
quence of multiple neurobiological processes, and therefore is expressed 
as a diverse array of symptoms simultaneously.

The use of mhealth devices in clinical trials has sharply increased since 
the global adoption of the smartphone. Between 2012 to 2022, the term 
‘mhealth’ was incorporated in 1605 clinical studies posted on clinicaltri­
als.gov. Only 15 studies used the term between 2000 to 2011.15 mhealth 
biomarkers have been shown to be effective in monitoring disease activ­
ity and estimating symptom severity for a wide range of diseases such as 
mood disorders,16–21 neurodegenerative disorders,22–24 and cardiovascu­
lar diseases.25 The benefits of mhealth devices in clinical trials are two­
fold. First, real­world data collected under free­living conditions, which is 
data collected outside of controlled clinical trial settings, can be used to 

Development of novel biomarkers

Clinical biomarkers serve a critical role in diagnosing diseases, monitor­
ing disease progression, measuring drug effects, and predicting treat­
ment outcomes.1 As our understanding of biology and diseases con­
tinue to evolve, there is a growing demand for the development of novel 
biomarkers that offer more precise, in­depth, and timely understand­
ing of the disease and provide early detection and quantification of drug 
effects. To meet this need, researchers are increasingly turning towards 
novel technologies that enable the development of innovative biomark­
ers. This goal is not without hurdles. Challenges such as data collection, 
standardization, validation, and regulatory considerations need to be 
carefully addressed. Additionally, the translation of these biomarkers 
from research setting to clinical practice requires robust evidence of their 
clinical utility and reliability.

The primary objective of this thesis is to address the development and 
validation of innovative biomarkers by harnessing the data of mobile 
health (mhealth) devices, such as smartphones, tablets, and wearable 
devices. These widely available and data­intensive technologies offer 
an unprecedented opportunity to capture diverse physiological and 
behavioral data outside the traditional clinical setting. To effectively uti­
lize this wealth of information, Machine Learning (ml) techniques will be 
employed to transform the unstructured and multifaceted mhealth data 
into meaningful clinical biomarkers. This research aims to address the 
challenges, important factors, and potential benefits associated with the 
development and validation of mhealth biomarkers.

mhealth devices for clinical trials

Clinical trials play a crucial role in assessing the efficacy of new pharma­
cological treatments and are typically conducted by academic hospitals 
and Contract Research Organizations (cros). Conventionally, data for 
observational and randomized clinical trials is collected during patients’ 
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heterogeneous datasets into biomarkers that can aid the understanding 
and prediction of complex clinical outcomes.

ml and traditional statistical learning methods both play important 
roles in the analysis and interpretation of clinical trial data. While both 
share a common objective of extracting meaningful insights and inform­
ing decision­making, they have distinct approaches and applications.28 
Traditional statistical learning methods typically focus on hypothesis 
testing, parameter estimation, and model interpretability and inference 
and therefore are classically used to test the significance of individual 
covariates or predictors, estimating effect sizes, and calculating sample 
sizes.29 As traditional statistical learning methods are typically designed 
to answer specific research questions or test predefined hypotheses, their 
primary focus is on estimating the effects of individual covariates or pre­
dictors rather than generating accurate predictions for new, unseen data. 
These methods may lack the ability to generalize well to different popula­
tions, settings, or contexts, as they are often tailored to the specific char­
acteristics of the analyzed dataset. With time­honored techniques such 
as anova, t­tests, linear and logistic regression, and survival analysis 
deeply rooted in the field of clinical trials, the continued utilization of tra­
ditional statistical learning remains pivotal in advancing medical research 
and improving patient outcomes.29,30 However, their limitations can hin­
der their effectiveness in analyzing complex and diverse clinical trial data, 
where flexibility and adaptability may be required.

Conversely, ml is primarily focused on developing data­driven statisti­
cal models that are both generalizable and predictive in nature.28,31,32 As 
a result, ml is often considered more ‘data­hungry’ compared to statisti­
cal learning due to its reliance on large and diverse datasets. Generalizabil­
ity is a desirable characteristic of biomarkers as it indicates their ability to 
perform well in diverse scenarios. Generalizable and predictive biomark­
ers derived from ml techniques can be applied across different patient 
populations, settings, and clinical trial protocols. A key step in the ml pipe­
line is the use of cross­validation. By employing cross­validation, clinicians 
can obtain a reliable estimate of how well the ml model is likely to perform 

generate novel hypotheses or insights into the most effective treatments. 
This can help to provide the ecological validity of findings produced by 
well­controlled clinical trials. Second, the use of mhealth devices for clin­
ical trials may also be cost­effective due to the emerging concept of Bring 
Your Own Device (BYoD).26,27 By leveraging participants’ own devices for 
data collection, costs are reduced for clinical trials as study specific hard­
ware does not need to be purchased, distributed, or maintained. The bur­
den for participants is also reduced as they can use hardware that they are 
already familiar with and can have access to in their daily lives.

Despite these advantages, integrating mhealth devices into clinical tri­
als presents its own challenges. The most significant issues include ensur­
ing tolerability and usability of the mhealth devices by patients and cli­
nicians and developing, validating, and interpreting the biomarkers given 
the lack of control under free­living conditions.5 Unlike controlled clini­
cal settings, free­living conditions offer minimal control over the environ­
ment in which data is collected. Participants may also engage in various 
activities and encounter unpredictable situations that can influence data 
quality and consistency. Factors such as variations in daily routines, social 
interactions, and environmental exposures can introduce variability and 
noise into the collected data. The accuracy and reliability of the collected 
data can be affected by factors such as user engagement, device perfor­
mance, and data synchronization. Ensuring data quality requires clear 
patient instructions, participant compliance, and regular monitoring to 
address any issues that may arise. When collecting data in free­living con­
ditions, there is a greater risk of breaching participants’ privacy. The use 
of mhealth devices, such as smartphones and wearable devices, often 
involves capturing personal information and sensitive data. Safeguard­
ing privacy becomes crucial to ensure participants’ trust and compliance. 
Implementing robust data encryption, secure data storage, and strict pri­
vacy policies are essential to mitigate privacy risks. The datasets gener­
ated by these devices are often complex, large, and subject to influence 
by external factors such as differences in devices, lifestyles, weather, and 
location. ml provides a potential solution for processing these large and 
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Clinical validation of composite mhealth 
biomarkers

Composite mhealth biomarkers can offer several benefits to both clini­
cians and patients. By consolidating multiple clinical features into a sin­
gle composite digital biomarker, this biomarker can be used to predict 
clinical outcomes, serving as a complement rather than a replacement 
for multiple clinical endpoints. The resulting composite biomarkers have 
the potential for inference and prediction, contributing to the discovery 
of generalizable and robust evidence to guide clinical studies. This the­
sis proposes that there are three beneficial applications for composite  
biomarkers. Firstly, composite biomarkers may be more sensitive to sub­
tle changes or treatment effects that may not be evident when assess­
ing individual biomarkers independently. Secondly, by combining multi­
ple biomarkers, this can help mitigate the measurement variability that 
are inherent in an individual biomarker. The aggregated biomarker can 
provide a more stable representation of the underlying phenomenon. 
Lastly, a composite biomarker may provide a more holistic evaluation 
of disease activity. A composite biomarker provides a more comprehen­
sive and multi­faceted assessment, and therefore may capture a broader 
spectrum of treatment effects. However, to determine if these composite 
digital biomarkers have utility in clinical research, they must be clinically 
validated.35 The following section addresses the validation criteria con­
sidered to evaluate if a biomarker is suitable for clinical adoption.

Validation of novel composite biomarkers before incorporating them 
into clinical trials is crucial. To validate these biomarkers, Kruizinga 
et al. have proposed five criteria, which we have adopted along with an 
optional criterion of Interpretability and Explainability.35 The first crite­
rion, Classifying Patients and Healthy Controls, focuses on accurately dis­
tinguishing between patients and healthy individuals to identify disease­
specific biomarkers. The second criterion, Correlation with Gold Standard 
or Disease Metrics, involves establishing the validity of the biomarker and 
its ability to accurately reflect disease activity by correlating it with the 

on unseen data sourced from a similar population or setting. This assess­
ment of predictive accuracy is crucial in determining whether the devel­
oped model can generalize its findings beyond the specific dataset used 
for training. This versatility allows for the broader utilization of biomarkers 
in various healthcare contexts, increasing their potential impact and value.

A ml model has the potential to build a representative composite bio­
marker by integrating and capturing complex relationships among differ­
ent features, which would lead to a more comprehensive and informative 
representation of the underlying biological or pharmacological pro­
cesses. However, while the complexity of the biomarker can increase its 
predictive accuracy, it may limit its interpretability. ml offers a wide range 
of model types, such as decision trees, neural networks, ensemble meth­
ods, transfer learning, and unsupervised learning methods that can be 
adapted to different types of data and objectives, allowing for more flex­
ible and adaptable modelling approaches.28,33 Many ml algorithms, par­
ticularly deep learning models, can automatically learn and extract fea­
tures directly from the data, eliminating the need for manual feature 
engineering. The automation of the identification of relevant features and 
patterns in the data, reduces the need for manual feature selection and 
engineering. This can streamline the biomarker development process and 
improve the efficiency of clinical trial analyses. In addition, unsupervised 
learning algorithms, which can identify patterns in data without being 
explicitly told what to look for, can be useful for exploratory data analy­
sis or for discovering hidden patterns or subgroups within data that may 
not be immediately apparent.34 In conclusion, ml’s data­driven approach, 
flexibility in model selection, automated feature extraction, and ability to 
identify hidden patterns offer significant advantages over traditional sta­
tistical learning methods in the development of biomarkers for clinical tri­
als. Its reliance on large and diverse datasets may make it more data­hun­
gry, but this enables the creation of generalizable and predictive models. 
By streamlining the biomarker development process and improving the 
efficiency of clinical trial analyses, ml has the potential to greatly impact 
clinical research and contribute to improved patient outcomes.
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gold standards. The third criterion, Detecting Changes in Disease Activity 
or Treatment Effects, refers to detecting changes in disease activity over 
time, which is crucial for monitoring disease progression or response 
to treatment. The fourth criterion, Tolerability and Usability, is particu­
larly important for mhealth devices that may be worn continuously or 
for extended periods. The device should not cause discomfort or irrita­
tion and should be easy to use. If tolerability and usability of the device are 
poor, the missing or poor­quality data collected will negatively impact the 
development of the biomarker. The fifth criterion, Repeatability and Vari-
ability, refers to the device producing consistent measurements under 
different conditions and over multiple time points. Finally, the optional 
criterion, Interpretability and Explainability, refers to the ability of the 
composite biomarker to provide clear and understandable explanations 
for its predictions. This is important for building trust in the biomarker 
and its ability to inform clinical decision­making.

Research objectives and structure of this thesis

The overall research question of this thesis is How can m h e A Lt h  devices and 
ml algorithms be used to develop composite biomarkers for clinical appli-
cations? To address this question, we have outlined a series of research 
questions that will explore different aspects of the development and 
clinical validation of these biomarkers. These research questions will be 
addressed in their respective chapters, culminating in a discussion of the 
general findings and recommendations for future research in this field.

Parts 2 to 4 will use clinical trial data collected using Centre for Human 
Drug Research (chDr)’s Trial@Home platform. The Trial@Home platform 
aims to investigate alternative approaches for collecting clinical trial data 
in non­traditional clinical settings. Serving as a comprehensive solution, 
Trial@Home offers end­to­end services, encompassing trial design, exe­
cution, and data analytics. By integrating smartphones, tablets, and wear­
ables (such as smartwatches, smart scales, and sleep mats) into clinical 
trials, participants can experience reduced visit frequency while enabling 
more convenient and representative data collection. This innovative 

approach captures participants’ real­world experiences in their daily 
lives, providing valuable insights under free­living conditions. Through 
the use of ml, the collected data is transformed into novel and validated 
digital biomarkers. The following chapters provide more insight into the 
type of data collected during these trials, and how the data was trans­
formed into validated biomarkers for clinical applications.

Part 1 (Introduction) asks What is the motivation behind creating com-
posite m h e A Lt h  biomarkers for clinical applications and how are they cur-
rently being developed? This part addresses the challenges and limita­
tions of using mhealth devices and ml for developing and validating 
composite biomarkers in clinical trials. Chapter 1 provides a brief over­
view of concept, reasoning, and importance of using ml in clinical trials 
that use mhealth devices. Chapter 2 offers a literature review of existing 
published studies that have used similar techniques to derive composite 
biomarkers. Given the rise and breadth of ml applications in clinical tri­
als, we sought to identify both the generic and best practices of develop­
ing these ml applications. However, given the lack of consistent report­
ing in these studies, the literature review does not provide a complete or 
detailed overview. On the contrary, the literature review presents a set of 
recommended reporting practices aimed at enhancing the transparency 
and reproducibility of the methods utilized.

Part 2 (Classification of Diagnosis) asks How can m h e A Lt h  devices and 
m L  be utilized to create composite biomarkers for the classification of diag-
noses? This part addresses how different types of mhealth devices com­
pare in terms of their usability, tolerability, and data quality for develop­
ing composite biomarkers. Further, it examines the methods required 
for developing accurate and clinically relevant biomarkers for the classi­
fication of disease diagnoses using mhealth data and ml. Chapter 3 use 
the Trial@Home platform to classify the remotely monitored behavioural 
activity of Facioscapulohumeral Muscular Dystrophy (fshD) patients 
respectively from Healthy Controls. To assess the feasibility of piloting a 
Trial@Home study, these publications also report the data completion 
rate and patient experience of the Trial@Home app to reflect the tolerabil­
ity and usability of the devices.
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Condensed structure of the thesis

Given the criteria for evaluating the clinical validity of candidate com­
posite biomarkers, this thesis consists of 5 parts. Part 1 provides the the­
oretical and historical framework for the development of these biomark­
ers. Part 2, 3, and 4 focus on clinical trials that use ml to classify a clinical 
diagnosis, to estimate symptom severity, and to detect treatment effects 
respectively. In each of these sections, we provide a detailed account of 
our approach to the proposed clinical validation. Chapter 9 discusses the 
general findings of this thesis and addresses general recommendations 
for developing future biomarkers that use mhealth devices and ml.

Part 3 (Estimation of Symptom Severity) asks How can m h e A Lt h devices 
and m L  be utilized to create composite biomarkers for the estimation of 
symptom severity? This part investigates the effectiveness of the devel­
oped composite biomarkers in estimating the severity of disease symp­
toms in patients compared to traditional methods. Chapter 4 and 5 use 
regression algorithms and the Trial@Home platform to estimate the 
symptom severity of the fshD and Major Depressive Disorder (mDD) 
patients. In addition to estimating the symptom severity, we evaluated 
how varying time windows used to train the models can affect the repeat­
ability and variability of their predicted outcomes. Chapter 6 and 7 focus 
on developing ml models that can automatically quantify the number 
of coughs and cries using a smartphone microphone respectively. While 
these activities cannot be used as diagnostic tools themselves, they serve 
as relevant and informative proxies for disease activity.

Part 4 (Detection of Treatment Effects) asks Can the use of m h e A Lt h 
devices and m L  algorithms enable the detection of treatment effects in clin-
ical trials and provide insights into the efficacy of pharmacological treat-
ments? To address this question, Chapter 8 explore if a composite tapping 
biomarker can detect treatment effects and to estimate symptom severity 
among Parkinson’s Disease patients respectively. The underlying motiva­
tion for this investigation lies in examining whether the same tapping bio­
marker can serve the dual purpose of monitoring both treatment effects 
and symptom severity in alignment with the gold standard, thus unveiling 
new possibilities for comprehensive biomarker applications.

Chapter 9, the discussion, reflects on the methodologies and analyses 
in Parts 2 to 4 and addresses the motivations, factors, and limitations that 
contribute to the development and adoption of mhealth composite bio­
markers for the purposes of diagnosis classification, symptom severity 
estimation, and treatment effects detection. Given the potential impacts 
of mhealth biomarkers, the discussion reflects on the practical and ethi­
cal implications of mhealth biomarkers for clinicians, other Central Ner­
vous System (cns) disorders, and future clinical trials.
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Introduction
motivation

Disorders that are affected by the Central Nervous System (cns), such as 
Parkinson’s Disease (pD) and Alzheimer’s Disease (aD), have a significant 
impact on the quality of life of patients. These disorders are often pro­
gressive and chronic, making long­term monitoring essential for assess­
ing disease progression and treatment effects. However, the current 
methods for monitoring disease activity are often limited by accessibil­
ity, cost, and patient compliance.1,2 Limited accessibility to clinics or dis­
ease monitoring devices may hinder the regular and consistent monitor­
ing of a patient’s condition, especially for patients living in remote areas 
or for those who have mobility limitations. Clinical trials incur costs 
related to personnel, infrastructure, and equipment. A qualified health­
care team, including clinical raters, physicians, and nurses, contributes 
to personnel costs through salaries, training, and administrative support. 
Trials involving specialized equipment for measuring biomarkers can sig­
nificantly impact the budget due to costs associated with procurement, 
maintenance, calibration, and upgrades. Furthermore, infrastructure 
costs may increase as suitable facilities are required for data collection 
during patient visits and equipment storage. Patient compliance poses 
challenges for disease monitoring, as some methods require patients to 
adhere to strict protocols, collect data at specific time intervals, or per­
form certain tasks that can be challenging for patients to execute. Low or 
no compliance can lead to incomplete or unreliable monitoring results, 
which in turn can hinder the reliability of the assessments. Given these 
limitations, there is a growing interest in exploring alternative approaches 
to monitoring cns disorders that can overcome these challenges. The 
increasing adoption of smartphones and wearables among patients and 
researchers offers a promising avenue for remote monitoring.

Patient­generated data from smartphones, wearables, and other 
remote monitoring devices can potentially complement or supplement 
clinical visits by providing data during evidence gaps between visits. As 

Abstract

Background: Central nervous system (cns) disorders benefit from ongo­
ing monitoring to assess disease progression and treatment efficacy. 
Mobile health (mhealth) technologies offer a means for the remote and 
continuous symptom monitoring of patients. Machine Learning (ml) tech­
niques can process and engineer mhealth data into a precise and multi­
dimensional biomarker of disease activity. Objective: This narrative lit­
erature review aims to provide an overview of the current landscape of 
biomarker development using mhealth technologies and ml. Addition­
ally, it proposes recommendations to ensure the accuracy, reliability, 
and interpretability of these biomarkers. Methods: This review extracted 
relevant publications from databases such as PubMed, ieee, and ctti. 
The ml methods employed across the selected publications were then 
extracted, aggregated, and reviewed. Results: This review synthesized 
and presented the diverse approaches of 66 publications that address 
creating mhealth­based biomarkers using ml. The reviewed publications 
provide a foundation for effective biomarker development and offer rec­
ommendations for creating representative, reproducible, and interpre­
table biomarkers for future clinical trials. Conclusion: mhealth­based 
and ml­derived biomarkers have great potential for the remote monitor­
ing of cns disorders. However, further research and standardization of 
study designs are needed to advance this field. With continued innova­
tion, mhealth­based biomarkers hold promise for improving the moni­
toring of cns disorders.
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more outcomes. Building a statistical model that captures the relation­
ship between these variables and the corresponding outputs facilitates 
the attainment of this understanding.9 Once this model is built, it can be 
used to predict the value of an output based on the features.

ml is a powerful tool for clinical research as it can be used to build statis­
tical models. A ml model consists of a set of tunable parameters and a ml 
algorithm that enables the generation of outputs based on given inputs 
and selected parameters. Although ml algorithms are fundamentally sta­
tistical learning algorithms, ml and traditional statistical learning algo­
rithms can differ in their objectives. Traditional statistical learning aims 
to create a statistical model that represents causal inference from a sam­
ple, while ml aims to build generalizable predictive models that can be 
used to make accurate predictions on previously unseen data.10,11 How­
ever, it is essential to recognize that while ml models can identify relation­
ships between variables and outcomes, they may not necessarily iden­
tify a causal link between them. This is because even though these models 
may achieve good performances, it is crucial to ensure that their predic­
tions are based on relevant features rather than spurious correlations. 
This enables the researchers to gain meaningful insights from ml models 
while also being aware of their inherent limitations.

While ml is not a substitute for the clinical evaluation of patients, it can 
provide valuable insights into a patient’s clinical profile. ml can help to 
identify relevant features that clinicians may not have considered, lead­
ing to better diagnosis, treatment, and patient outcomes. Additionally, ml 
can help to avoid common pitfalls observed in clinical decision making by 
removing bias, reducing human error, and improving the accuracy of pre­
dictions.12–15 As the volume of data generated for clinical trials and out­
side clinical settings continues to grow, ml’s support in processing data 
and informing the decision­making process becomes necessary. ml can 
help to uncover insights from large and complex datasets that would be 
difficult or impossible to identify manually.

To develop an effective ml model, it is necessary to follow a rigorous 
and standardized procedure. This is where ml pipelines come in. Table 1 

the promise of mobile Health (mhealth) technologies is to provide more 
sensitive, ecologically valid, and frequent measures of disease activity, 
the data collected may enable the development and validation of novel 
biomarkers. The development of novel ‘digital biomarkers’ using data 
collected from electronic Health (ehealth) and mhealth device sensors 
(such as accelerometers, gps, and microphones) offers a scalable oppor­
tunity for the continuous collection of data regarding behavioral and 
physiological activity under free­living conditions. Previous clinical stud­
ies have demonstrated the benefits of smartphone and wearable sensors 
to monitor and estimate symptom severity associated with a wide range 
of diseases and disorders, including cardiovascular diseases,3 mood dis­
orders,4 and neurodegenerative disorders.5,6 These sensors can capture 
a range of physiological and behavioral data, including movement, heart 
rate, sleep, and cognitive function, providing a wealth of information that 
can be used to develop biomarkers for cns disorders in particular. These 
longitudinal and unobtrusive measurements are highly valuable for clin­
ical research, providing a scalable opportunity for measuring behav­
ioral and physiological activity in real­time. However, these approaches 
may carry potential pitfalls as the data sourced from these devices can be 
large, complex, and highly variable in terms of availability, quality, and 
synchronicity, which can therefore complicate analysis and interpreta­
tion.7,8 Machine Learning (ml) may provide a solution to processing het­
erogenous and large datasets, identifying meaningful patterns within the 
datasets, and predicting complex clinical outcomes from the data. How­
ever, the complexities involved in developing biomarkers using these new 
technologies need to be addressed. While these tools can aid the discov­
ery of novel and important digital biomarkers, the lack of standardization, 
validation, and transparency of the ml pipelines used can pose challenges 
for clinical, scientific, and regulatory committees.

What is machine learning

In clinical research, one of the primary objectives is to understand the 
relationship between a set of observable variables (features) and one or 
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Methods
information sources anD search strategy

Given the wide range of study designs and clinical populations that use 
smartphones and wearables to collect data, we used the Joanna Briggs 
Institute (JBI) guidelines to develop a search strategy.16 Based on an ini­
tial limited search of online databases for clinical trials that report using 
mhealth devices and ml, we developed a custom keyword strategy and 
performed an in­depth search in PubMed, ieee Xplore, and ctti (Table 2). 
The search terms for the cns disorder terms were based on the National 
Library of Medicine’s cns MeSH descriptor data.17 The relevant papers 
were selected based on the title and abstract. Finally, other literature 
review studies that explore the same questions were reviewed; the refer­
ences cited by these studies were then identified and reviewed if they met 
our criteria. The date range for the search was between 1 January 2012 and 
31 December 2022. The search was conducted on 7 January 2023.

inclusion criteria

The authors adopted the Population, Intervention, Comparator, Out­
comes, Study type (picos) framework to define the inclusion and exclu­
sion criteria (Table 3).13 The studies included were restricted to those 
involving participants diagnosed with cns disorders who were remotely 
monitored under free­living conditions. The intervention and device cri­
teria were limited to passive data collected from smartphones and other 
non­invasive remote monitoring sensors, whereas data collected using 
active engagement from participants, such as disposable blood tests 
or small scales, were excluded. As we chose to focus on ml pipelines, we 
selected studies in which a statistical model was used to analyze a data­
set and could potentially be used to generate future predictions using an 
independent dataset. Therefore, traditional statistical models such as 
linear or logistic regression were included, but statistical models such as 
anova and correlation analyses were not included. Further, as the focus 

showcases an exemplary ml pipeline, which serves as a systematic frame­
work for automating and standardizing the model generation process. 
The pipeline encompasses multiple stages, as defined by the authors, 
to ensure an organized and efficient approach to model development. 
First, defining the study objective guides the subsequent stages and 
ensures the final model meets the desired goals. Second, raw data must 
be preprocessed to remove errors, inconsistencies, missing data, or out­
liers. Third, feature extraction and selection identify quantifiable charac­
teristics of the data relevant to the study objective and extracts them for 
use in the ml model. Fourth, ml algorithms are applied to learn patterns 
and relationships between features, with optimal configurations iden­
tified through iterative processes until desired performance metrics are 
achieved. Finally, the model is validated against a new dataset that is not 
used in training to ensure generalizability. Effective reporting and assess­
ment of ml procedures must be established to ensure transparency, reli­
ability, and reproducibility.

oBjectives

The objective of this narrative literature review is to provide an overview 
of the ml practices used in studies that use mhealth technologies and ml 
to develop novel biomarkers for clinical trials. In this review, each com­
ponent of the ml pipeline has a dedicated section. Based on the results 
obtained from the review process, each ml component section provides a 
comprehensive analysis and discussion of the most common and notable 
practices. These sections delve into the motivations behind these prac­
tices, their limitations, and their overall impact on the ml pipeline. This 
review will not provide precise recommendations for best practices, as 
much of the research in this area is new and quickly evolving. Rather, the 
recommendation section discusses the approaches for standardization 
and validation procedures that are necessary for the development of ml 
biomarkers to ensure the effectiveness and acceptance of these biomark­
ers by clinical, scientific, and regulatory committees.
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(BD) (n = 11), and Unipolar Depression or Major Depressive Disorder (mDD) 
(n = 9). The sample size of the selected studies was heterogenous, rang­
ing from 7 to 6221 participants (Figure 3). Overall, our review provides a 
comprehensive overview of the characteristics of studies that have uti­
lized mhealth devices and ml techniques, which can help inform future 
research in this field. In the following sections, we addressed how the 
selected studies approached the construction of their ml pipelines.

Missing and Outlier Data

Missing and outlier data are commonly encountered problems for remote 
sensing clinical trials. Missing data can be the result of device charging fre­
quency, device robustness, and participant compliance.18 Outliers can be 
the result of sensor or device dysfunction or malfunction, incorrect data 
entry, and incorrect classifications.19 Data preprocessing, which refers 
to the dropping or manipulation of data, is required for identifying and 
removing redundant or irrelevant data and for cleaning the data prior to 
analysis. Without preprocessing, learning from an imperfect dataset can 
influence the prediction accuracy of the models.20 In this section, we 
address how the selected studies preprocessed their raw data by treating 
their missing data and outliers, and the limitations of doing so.

hanDling of missing Data

Missing data can be Missing Completely at Random (mDD), Missing at Ran­
dom (mDD), and Missing Not at Random (mnar).21 mDD assumes that each 
observation has the same probability of being included or being missed; 
therefore, there is no difference in the characteristics between partici­
pants or observations without missing data and those with missing data. 
For example, data may be missed due to the battery of the smartphone 
running out. mDD assumes that missing data may have systematic differ­
ences between the missing and non­missing data; however, the cause 
of the missing data can be explained by the non­missing data. For exam­
ple, a smartphone may have more missing values when the smartphone 

was on the development and validation of ml models, we did not include 
studies that did not report on model performance.

Data extraction

Two authors conducted the data extraction following the inclusion crite­
ria, and the results were reviewed by the remaining authors. Data relat­
ing to the database source, title, Doi, publication year, trial setting or 
scenario, objective, devices used, data collection period, number of par­
ticipants, inclusion of healthy controls, data processing steps, feature 
engineering, feature selection, machine learning models used, hyperpa­
rameters and hyperparameter optimization, model performance, and 
validation procedure were extracted. The comprehensive data extrac­
tion and review conducted by the authors encompassed various essen­
tial aspects of the studies, ensuring a thorough analysis of the database 
source, trial details, data processing steps, machine learning models, and 
validation procedures.

Results
stuDy selection

Our initial keyword search revealed a total of 2310 articles that utilized 
digital phenotyping devices, such as smartphones and wearables, in a 
clinical study and applied ml techniques. After screening the titles and 
abstracts based on our predefined criteria, we narrowed down the arti­
cles to 66 studies, which were used for our analysis. Figure 1 provides an 
overview of the complete selection process.

stuDy characteristics

For each of the 66 studies, we extracted information about the clinical 
population and the ml pipeline that was used to develop the digital bio­
markers. We found that only half of the studies included healthy controls 
(n = 34). As seen in Figure 2, Parkinson’s disease (pD) (n = 27) was the most 
prevalent disorder identified in our search, followed by Bipolar Disorder 
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observations that were most likely the result of measurement errors.36 In 
terms of the handling of outliers, we only identified six studies that explic­
itly stated that outliers were excluded.26,30,51–53,56

Feature Engineering
feature scaling

Feature scaling is used to normalize the ranges of the features in a data­
set.57 Several feature engineering techniques and ml models (such as 
Principal Component Analysis and Linear Regression) calculate the dis­
tances between two observations. If one feature has a broader range of 
values compared to the other features, the calculated distances will be 
heavily influenced by this feature.58 Therefore, the ranges of all the fea­
tures should be normalized or standardized so that each feature is appro­
priately and proportionally considered with respect to the estimated 
distances.57 Feature normalization is a common scaling method for res­
caling the features into a bounding range using the minimum and maxi­
mum values, for example, between 0 and 1. Normalization is an ideal 
approach when the distribution of the data is not Gaussian, as normal­
ization preserves the original distribution of the data. However, normal­
ization uses minimum and maximum values to define ranges. This makes 
the method sensitive to outliers.57,59 Alternatively, feature standardiza­
tion, also known as z­score normalization, is a method for rescaling the 
data to fit a standard normalized distribution by using the mean and stan­
dard deviation and does not define a bounding range. Consequently, the 
standardization approach is not sensitive to outliers as it has no bounding 
range.57,59 Normalization, log­transformation, and standardization have 
been reported in a small selection of the selected studies.26,27,36,60,61

expert feature engineering

Feature engineering is the process of constructing (new) features from the 
raw data or existing features while maintaining the original patterns and 
information in the data.62 The newly engineered features can be added 
to or replace features in the original dataset. Engineering of the features 

battery is low. If the battery percentage is known during the data acqui­
sition, researchers can verify the probability of acquiring missing data 
depending on the battery percentage. mnar assumes that missing data 
are caused by unknown reasons. For example, smartphone sensors may 
be gradually worn down, which therefore creates more missing data over 
time. The type of missing data present in the dataset influences whether a 
researcher should ignore, exclude, or impute the missing data.

Among the selected studies, we found that only 21 of the studies 
reported the quantity of missing data acquired. Only 29 studies reported 
how they handled their missing data. We found that complete­case anal­
ysis and imputation were the most popular. We identified 14 studies that 
report using complete­case analysis.22–36 Complete­case analysis (other­
wise known as listwise deletion) is the deletion of an observation involv­
ing one or multiple elements of missing data.26,37,38 While complete­case 
analysis is the simplest approach to handle missing data, it does reduce 
the sample size and statistical power of the analysis 39 and can potentially 
lead to bias if the data are not mDD.40 Imputation is the statistical process 
of replacing missing data with substituted inferred values.41 We identified 
studies that imputed their missing data using linear interpolation,29,42,43 
forward filling,44−1,45 zeros, median, means, and the most frequent 
value in the column.24,46 The advantage of imputation is that it enables 
researchers to use all observations in the dataset. However, the inclusion 
of imputed values can lead to a false impression of the number of com­
plete cases and reduce the variance in the dataset.47–49

iDentification of outliers

Aggarwal’s Data mining: the textbook states that it is the subjective defi­
nition of the researcher that defines an outlier.50 In cases where the outlier 
data were discussed in the selected studies, we found that researchers 
customized their definition of outliers by either defining a range of accept­
able values 32 or by defining a threshold based on the mean and stan­
dard deviation.51–53 Visual inspection by the researchers or the optimi­
zation of different threshold mechanisms can both be used to define the 
boundaries of normal or outlier data.54,55 Maleki et al. defined outliers as 
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seizure detection,70 tremor detection,71 and fog detection.72 In particu­
lar, Tougui et al. built 138 voice related features extracted from the ceps­
tral, frequency, and time domains.24 In sum, time series data collected 
from wearable sensors can be used to monitor the physical activity of 
study participants, but signal processing is necessary to extract meaning­
ful features. Different feature extraction techniques can be used depend­
ing on the sensor type, signal quality, and study objectives. The analysis 
of these features is not mutually exclusive, and studies that use multiple 
domains for different clinical applications have been identified.

principal component analysis

A common linear dimensionality reduction technique for feature engi­
neering and selection is Principal Component Analysis (pca).28,73,74 pca 
is used to sufficiently explain a high­dimensional dataset through a few 
principal components and, therefore, to reduce a high­dimensional data­
set to one of fewer dimensions.75 To this purpose, pca converts a set of 
correlated features into a set of uncorrelated features by utilizing orthog­
onal transformation.75 The principal components enable a reduction in 
the feature space by creating a linear combination of the original features, 
which consequently reduces the storage space and reduces the learn­
ing time. Therefore, the periodic components within a concurrent time 
series dataset can be isolated using pca, which can subsequently be used 
to identify any underlying patterns within the dataset. It is important to 
note that pca assumes that the data are normally distributed and is sensi­
tive to feature variance.75,76 Consequently, features with larger ranges will 
dominate features with smaller ranges. To make the variables compara­
ble, transformation of the data prior to pca is required.75,76 Of the studies 
selected, pca was used to engineer and select features from times series 
data sourced from waist­worn triaxial accelerometers and wearable 
activity trackers.28,73,74 However, the limitations of pca are its sensitivity 
to missing data and outliers and the limited interpretation of the original 
features. Hence, this observation highlights the need for thorough data 
preprocessing prior to using pca.

can speed up the model performance, improve learning accuracy, and 
ease the interpretability of the model. The latter is particularly impor­
tant for clinical trials.63 Features can be engineered manually by relying 
on domain­knowledge or automatically by using statistical models, such 
as Principal Component Analysis (pca) and Deep Learning (Dl).62–64 All 
features aim to increase the separability between the classes or signals, 
which in turn reduces noise in the dataset. While expert engineered fea­
tures are easy to interpret and explain and have been widely used in the 
development of digital biomarkers, these features are typically task­ or 
population­dependent. Due to intra­class variability, some clinically rel­
evant characteristics may be exhibited differently by different individuals 
(such as different symptom profiles among patients with the same diag­
nosis). Furthermore, expert engineered features may not be sufficient for 
representing the most important characteristics of complex patterns and 
can be time­consuming to acquire, especially when handling large­scale 
datasets.65,66 As clinical data has expanded in terms of diversity, availabil­
ity, and complexity, the aforementioned techniques may be insufficient 
for developing generic features. In the following sections, we address the 
notable and generic procedures used to perform feature engineering.

signal processing

To monitor changes in the physical activity of study participants using 
time series data collected from wearable sensors, signal processing is 
necessary to detect, clean, and analyze the components of interest. The 
feature extraction technique used is influenced by the sensor type, study 
objectives, and signal quality. Typically, signal features are extracted from 
the frequency, time, or cepstrum domain.67 Frequency domain features 
show the prominence of a signal within a given frequency, whereas time­
domain features show the changes in the signal of time. Cepstrum domain 
features represent the rate of change in the different frequency bands. 
The analysis of the frequency, time, or cepstrum domain features is not 
mutually exclusive. We identified studies that use both time­ and fre­
quency­based features for the estimation of gait speed,68 speech­tasks,69 
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Four studies used Dl to engineer features using time series data.23,85–87 
These models were used to extract gait features from accelerometer data 
85,87 and tremor characteristics from imu data.23,86 However, it should be 
noted that the Dl models do not always outperform the ‘shallow learning’ 
models, as shown in a study by Juen et al. in which smartphone acceler­
ometers were used to predict natural walking speed and distance during a 
six­minute walk test.85

Feature Selection

In recent decades, high­dimensional clinical datasets have relied on fea­
ture selection.88 Feature selection is the process of selecting a subset 
of the most informative features that will be processed by the ml algo­
rithm.89 Reducing the features for analysis has both computational and 
practical benefits. Selecting features can limit storage requirements, 
increase the algorithm processing speed, increase the interpretability of a 
model, and improve model performance.

overfitting anD unDerfitting

Overfitting and underfitting are common pitfalls for ml models. Overfit­
ting refers to when a ml model fits too well to its training dataset and is 
unable to generalize its patterns to unseen data. This problem can occur 
when the training dataset is small and not representative of the over­
all potential data distribution. Additionally, if the training dataset con­
tains many outliers, the ml model may also fit the outlier data. Underfit­
ting occurs when the trained ml model is too simple; therefore, it cannot 
identify the relationship between the features and the outputs. Underfit­
ted models will perform poorly for both the train and validation datasets. 
To address overfitting, reducing the number of features considered by the 
model or updating the model architecture to include fewer features can 
be effective.90 Underfitting can be improved by adding more features con­
sidered by the model or by updating the model architecture to increase 
the complexity of the feature space.90

clustering

A clustering algorithm is a common feature engineering method that 
assigns similar observations to a single cluster and assigns dissimilar 
observations to another.77 While pca compresses the features into prin­
cipal components, clustering compresses the individual observations 
into clusters. The grouping of similar observations can improve the mod­
el’s ability to discriminate between classes.78 Clustering algorithms, 
more specifically DBscan and K­means clustering, have been deployed 
in smartphone gps systems and Wi­Fi­network sensors to extract mean­
ingful location features such as frequented location clusters,79 loca­
tion patterns,80 and mobility patterns.81 These studies demonstrate that 
clustering algorithms are a powerful method for reducing the number of 
observations into a smaller number of artificial variables that account for 
the variance within the dataset.

Deep learning

The performance of ml models can be limited by the development of man­
ual and arbitrary features, and this potential obstacle can be overcome by 
Dl algorithms. Dl algorithms eliminate the need for manual feature engi­
neering, as the Dl layers can translate the data into more compact and 
intermediate abstractions of the data, which in turn can be used as fea­
tures to predict the final output.82 While Dl can reduce the need for manual 
data preprocessing and feature extraction, which can potentially improve 
the generalizability and robustness of a model, the interpretation of the 
Dl model is difficult, as the abstracted features may not be explainable by 
clinicians. However, it is important to note that the discriminative power 
of the Dl­derived abstractions is strongly influenced by the architecture 
of the Dl algorithm, which is also dependent on the trial­and­error pro­
cess.59 Due to Dl’s representation learning, Dl is data­hungry, and there­
fore requires more data than other ml algorithms.83,84 For clinical trial data, 
because of technological limitations and small sample sizes, there may not 
be enough data to train a sufficiently representative Dl model.76,83
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speech­related features and used Relief to select 66 most predictive vocal 
biomarkers for the classification of pD.103 Rodriguez­Molinero used Relief 
to select frequency features that were subsequently used to predict gait 
disturbances among pD patients.104 Overall, Relief has demonstrated its 
effectiveness in selecting relevant features in various studies related to 
the prediction of pD using high­dimensional clinical datasets.

emBeDDeD methoDs

The embedded method is a feature selection technique integrated into 
the ml algorithm itself and is commonly seen in penalized regression.105 
Penalized regression algorithms aim to learn the optimal coefficients for 
each feature by minimizing its loss function. Regularization (also known 
as penalization) limits the learning process of the model by increasing the 
penalty of the loss function.106 The two common penalized regression 
methods, identified in the selected studies, are lasso (also known as L1 
penalization) (n = 9) 22,24,29,33,42,95,100,101,107,108 and Ridge (L2 penalization) 
(n = 2).109,110 An advantage of lasso is that it eliminates non­informative 
features by reducing their coefficients to zero. The first limitation of lasso 
is that, if the number of features f is greater than the number of observa­
tions o, lasso will select a maximum of o predictors as non­zeros, regard­
less of the relevance of other features. The second limitation is that lasso 
also suffers from collinearity; hence, if two or more variables are highly 
correlated, then lasso will randomly select one feature and penalize the 
other correlated features. A disadvantage of Ridge is that it only reduces 
the weights of the non­informative features by reducing their coefficients 
towards zero, but it never reduces the number of variables. Therefore, 
all predictors are included in the final model. However, because of this 
approach, Ridge protects ml models from overfitting.111

Wrapper methoDs

Wrapper methods rely on a stand­alone model to select features, but the 
performance of the selected features is reflected in the performance of 
the trained model.112 The wrapper method algorithms tend to be greedy 

Feature selection identifies the most important features in the dataset 
and eliminates the irrelevant ones, which thereby reduces noise. How­
ever, it is important to strike a balance, as strict feature selection may 
remove important signals from the data. Therefore, selecting the optimal 
set of features is important for preventing over­ and underfitting. In the 
following sections, we will elaborate on the three general methods of fea­
ture selection that are suitable for ml models.75

filter methoDs

Filter methods are used during preprocessing prior to training the ml 
model. Filtering involves removing features based on domain knowledge, 
missing data, low variance, or correlation.89,91,92 As filter methods are inde­
pendent of any model that is to be used in later steps, they are typically 
faster to implement and reduce the need for repeating feature selection 
for different ml models. In our selected studies, we found five studies that 
used Analysis of Variance (anova), Pearson’s Correlation, or Spearman’s 
Correlation to identify features that were statistically significant predictors 
of the outcomes.24,93–96 p­value based feature selection, while commonly 
used in clinical studies, is not always suitable for training a ml model. The 
use of p­values to identify statistically significant features was a popular 
approach that relied on the belief that insignificant features were not infor­
mative. However, important features can be missed when sample sizes are 
small. Furthermore, p­values can be biased towards low values due to the 
increased risk of type 1 errors during multiple comparisons, which in turn 
increases the probability of random variables being included into the final 
statistical model.97,98 Additionally, p­value based feature selection meth­
ods may be based on certain assumptions that may not be applicable to 
ml models, such as assuming that the distribution of scores for the groups 
among the independent variables are the same.99

We wanted to highlight one filtering method identified in our selected 
studies: Relief.100 Relief is a feature selection technique that also ranks 
features and selects only the top­scoring features; however, it is nota­
bly sensitive to feature interactions.101,102 Yaman et al. first obtained 177 
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Supervised ml algorithms use labeled data to map the patterns within a 
dataset to a known label, while unsupervised ml algorithms do not.123 
Rather, the unsupervised ml algorithms learn the structure present 
within a dataset without relying on annotations. Supervised learning can 
be used to automate the labelling process, detect disease cases, or pre­
dict clinical outcomes (such as treatment outcomes). There are scenar­
ios when experts or participants can provide labelled data; however, it can 
become labor­intensive or time­consuming to label every observation. 
For example, a supervised learning algorithm trained to classify human 
sounds can be used to automatically annotate and quantify hours of 
coughs 124 and instances of crying.125 These algorithms can also be used 
to differentiate between clinical populations and control participants 95 to 
identify known clinical population subtypes 23 or classify a clinical event 
(such as a seizure or tremor).126 The majority of our selected studies (n = 
38) used a clinician to provide the label data. Some studies (n = 22) used 
a combination of a clinician and self­reported label data, and six studies 
solely relied on self­reported assessments. Unsupervised ml algorithms 
can be used to investigate the similarities and differences within a dataset 
without human intervention. This makes it the ideal solution for explor­
atory data analysis, subgroup phenotype identification, and anomaly 
detection. Among digital phenotyping studies, unsupervised learning has 
been used to identify location patterns 81 and classify sleep disturbance 
subtypes using wrist­worn accelerometer data.127

It is important to recognize that unsupervised and supervised meth­
ods are not mutually exclusive, and they can be effectively combined. For 
instance, unsupervised methods can be employed to extract a meaning­
ful latent representation of the input data. Subsequently, these latent vec­
tors, along with the original inputs, can be used as inputs for a supervised 
model. This type of approach is commonly observed when applying tech­
niques such as pca, clustering, or other dimensionality reduction meth­
ods.29,73,74,128 By combining unsupervised and supervised methods, valu­
able information can be extracted from the data and used to enhance the 
performance and interpretability of the overall model.

search algorithms that aim to select the optimal feature subset by itera­
tively selecting the features based on ml performance. As the wrapper 
method is an iterative process and the model must be evaluated on each 
feature subset combination, this method is computationally expensive. 
Wrapper­based feature selection can be completed by ranking the fea­
tures in terms of relative importance using a ml model (such as decision 
trees or random forests).88,101,113 We identified a handful of feature rank­
ing methods that include two stepwise regression techniques: Forward 
Selection and Backwards Elimination,29,36,52,114–116 as well as Recursive 
Feature Selection (rfe).30,117 Forward selection starts the modelling pro­
cess with zero features and adds a new feature to the model incremen­
tally, each time testing for statistical significance. Backwards elimination 
starts the modelling process with all features and incrementally removes 
each feature to evaluate its relative importance in predicting the model 
output.97,118 rfe fits a model, ranks the features, and removes the least 
informative features and continues to remove features until a predefined 
number of features is met.64,119,120 Senturk et al. illustrated that rfe­based 
feature selection increased the prediction accuracy of ann, cart, and svm 
when using vocal data to classify a pD diagnosis.121

Machine learning algorithms

ml algorithms build a statistical model based on a training dataset, which 
can subsequently be used to make predictions about a new, unseen data­
set. ml algorithms have been used in a wide variety of clinical trial appli­
cations, such as the classification of a diagnoses, classification of physical 
or mental state (such as a seizure or mood), and the estimation of symp­
tom severity. Within the realm of clinical research, ml algorithms can be 
broadly divided into two learning paradigms: supervised and unsuper­
vised learning.122 In this section, we will discuss the model objectives of 
supervised and unsupervised learning and the specific ml models used to 
achieve these model objectives.
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to predict a class or value.133 Ensemble learning algorithms use multiple 
ml algorithms to obtain a prediction.134 Tree­based models have several 
benefits. As each tree is only based on a subset of features and data and 
because they make no assumptions about the relationship between the 
features and distribution, they are not sensitive to collinearity between 
features, can ignore missing data, and are less susceptible to overfitting 
(for multiple trees), making the model more generalizable.135 Another 
advantage of rf and Dt models is that they can support linear and nonlin­
ear relationships between the dependent and independent variables.136 
Further, as the design of the rf models can be interpreted in terms of fea­
ture importance and proximity plots, the interpretability of the rf model 
is feasible. However, a limitation of using tree­based models is that small 
changes in the data can lead to drastically different models. Additionally, 
the more complicated a tree­based model becomes, the less explainable 
a model becomes. However, pruning the trees can help to reduce the com­
plexity of the model.

According to the selected studies, rf is a versatile and powerful model 
used for classification and regression tasks across multiple datatypes and 
populations. rf models have been used for the classification of diagno­
ses among pD patients,107,110 Multiple Sclerosis,34,118 and BD and unipo­
lar depressed patients.45,61 It is also a popular classification model for the 
classification of states or episodes, such as the detection of flares among 
Rheumatoid Arthritis or Axial Spondylarthritis patients 32 and tremor 
detection among pD patients,137 to quantify physical activity among cere­
bral palsy patients 138 and detect the moods of BD patients.69,139 rf regres­
sion algorithms have also been used to predict anxiety deterioration 
among patients who suffer with anxiety.140

support vector machines

A Support Vector Machine (svm) is a supervised algorithm that is used for 
classification and regression tasks. The objective of a svm is to identify 
the optimal hyperplane based on the individual observations, also known 
as the support vectors. For svm regression, the optimal hyperplane 

In clinical research, supervised ml algorithms have been used to classify 
class labels or estimate scores. Classification algorithms learn to map 
a new observation to a predefined class label. These algorithms can be 
used to classify patient populations and patient population subtypes and 
identify clinical events. Regression algorithms learn to map an observa­
tion to a continuous output. These algorithms are commonly used to esti­
mate symptom severity,129 quantify physical activity, and forecast future 
events.130 Among the selected papers that were focused on the classifica­
tion of a diagnosis or state, the four most common algorithms were Ran­
dom Forest, Support Vector Machine, Logistic Regression, and k­Nearest 
Neighbors (Figure 4). Some additional classification algorithm families 
identified were Naïve Bayes, Ensemble­based methods (including Deci­
sion Trees, Bagging, and Gradient Boosting), and Neural Networks (such 
as Convolutional, Artificial, and Recurring Neural Networks). The three 
most common algorithms for the regression focused papers were Lin­
ear Regression (including linear mixed effects models), Support Vector 
Machine, and k­Nearest Neighbors (Figure 4). We found that most studies 
only considered or reported a single ml algorithm (n = 32). Additionally, 29 
of the studies considered or reported two to five ml algorithms, and the 
remaining 5 studies considered six or more. The following section pro­
vides an overview of the most widely used machine learning models, their 
properties, advantages, and disadvantages. In addition, we discuss some 
notable off­the­shelf ml approaches and some custom­built ml methods 
such as transfer learning, multi­task learning, and generalized and per­
sonalized models.

tree-BaseD moDels

A Decision Tree (Dt) is a supervised non­parametric algorithm that is used 
for both classification and regression. A Dt algorithm has a hierarchical 
structure in which each node represents a test of a feature, each branch 
represents the result of that test, and each leaf represents the class label 
or class distribution.131,132 A Random Forest (rf) algorithm is a super­
vised ensemble learning algorithm consisting of multiple DTs that aims 
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The most popular application for k-nn algorithms is for wearable­based 
time series data. k-nn classification models have been used to classify pD 
and healthy controls,24 classify tremor severity,147 predict acute exacer­
bations of chronic obstructive pulmonary disease (aecopD),44 and iden­
tify mood stability among BD and mDD patients.33,69,148 Using wearable 
data, k-nn regression models have been used to predict the deterioration 
of symptoms associated with anxiety disorder.140

naïve Bayes

A Naïve Bayes (nB) classifier is a supervised multi­class classification algo­
rithm. nB classifiers calculate the class conditional probability—the prob­
ability that a datapoint belongs to a given class in the data.141,149 nB clas­
sifiers are computational efficient algorithms; thus, they are suitable for 
real­time predictions, scale well for larger datasets, and can handle miss­
ing values. A limitation of nB is that it assumes that all features are con­
ditionally independent; hence, it is recommended that collinear features 
are removed in advance. Another limitation is that when new feature­
observation pairs do not resemble the data in the training data, the nB 
assigns a probability of zero to that observation. This approach is partic­
ularly harsh, especially when dealing with a smaller dataset. Hence, the 
training data should represent the entire population.

As nB classifiers help form classification models, we found that nB 
classifiers have been used for the classification of tremors or for freezing 
gait among pD patients,52 as well as to classify flares among Rheumatoid 
Arthritis and Axial Spondylarthritis patients 32 and classify bipolar epi­
sodes and mood stability among BD and mDD patients.33,69,148

linear anD logistic regression

A Linear Regression model is a supervised regression model that predicts 
a continuous output. It finds the optimal hyperplane that minimizes the 
sum of squared difference between the true data points and the hyper­
plane. A Logistic Regression model is a supervised classification model 
that can be used for binomial, multinominal, and ordinal classification 

represents the minimal distance between the hyperplane and the sup­
port vectors. Whereas for svm classification, the objective is to find 
the hyperplane that represents the maximum distance between two 
classes.141 The hyperplanes can separate the classes in either a linear or 
non­linear fashion.136 Given that svm are influenced by the support vec­
tors closest to the hyperplanes, svm are less influenced by outliers, mak­
ing them more suitable for extreme case binary classification. The perfor­
mance of a svm can be relatively poor when the classes are overlapping or 
do not have clear decision boundaries. This makes svm less appealing for 
classification tasks as inter class similarity is low. svm are computation­
ally demanding models as they compute the distance between each sup­
port vector; hence, svm do not scale well for large datasets.142

svm classifiers have been used to classify clinical populations (e.g., 
facial nerve palsy and their control participants).143 svm classifiers have 
also been used to classify events or states, such as detecting gait among 
pD patients 104 and classifying seizures among epileptic children.144 
We identified studies that used svm regression to estimate motor fluc­
tuations and gait speed among pD and Multiple Sclerosis patients, 
respectively.74,145

k-nearest neighBors

A k­Nearest Neighbor (k-nn) algorithm is a non­parametric supervised 
learning approach that can be used for multi­class classification and 
regression tasks. Classification k-nn algorithms determine class member­
ship by the plurality vote of its nearest neighbors. They can estimate the 
continuous value of an output by calculating the average value of its near­
est neighbors.136 Given this, the quality of predictions is not only depen­
dent on the amount of data but also on the density of the data (the number 
of points per unit). k-nn is simple to implement, intuitive to understand, 
and robust to noisy training data. However, the disadvantage is that k-nn is 
computationally slow when it is faced with large multi­dimensional datas­
ets. Further, k-nn does not work well with imbalanced datasets, as under­ 
or over­represented datapoints will influence the classification.146
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of multiple training algorithms. However, the disadvantages of nn include 
increased computational burden, reduced explainability and interpret­
ability (as nn are ‘black box’ in nature), and the fact that nn are prone to 
overfitting.154 However, it is important to highlight the growing number 
of studies that specifically explore explainable deep learning approaches 
for biomarker discovery and development. Studies utilizing methodolo­
gies such as lime (lime Tabular Explainer), shap (shapley Additive exPla­
nations), and other visual inspections of feature distribution and impor­
tance have aided clinicians in understanding the model mechanisms. 
These approaches also provide patient­specific insights by describing 
the importance of each feature, which may, in turn, facilitate personalized 
treatment opportunities.90,155–157

The most popular applications for neural networks were for the classi­
fication of a diagnosis or classification of a state or event. The most popu­
lar application is the detection of tremors among pD patients.23,52,86,137,158 
nn have been used to classify unipolar and bipolar depressed patients 
based on motor activity,45,159 estimate depression severity,159 forecast 
seizures,160 and classify a treatment response using keyboard patterns 
among pD patients.161

transfer learning

Transfer learning (also known as domain adaption) refers to the act of 
deriving the representations of a previously trained ml model to extract 
meaningful features from another dataset for an inter­related task.162 One 
applicable scenario is the training of a supervised ml model on data col­
lected in a controlled setting (such as in a lab or clinic). The performance 
of the model may suffer when applied to a dataset collected under free­
living conditions. Rather than developing a new model trained solely on 
a free­living condition dataset, transfer learning can use patterns learned 
from the controlled setting dataset to improve the learning of the pat­
terns from the free­living conditions dataset.

Transfer learning can also be a valuable technique for enhancing the 
utilization of limited or rare data.163 One practical application is to employ 

tasks. Logistic Regression classifies observations by examining the out­
come variables on the extreme ends and determines a logistic line that 
divides two or more classes.136 Linear and Logistic Regression are popu­
lar in algorithms as they are easy to implement, efficient to train, and easy 
to interpret. However, a limitation of both models is that they make multi­
ple assumptions, e.g., that a solution is linear, the input residuals are nor­
mally distributed, and that all features are mutually independent.150 Mul­
ticollinearity, the correlation between multiple features, and outliers 
will inflate the standard error of the model and may undermine the sig­
nificance of significant features.151 Further, outliers that deviate from the 
expected range of the data can skew the extreme bounds of the probabil­
ity, making both algorithms sensitive to outliers in the dataset.150

Linear Regression has been used to quantify tremors among Essential 
Tremor (et) patients 116 and to estimate motor­related symptom sever­
ity among pD patients.31,93 It has also been used to forecast convergence 
between body sides for Hemiparetic patients.130 Logistic Regression was 
a popular approach for classifying pD diagnosis,107,110 Post­Traumatic 
Stress Disorder,109 and distinguishing fallers and non­fallers.152 Logistic 
Regression has been used to classify drug effects, such as predicting the 
pre­ and post­medication states among pD patients.22

neural netWorks

Neural Networks (nn), also known as Artificial Neural Networks (ann), 
can be used for unsupervised and supervised classification and regres­
sion tasks.153 nn consists of a collection of artificial neurons (or nodes). 
Each artificial neuron receives, processes, and sends the signal to the 
artificial neuron connected to it. The neurons are aggregated into multi­
ple layers, and each layer performs different transformations on the sig­
nal. The signal first travels from the input layer into the output layer while 
possibly traversing multiple hidden layers in between. nn offer several 
advantages, such as the ability to detect complex non­linear relation­
ships between features and outcomes and work with missing data, while 
it also requires less preprocessing of the data and offers the availability 
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tasks share no mutual information or if the information of tasks are con­
tradictory.169 mtl models have been used to simultaneously model data 
sourced from two separate sources or to model multiple outcomes.170,171 
For example, Lu et al. explored the use of mtl to jointly model data col­
lected from two different smartphone platforms (iPhone and Android) to 
jointly predict two different types of depression assessments (QiDs and 
a Dsm-5 survey).79 They illustrated that the classification accuracy of the 
mtl approach outperformed the single­task learning approach by 48%; 
thus, the classification model benefited from learning from observations 
sourced from multiple devices.

generalizeD versus personalizeD

ml algorithms can be trained on population data or individual subject 
data. Generalized models, which are trained on population data, are fed 
data from all participants for the purpose of general knowledge learn­
ing. Conversely, personalized models are trained on an individual’s data 
and take into consideration individual factors such as biological or life­
style­related variations.172 We have adopted these terms from Kahdemi 
et al.’s study, in which they developed generalized and personalized mod­
els for sleep­wake prediction.173 The heterogenous nature of each popula­
tion or individual can be a potential hinderance for generalizable models. 
A single individual’s deviation from the ‘norm’ may be viewed as a source 
of ‘noise’ in a generalized model. For example, patients with mood dis­
orders such as mDD and BD have large inter­individual symptom variabil­
ity. Abdullah et al., reliably predicted the social rhythms of BD patients 
with personalized models using smartphone activity data.30 Cho et al. 
compared the mood prediction accuracy of personalized and general­
ized models based on the circadian rhythms of mDD and BD participants.38 
Their studies illustrated that their personalized model predictions were, 
on average, 24% more accurate than the generalized models. These stud­
ies lay the groundwork for developing personalized models that are more 
sensitive to individual differences.

pretraining on abundant control data and subsequently finetune the 
model on the specific population of interest to improve the model’s per­
formance.163–165 This approach not only optimizes the efficiency of utiliz­
ing scarce data but also facilitates model personalization. By adapting a 
pretrained model to individual characteristics or preferences, it becomes 
possible to create personalized models that better cater to unique needs 
or circumstances. Transfer learning thus offers a powerful means to lever­
age existing knowledge and make the most of available data resources, 
enhancing both the efficiency and personalization of biomarkers.

Given its application, transfer learning reduces the amount of labeled 
data and computational resources required to train new ml models,162 
thus making this method advantageous when the sensor modalities, sen­
sor placements, and populations differ between studies. While we only 
identified two studies that applied transfer learning to estimate pD dis­
ease severity using movement sensor data,166,167 we predict that the 
application of transfer learning will enable future researchers to over­
come the challenges of a limited dataset and develop more sensitive and 
effective ml models.

multi-task learning

Multi­task learning (mtl) enables the learning of multiple tasks simulta­
neously.168 Learning the commonalities and differences between mul­
tiple tasks can improve both the learning efficiency and the prediction 
accuracy of the ml models.168 A traditional single­task ml model can have 
a performance ceiling effect, given the limitations of the dataset size and 
the model’s ability to learn meaningful representations. mtl uses all avail­
able data across multiple datasets and can learn to develop generalized 
models that are applicable to multiple tasks. To use mtl, there should be 
some degree of information shared between or across all tasks. The cor­
relation allows mtl to exploit the underlying shared information or princi­
ples within tasks. Sometimes mtl models can perform worse than single­
task models because of ‘negative transfers’. This occurs when different 
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the lower and upper thresholds. We argue that log­uniform distribution 
is particularly useful when exploring values that vary over several orders 
of magnitude. Consider the example of tuning a linear regression model 
with the hyperparameter alpha, which determines the strength of reg­
ularization. To efficiently explore a wide range of alpha values, such as 
between 0.001 and 10, the log­uniform distribution allows for an evenly 
distributed search space over different orders of magnitude. Log­uni­
form distribution can be used for the initial exploration of a large range of 
hyperparameter values. The range can then be narrowed down to explore 
with a uniform­distribution to determine the optimal hyperparameters 
for the respective models.

The manual tuning of hyperparameters is impractical due to the 
large number of available hyperparameters, hyperparameter config­
urations, and time­consuming model evaluations. Automated tuning 
approaches are preferred, and there are a wide variety of approaches 
available, including GridSearch, RandomSearch, and Bayesian Optimiza­
tion.177 GridSearch uses brute force to test a finite combination of hyper­
parameters to identify the optimal hyperparameter configuration.178 This 
approach can suffer from the effects of dimensionality, as more poten­
tial hyperparameter configurations can be time­consuming and com­
putationally expensive. An alternative to GridSearch is RandomSearch. 
RandomSearch only samples a subset of all possible hyperparameter 
configurations within a specific time or computational budget.179 While 
RandomSearch only relies on a subsample of configurations, it has been 
shown to outperform the GridSearch method.179 As GridSearch and Ran­
domSearch do not consider previous performance evaluations for their 
hyperparameter optimization strategy, they are inefficient in exploring 
the hyperparameter search space. Bayesian Optimization, which uses 
Bayes Theorem, is a powerful approach. It considers previous hyperpa­
rameter evaluations to choose which hyperparameters to evaluate next 
and disregards potential hyperparameter combinations that are deemed 
irrelevant.178 This approach reduces the time and computations required 
for hyperparameter tuning. The benefit of using these more automated 

moDel hyperparameters

The process of building an effective ml model consists of two main steps: 
selecting the appropriate ml algorithm and optimizing the model per­
formance by tuning its parameters. Each model consists of two types of 
parameters: 
• The parameters that are initialized and continuously updated through­

out the learning process (e.g., the weights of neurons of a neural 
networks).

• The hyperparameters that must be set prior to the learning process 
as they define the model architecture (e.g., the regularization param­
eters of a Linear Regression model, and the learning rates of a neural 
network).174 

Every combination of the selected hyperparameters will have a direct 
influence on the performance of the learned model. For example, as the 
number of trees in a rf increases, the more features tend to be selected 
by the model, which may not always be relevant for the development of 
biomarkers.175 Similarly, the number of layers, number of neurons per 
layer, activation functions, and the regularization techniques used for 
nn can each influence the model performance.176 While most ml algo­
rithms come with default values for the hyperparameters, these may not 
be optimal for the dataset at hand, and even tuned hypermeters are at 
risk of being non­optimal for a different dataset. The process of selecting 
the optimal hyperparameter configurations is known as hyperparameter 
tuning.177

To identify the optimal hyperparameters for a model, researchers must 
define the hyperparameter space and the hyperparameter search strat­
egy. When defining the hyperparameter space, the distribution of the 
hyperparameter ranges can be either uniform or logarithmic. The uniform 
distribution assigns equal probability to all hyperparameter values within 
a manually defined range. The log­uniform distribution samples hyper­
parameter values uniformly between the logarithmic transformations of 
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ensures that the model is operating optimally and correctly. The follow­
ing sections provide more details about the performance metrics used for 
classification and regression models. Table 4 provides an overview of the 
most common performance metrics used in the selected studies, their 
respective calculations, and their clinical interpretations.

classification measures

Classification models have discrete outcomes; thus, a metric must reflect 
how often an observation belongs to the correct label or class.187 There 
are three categories of classification measures: Threshold Metrics, Rank­
ing Metrics, and Error Metrics. Threshold Metrics (such as accuracy and f1 
score) quantify the prediction errors of the classification model as a ratio 
or rate. Ranking Metrics (such as the Receiver Operating Characteristics 
(roc) and Area Under the Curve (auc)) focus on evaluating classification 
models based on how effective they can discern separate classes. Error 
Metrics (such as Root Mean Square Error) quantify the uncertainty of the 
classification model’s predictions. While the Threshold and Ranking Met­
rics are focused on correct and incorrect predictions, the Error Metrics 
quantify the proportion of classification errors.

As ml models are increasingly being used to perform high­impact tasks 
pertaining to clinical assessments, an evaluation metric must be selected 
based on what the stakeholders find to be important regarding the model 
prediction, which can make the selection of the model metrics challeng­
ing. As seen in Table 4, accuracy, sensitivity, specificity, and precision are 
calculated based on four test results. The True Positive (tp) and True Neg­
ative (tn) indicate the presence or absence of a diagnostic or characteris­
tic. The False Positive (fp) and False Negative (fn) indicate the opposite of 
the true condition.

Binary classification models typically involve a decision threshold 
hyperparameter that determines how the model assigns labels based on 
the predicted probabilities. The default threshold is typically 0.5, mean­
ing that if the predicted probability is greater than 0.5, the positive label 
is assigned, and vice versa. However, it is important to note that this 

approaches to hyperparameter tuning is three­fold. First, it reduces the 
time effort required to optimize a ml model. Next, the performance of the 
ml models is improved as the hyperparameters explore different optimal 
model configurations for different datasets. Finally, when the hyperpa­
rameters and their ranges (together also referred to as the hyperparam­
eter space) and the hyperparameter tuning methods are reported, the 
models and the findings become reproducible.180 When similar hyperpa­
rameter tuning processes can be used for different ml algorithms for dif­
ferent datasets, researchers can then identify the optimal ml model.

Among the selected studies, 25 discussed which hyperparameters 
were considered for their models,23,24,34,43,44,46,53,69,73,86,87,94,95,107–110,114, 
138,158,159,181–184 of which one stated they used the default hyperparam­
eters of the models.69 Only nine studies discussed how they selected or 
optimized their hyperparameters. We identified four studies that stated 
GridSearch was used for the hyperparameter tuning.36,46,95,110 We did not 
identify any studies that used RandomSearch or Bayesian Optimization. 
The limited reporting of hyperparameters and the hyperparameter tuning 
process poses a problem for the transparency, reproducibility, and com­
parison of ml models.

Model evaluation

Assessing a ml model’s performance is an essential component for deter­
mining the usability and reliability of the model. Depending on the objec­
tive of the research, it is often necessary to try to compare the perfor­
mance of multiple ml models to identify the optimal model.185,186 In ml, 
the terms metric and measure are often used interchangeably, but they 
do have slightly different meanings. A metric is a function used to evalu­
ate the performance of a model, while a measure is a numerical summary 
of the performance of a model obtained using one or more metrics. It is 
best practice to use multiple metrics and model performance visualiza­
tions for the model evaluation, as a model may perform well for one eval­
uation metric and poorly for another. Using multiple evaluation metrics 
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Oversampling techniques duplicate the samples of the minority class, 
while undersampling removes samples of the majority class. However, 
these techniques also have their disadvantages, as the duplication of mul­
tiple samples can lead to overfitting of a model, while undersampling 
reduces the diverse representation of the majority class. Thus, we would 
specifically recommend using the Synthetic Minority Oversampling Tech­
nique (smote) with Tomek Links or Edited Nearest Neighbor (enn)—two 
undersampling techniques.193,194 smote is first applied to create an arti­
ficial minority class to minimize the class imbalance. Next, Tomek Links 
or enn can be used to remove samples that are close to the boundar­
ies between the classes, which would further separate the classes.193,194

regression measures

As regression models generate predictions on a continuous scale, the 
objective is to estimate how close the predictions were to the true val­
ues.195 Among the studies selected, we found that regression models 
used Distance Metrics and Error Metrics to estimate the strength of the 
association or the distance between the predicted values and the true 
values.29,42,87,93,96,128,152 We would like to emphasize that these met­
rics are used to compare the performance of the composite biomarkers 
rather than the performance of the individual features. The most com­
mon Distance Metrics were the correlation (also known as r) and the 
percentage of the variance explained (r2). Both were used to assess the 
strength of the association between the predicted and true values.196 
There is no rule of thumb for interpreting the strength of r2. While an 
r2 closer to 1 can be obtained in clinical trials, a low r2 can still be use­
ful with respect to trends in the data. We would like to address two 
points of caution when using the r2.185,187 First, it is not always suit­
able to compare r2 across different datasets, as different clinical pop­
ulations are likely to differ in their feature variance. Second, the r2 
will increase with the number of features. To compensate for this, one 
may use the adjusted r2 to account for the number of features.197,198 

threshold can be adjusted to accommodate specific needs or domain con­
siderations. To evaluate the performance of binary classification models 
across different decision thresholds, the roc curve is commonly used. 
The roc curve provides an overview of the model’s performance by illus­
trating the trade­off between tp and fp rates at various threshold values. 
roc can aid the assessment of the model’s performance across a range of 
decision thresholds and enable the selection of the threshold that aligns 
with a specific objective.

It is worth noting that many classification metrics, including accuracy, 
precision, recall, and f1 score, assume binary labels. However, when deal­
ing with multiclass classification problems, another approach is to use 
one­vs­rest or one­vs­one strategies, wherein the problem is decomposed 
into multiple binary classification tasks. The performance of the model 
on each task can then be evaluated using the binary classification met­
rics, and the results can be aggregated or averaged to provide an overall 
assessment of the model’s performance on the multiclass problem.

Class imbalance can be an obstacle for assessing model perfor­
mance. In particular, accuracy, auc, roc, may be sensitive to such imbal­
ances.188 Hence, when facing class imbalance, there are two approaches 
to consider: one can choose a metric that accounts for class imbal­
ance or one can choose to balance the classes. Metrics such as balanced 
accuracy, f1­score, or Matthews Correlation Coefficient (mcc) are com­
mon metrics for handling class imbalance, as identified by 15 studies. 
23,24,29,36,44,60,61,107,108,110,114,140,159,161,189 Balanced accuracy represents 
the mean of the sensitivity and specificity, while the f1­score represents 
the mean of the precision and recall.190 The mcc measures the correlation 
coefficient of the binary and even multiclass classes. Therefore, the mcc 
score is high only if the classification model correctly predicts both the 
positive and negative predictions.190,191

The other approach to handling class imbalances is adjusting the class 
distribution using oversampling or undersampling. We identified eight 
studies that used random over/under sampling or smote.29,44–46,61,95,109,192 
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Cross­validation is a popular validation method that uses resampling to 
train, test, and validate a model using different subsets of the data. The 
training dataset is used to train the ml model to learn the patterns within 
a dataset. The validation dataset is used to tune the hyperparameters of 
the model based on the performance of the ml model trained on the train­
ing dataset. The test dataset provides an unbiased estimate of the perfor­
mance of the final ml model after training and validation. In the scenario 
when both validation and test datasets are used, the test datasets are 
only used to assess the model once (via hold­out validation) or multiple 
times (via nested cross­validation). In general, datasets need to meet two 
main requirements. The datasets should not have shared or overlapping 
observations to ensure that data leakage does not lead to bias in the esti­
mates, and all observations must be statistically independent.202 When 
applying feature engineering or feature selection with cross­validation, 
any transformation or selection steps should be performed within each 
fold of the cross­validation to prevent biasing in the training of the predic­
tion model with information from the test dataset.203 The overall perfor­
mance of the prediction models, obtained by averaging across each iter­
ation of the cross­validation, evaluates the effectiveness of the combined 
feature reduction and learning methods in estimating the label for a given 
dataset.

Among the selected studies, we found that the most popular cross­
validation methods were k­fold cross­validation (n = 27), Leave­One­
Out cross­validation (n = 16), and custom validation (n = 8). Overall, 15 
studies did not report the use a validation method. K­fold cross­valida­
tion randomly splits the datasets in ‘k’ folds; one­fold is used for testing 
and the remaining folds are used for training. This step is repeated until 
every unique fold has been used as the test dataset, and the overall per­
formance is based on the average of the performance of each model in 
each fold.204 Leave­one­out cross­validation is a specific type of k­fold 
cross­validation, wherein individual observations (or participants) are the 
test datasets, and the remaining cases are used for training. Leave­one­
out cross validation prevents data leakage across datasets, as repeated 

The Error Metrics included the Mean Absolute Error (mae), Mean Squared 
Error (mse), and Root Mean Squared Error (rmse).133 The mae measures 
the average absolute difference between the true and predicted values. 
The mae is easy to interpret and robust to outliers. The absolute difference 
accounts for negative differences. The mse squares the error instead of 
providing the absolute error, which gives more weight to the bigger errors. 
The mse is sensitive to outliers and not easy to interpret, as the results will 
not have the same unit as the output. However, the rmse provides an esti­
mation of the error in the same units as the output while maintaining the 
properties of the mse.199

Model validation

In ml, model validation refers to the process of evaluating the general­
izability of a trained model on an unseen dataset. Selecting the most 
appropriate model validation approach depends on the size and char­
acteristics of the datasets. Three datasets are required for model valida­
tion: the training, test, and validation datasets. In most cases, the valida­
tion dataset can be a subset of the original dataset; however, this can lead 
to data leakage, which could produce overly optimistic results. Another 
approach is to create a validation dataset from an independent (but com­
parable) dataset, which ensures an unbiased and independent evaluation 
of the ml model. However, a limitation is that the performance evaluation 
may reflect high variance due to the limited size of the dataset.200 More­
over, it is crucial to highlight that a participant should only be present in 
a single dataset, such as the training dataset, and should not simultane­
ously appear in other datasets such as the testing or validation datasets. 
When a participant’s observations are distributed across multiple datas­
ets, data leakage can occur, compromising the accuracy estimation and 
its applicability to new participants.183 As a result, cross­validation on the 
observation level rather than the participant level is methodologically 
flawed. Unfortunately, this is a common issue and needs to be accounted 
for in future studies.201
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Recommendations

In this recommendation section, we address the main issues consis­
tently identified in the selected studies and how to amend these issues 
for future trials (see Figure 5 for a simplified overview of these recommen­
dations). It is important to bear in mind the regulatory implications for 
developing ml­derived biomarkers. Within the European Union, AI medi­
cal systems and devices are considered high risk; therefore, they are sub­
ject to stringent reviews prior to being made available on the market.212 
These review requirements emphasize the importance of achieving high 
levels of performance, transparency, and minimal risk in ml­derived bio­
marker development.213 High performance implies that the developed 
ml models must be accurate, robust, and capable of reliably and consis­
tently predicting the target outcome variable. Furthermore, transparency 
in ml­derived biomarker development refers to the provision of clear and 
adequate information to the user, including appropriate human­readable 
measures to minimize risks associated with the use of the system. The 
development of ml­derived biomarkers must also aim to minimize risks 
and discriminatory outcomes, which can be achieved by training the ml 
model on high­quality datasets that are representative of the target pop­
ulation and by conducting adequate risk assessment checks.214 These 
considerations are critical for ensuring the safe and effective use of ml­
derived biomarkers in clinical practice.

inclusion of healthy controls

When conducting a study focused on disease classification or estima­
tion, the inclusion of control data can serve several purposes. By com­
paring the data from individuals with the condition of that of the healthy 
controls, researchers can discern whether the observed differences are 
specific to the condition or a result of unrelated factors. Moreover, ana­
lyzing the performance of a model on control subjects can shed light on 
the biomarker’s effectiveness and reliability. By evaluating how well the 
model distinguishes between healthy controls and patients with the 

measurements of the same subjects can lead to the violation of indepen­
dence assumption for ordinary cross­validation.204–206

We would like to highlight the advantages of the nested cross­vali­
dation approach. While nested cross­validation was the least popular 
approach, we would argue that nested cross­validation is a more robust 
approach for selecting and evaluating a ml model.207 Currently, the model 
section without the nested cross­validation approach uses the same data 
to both tune the model hyperparameters and evaluate its performance. 
Therefore, information is ‘leaked’ between the training and validation 
of the model, which can lead to overfitting.207 Nested cross­validation 
consists of an inner loop and an outer loop. The outer loop assesses the 
model performance, while the inner loop assesses the hyperparameter 
selection.207 Each iteration of the outer loop is split into a different com­
bination of training and test sets. The outer loop training set is used in the 
inner loop, which is further split into a training and validation dataset. The 
inner loop split is repeated over k­folds, and the best performing model 
across the k­folds is evaluated in the outer loop. This ensures that differ­
ent data are used to optimize the models’ hyperparameters and evalu­
ate the model’s performance. The final model performance represents 
the average and standard deviation of the model performance as selected 
by each of the outer loops. Without the standard deviation or confidence 
intervals, it is not possible to evaluate the spread or stability of the predic­
tion error of the given models.208,209

It is important to highlight that cross­validation is only used to approxi­
mate the generalization error of the models built and not to build the final 
model that will be used for making predictions.205,210 The average predic­
tion error across the folds gives an expected error for a single model built 
on the single dataset. If the variance of the prediction error is too high, 
then the model is considered unstable. To select a single model, it is rec­
ommended that researchers rebuild the model using the full dataset.211 If 
an external validation set is available, then this validation set can be used 
to evaluate and compare the single prediction error to that of the cross­
validation prediction error.
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missing and outlier data and understanding how these factors might 
affect the generalizability and reproducibility of the ml model. While most 
studies provide detailed information on patient populations, the devices 
used, and the data collected, they often underreport information related 
to data quality and preprocessing steps. Therefore, it is important to pro­
vide sufficient details on the methods used to preprocess the data, includ­
ing the quantity of missing and outlier data and the strategies employed 
to handle such data. This information can ensure that the data collec­
tion and preprocessing process can be reproduced, which, in turn, can 
enhance the credibility and generalizability of the ml model.

feature engineering anD selection

There is a wide variety of manual or automated techniques used for 
engineering and selecting features to feed a model. ml models perform 
best when feature engineering and selection are leveraged to formu­
late potentially clinically relevant features from existing data. In addi­
tion, the performance of the ml model can be optimized, and the compu­
tational time can be reduced when the redundancy across the features is 
reduced. While only selecting the most informative features can remove 
noise (therefore reducing the likelihood of overfitting), selecting too few 
features may reduce the strength of the (combined) signal in the dataset, 
making the ml model vulnerable to underfitting. Feature engineering and 
selection can be guided by domain expertise and/or automated statisti­
cal models, where multiple features are evaluated by their importance 
in predicting the outcome. While automated feature engineering tech­
niques, such as clustering, pca, and Dl, can be used to extract a reduced 
set of representative features, this risks a potential decline in interpret­
ability, which may limit its clinical application.

moDel configuration anD optimization

When selecting the ml models, there are several factors that should 
be considered, such as model objectives, model types, model hyper­
parameters, and model evaluation. Poor design choices and lenient 

condition, researchers can gain a better understanding of its predictive 
capabilities. This evaluation can provide insights into potential false posi­
tives or false negatives that may occur when using the model in real­world 
settings.

It is worth noting that, when including control data, the control data 
should be appropriately matched with the patient population data. Hav­
ing age­ and gender­matched control subjects can help minimize con­
founding variables, improving the accuracy of the analysis. This match­
ing process allows researchers to draw more robust conclusions about the 
relationship between the identified features or patterns and the disease 
activity while also reducing the potential impact of demographic factors 
on the results.

The finding that only half of the studies included healthy controls is sig­
nificant as it highlights a potential gap or limitation in the existing body 
of research. Without the inclusion of controls, it becomes challenging to 
attribute identified features or patterns solely to the cns disorder or the 
severity of the condition. Further, if the dataset only contains a relatively 
homogeneous population, it calls the reliability and predictive capa­
bilities of the models into question. We encourage future researchers to 
include control subjects in their studies, as it would improve the strength 
of their biomarkers and the validity of their findings.

Data Quality anD preprocessing

The remote monitoring of clinical trials can generate large and complex 
datasets that include longitudinal data from multiple subjects and data 
sourced from multiple sensors, resulting in a multi­dimensional data 
structure. To this point, we recommend using the WHO mhealth Tech­
nical Evidence Review Groups’ mhealth evidence and evidence report­
ing and assessment (mera) 16­item checklist to provide transparency 
on which mhealth invention was used, where, and how it was imple­
mented to support the reproducibility of the mhealth data collection.215 
To ensure the quality and reliability of the data, it is important to assess 
the quality of the data. This assessment includes examining the data for 
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excel for one metric and fail for another, this underscores the need for 
comprehensive evaluation. Employing multiple metrics ensures optimal 
operation and reduces the likelihood of blind spots.

Once the final model has been trained, there are three approaches 
to choose from to apply the model to a new target dataset. The first 
approach is to test the model ‘as­is’, implying that the ready­made model 
can be used in its original state without modifications.216 In the second 
scenario, the train data and the target data may have different character­
istics, which may lead to a distribution shift. The type of distribution shift 
between the two datasets can occur for many reasons, including differ­
ent mhealth devices used for data collection, environmental noise, and 
sampling bias.217 When this occurs, transfer learning can be used to fine­
tune the ready­made model and update its weights to better suit the tar­
get dataset.216 In the third scenario, the target dataset may have different 
requirements than the original training dataset.216 As a result, the deci­
sion boundary of the classification model can be altered, such as optimiz­
ing the model for a sensitivity of 90% instead of accuracy. Whether test­
ing the model as­is, employing transfer learning, or adjusting the decision 
boundary, these strategies offer flexibility in adapting the model to differ­
ent settings and improving its performance for validation purposes.

moDel reproDuciBility anD interpretaBility

Equally important as the model performance are the ml models’ repro­
ducibility and interpretability. Reproducibility is a core component for 
ensuring that a ml model can be validated and reused by clinical research­
ers. Technical reproducibility involves using the same computational 
procedures to produce consistent model outcomes. Statistical repro­
ducibility ensures that the model demonstrates similar statistical perfor­
mance across different subsets of data. Conceptual reproducibility refers 
to achieving consistent results under new conditions, such as data col­
lected from different settings.216 Transparency regarding data quality, 
feature engineering and selection methods, the hyperparameters consid­
ered and selected, and the model validation protocol can help ease the 

hyperparameter tuning and validation in these steps can lead to poor 
model performance. We recommend that researchers carefully consider 
each step of building their ml pipeline by comparing multiple ml algo­
rithms, using automated methods for assessing multiple hyperparame­
ter configurations, and using nested cross validation to both optimize and 
validate the ml models.

moDel valiDation

We would recommend using a minimum of three datasets to validate a ml 
model and train, validate, and test a dataset. At no point should the test 
set be used for the model configuration, which includes the data trans­
formation, feature engineering, and selection, or the tuning of the hyper­
parameters. The test dataset could either be a subset of the original data 
(with no overlapping subjects or observations) or a separate external 
dataset. The use of an external dataset is ideal as this ensures that there is 
no influence of bias during the data collection period and that there is no 
data leakage between the datasets. If an external dataset is not available 
or if the dataset is not sufficiently large, we recommend nested cross­val­
idation. This resampling method supports model hyperparameter tuning 
and performance evaluation without the risk of data leakage across the 
dataset.

It is crucial to report the evaluation metric results for each dataset. In 
the case of cross­validation reporting, we recommend that researchers 
report the distribution of the performance measures (e.g., the mean and 
standard deviation or median and 95% confidence interval) across the 
folds to show the average and variability of the performance of the mod­
els. As cross­validation evaluates the prediction error across multiple ml 
models, we would also recommend reporting the performance of the final 
model selected. This is achieved by re­training a ml model on the full data­
set and evaluating the performance on an external dataset.207,210 This 
would give insight into how well the model would perform under differ­
ent circumstances. We also highly recommend using multiple evaluation 
metrics for assessing the model’s performance. Seeing as a model might 
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Conclusions

The rise and breadth of ml applications in clinical trials highlight the 
increasing reliance and importance of ml in the development of novel bio­
markers.226 While the advances in ml applications have demonstrated 
great potential for innovative biomarker development, the process of 
its development is not well documented, which, in turn, limits the repro­
ducibility of these findings. This review has illustrated the steps taken 
to translate raw data from mhealth technologies into meaningful clini­
cal biomarkers using ml. Given the lack of consistent reporting in the ml 
methods, the present review cannot provide a complete or detailed pic­
ture of the notable and generic practices. However, the authors have pro­
vided an overview of the status quo of the development and translation 
of ml­derived biomarkers in mhealth­focused clinical trials. The rec­
ommended checklist provided in the review could serve as a foundation 
for the design of future ml­derived biomarkers in conventional ml prac­
tices. By encouraging consistent and transparent reporting, researchers 
can accelerate the integration of novel biomarkers derived from mhealth 
sensors and ml pipelines into future clinical trials.

ability of the scientific community to recreate the work in the published 
literature. Best practices for reproducibility include publishing the code 
on GitHub or by publishing fair metadata.211,218,219

Given the potential clinical application of ml models, prior to model­
ing, researchers should determine the model’s interpretability require­
ment. While ml models provide researchers with what was predicted, 
interpretability requires that the model can explain why it made the pre­
diction.185 Interpretability enables us to understand the causal relation­
ships between the data and the ml model’s predictions. There are two 
situations in which the interpretability of a model is required: when an 
inaccurate prediction can have severe or even fatal consequences for the 
patients (such as a misclassified diagnosis 220) and when the interpret­
ability can be used to identify novel relationships between clinical fac­
tors and the predicted outcome (such as factors influencing treatment 
outcomes 221). There can be two situations in which interpretability is not 
required: situations in which incorrect predictions do not have severe 
consequences (such as counting the number of coughs 222) or situations 
in which the ml model has been sufficiently validated in real clinical appli­
cations, even if the predictions are not perfect.223 While black box mod­
els may offer more accurate predictions than an interpretable model, 
they only provide limited insight into how the predictions were made. 
Therefore, both interpretable and black box models have their respective 
merits.

There are two broad approaches towards achieving interpretability.224 
One approach is to use easy­to­interpret models, such as Linear or Logis­
tic Regression, where the coefficients of the features can provide insight 
into the features’ associations with the predicted outcome. The other 
approach is to use explanation methods for explaining complex or black 
box models, such as shapley Additive exPlanations plots (shap), Local 
Interpretable Model­agnostic Explanations (lime), or Anchors.224 We rec­
ommend that researchers report whether their final selected model was 
an interpretable model or a black box.225 If it was interpretable, we recom­
mend discussing what interpretations can be derived from the models.



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials66 67part i /chapter 2

referenCes

1 Au, R.; Lin, H.; Kolachalama, V.B. Tele­Trials, 
Remote Monitoring, and Trial Technology for 
Alzheimer’s Disease Clinical Trials. In Alzheimer’s 
Disease Drug Development; Cambridge University 
Press: Cambridge, UK, 2022; pp. 292–300.

2 Inan, O.T.; Tenaerts, P.; Prindiville, S.A.; Reynolds, 
H.R.; Dizon, D.S.; Cooper­Arnold, K.; Turakhia, M.; 
Pletcher, M.J.; Preston, K.L.; Krumholz, H.M.; et al. 
Digitizing clinical trials. NPJ Digit. Med. 2020, 3, 101.

3 Teo, J.X.; Davila, S.; Yang, C.; Hii, A.A.; Pua, C.J.; 
Yap, J.; Tan, S.Y.; Sahlén, A.; Chin, C.W.­L.; Teh, 
B.T.; et al. Digital phenotyping by consumer 
wearables identifies sleep­associated markers of 
cardiovascular disease risk and biological aging. 
bioRxiv 2019.

4 Brietzke, E.; Hawken, E.R.; Idzikowski, M.; Pong, 
J.; Kennedy, S.H.; Soares, C.N. Integrating 
digital phenotyping in clinical characterization 
of individuals with mood disorders. Neurosci. 
Biobehav. Rev. 2019, 104, 223–230.

5 Kourtis, L.C.; Regele, O.B.; Wright, J.M.; Jones, G.B. 
Digital biomarkers for Alzheimer’s disease: The 
mobile/wearable devices opportunity. NPJ Digit. 
Med. 2019, 2, 9.

6 Bhidayasiri, R.; Mari, Z. Digital phenotyping in 
Parkinson’s disease: Empowering neurologists 
for measurement­based care. Park. Relat. Disord. 
2020, 80, 35–40.

7 Prosperi, M.; Min, J.S.; Bian, J.; Modave, F. Big data 
hurdles in precision medicine and precision public 
health. BMC Med. Inform. Decis. Mak. 2018, 18, 139.

8 Torres­Sospedra, J.; Ometov, A. Data from 
Smartphones and Wearables. Data 2021, 6, 45.

9 García­Santıllán, A.; del Flóres­Serrano, S.; López­
Morales, J.S.; Rios­Alvarez, L.R. Factors Associated 
that Explain Anxiety toward Mathematics on 
Undergraduate Students. (An Empirical Study in 
Tierra Blanca Veracruz­México). Mediterr. J. Soc. 
Sci. 2014, 5.

10 Iniesta, R.; Stahl, D.; Mcguffin, P. Machine learning, 
statistical learning and the future of biological 
research in psychiatry. Psychol. Med. 2016, 46, 
2455–2465.

11 Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, 
N.; Fanos, V. Comparison of Conventional 
Statistical Methods with Machine Learning in 
Medicine: Diagnosis, Drug Development, and 
Treatment. Medicina 2020, 56, 455.

12 Getz, K.A.; Rafael, A.C. Trial watch: Trends in 
clinical trial design complexity. Nat. Rev. Drug. 
Discov. 2017, 16, 307.

13 Getz, K.A.; Stergiopoulos, S.; Marlborough, M.; 
Whitehill, J.; Curran, M.; Kaitin, K.I. Quantifying 
the Magnitude and Cost of Collecting Extraneous 
Protocol Data. Am. J. Ther. 2015, 22, 117–124.

14 Getz, K.A.; Wenger, J.; Campo, R.A.; Seguine, E.S.; 
Kaitin, K.I. Assessing the Impact of Protocol Design 
Changes on Clinical Trial Performance. Am. J. Ther. 
2008, 15, 450–457.

15 Globe Newswire. Rising Protocol Design 
Complexity Is Driving Rapid Growth in Clinical 
Trial Data Volume, According to Tufts Center 
for the Study of Drug Development. Available 
online: https://www.globenewswire.com/
news­release/2021/01/12 /2157143/0/en/
Rising­Protocol­Design­Complexity­Is­Driving­
Rapid­Growth­in­Clinical­Trial­Data­Volume­
According­toTufts­Center­for­the­Study­of­Drug­
Development.html (accessed on 12 January 2021).

16 Santos, W.M.D.; Secoli, S.R.; de Araújo Püschel, 
V.A. The Joanna Briggs Institute approach for 
systematic reviews. Rev. Lat. Am. Enferm. 2018, 26, 
e3074.

17 Central Nervous System Diseases—MeSH—NCBI. 
2023. Available online: https://www.ncbi.nlm.nih.
gov/mesh?Db=mesh& Cmd=DetailsSearch&Term=
%22Central+Nervous+System+Diseases%22%5B
MeSH+Terms%5D (accessed on 5 January 2023).

18 Martinez, G.J.; Mattingly, S.M.; Mirjafari, S.; 
Nepal, S.K.; Campbell, A.T.; Dey, A.K.; Striegel, 
A.D. On the Quality of Real­world Wearable Data 
in a Longitudinal Study of Information Workers. 
In Proceedings of the 2020 ieee International 
Conference on Pervasive Computing and 
Communications Workshops, PerCom Workshops 
2020, Austin, TX, usa, 23–27 March 2020.

19 Ruiz Blázquez, R.R.; Muñoz­Organero, M. Using 
Multivariate Outliers from Smartphone Sensor 
Data to Detect Physical Barriers While Walking in 
Urban Areas. Technologies 2020, 8, 58.

20 Poulos, J.; Valle, R. Missing Data Imputation for 
Supervised Learning. Appl. Artif. Intell. 2018, 32, 
186–196.

21 Schafer, J.L.; Graham, J.W. Missing data: Our view 
of the state of the art. Psychol. Methods 2002, 7, 
147–177.

22 Evers, L.J.; Raykov, Y.P.; Krijthe, J.H.; de Lima, 
A.L.S.; Badawy, R.; Claes, K.; Heskes, T.M.; Little, 
M.A.; Meinders, M.J.; Bloem, B.R. Real­life gait 
performance as a digital biomarker for motor 
fluctuations: The Parkinson@Home validation 
study. J. Med. Internet Res. 2020, 22, e19068.

23 Papadopoulos, A.; Kyritsis, K.; Klingelhoefer, L.; 
Bostanjopoulou, S.; Chaudhuri, K.R.; Delopoulos, 
A. Detecting Parkinsonian Tremor from IMU 
Data Collected In­The­Wild using Deep Multiple­
Instance Learning. ieee J. Biomed. Health Inform. 
2019, 24, 2559–2569.

24 Tougui, I.; Jilbab, A.; El Mhamdi, J. Analysis of 
smartphone recordings in time, frequency, and 
cepstral domains to classify Parkinson’s disease. 
Healthc. Inform. Res. 2020, 26, 274–283.

25 Meyerhoff, J.; Liu, T.; Kording, K.P.; Ungar, L.H.; 
Kaiser, S.M.; Karr, C.J.; Mohr, D.C. Evaluation of 
Changes in Depression, Anxiety, and Social Anxiety 
Using Smartphone Sensor Features: Longitudinal 
Cohort Study. J. Med. Internet Res. 2021, 23, 
e22844.

26 Dinesh, K.; Snyder, C.W.; Xiong, M.; Tarolli, C.G.; 
Sharma, S.; Dorsey, E.R.; Sharma, G.; Adams, 
J.L. A Longitudinal Wearable Sensor Study in 
Huntington’s Disease. J. Huntingt. Dis. 2020, 9, 
69–81.

27 Cho, C.­H.; Lee, T.; Lee, H.­J. Mood Prediction of 
Patients with Mood Disorders by Machine Learning 
Using Passive Digital Phenotypes Based on the 
Circadian Rhythm: Prospective Observational 
Cohort Study. 2019. Available online: https://www.
ncbi. nlm.nih.gov/pmc/articles/PMC6492069/ 
(accessed on 5 January 2023).

28 Tanaka, T.; Kokubo, K.; Iwasa, K.; Sawa, K.; Yamada, 
N.; Komori, M. Intraday activity levels may better 
reflect the differences between major depressive 
disorder and bipolar disorder than average daily 
activity levels. Front. Psychol. 2018, 9, 2314.

29 Palmius, N.; Tsanas, A.; Saunders, K.E.A.; 
Bilderbeck, A.C.; Geddes, J.R.; Goodwin, G.M.; 
De Vos, M. Detecting bipolar depression from 
geographic location data. ieee Trans. Biomed. Eng. 
2017, 64, 1761–1771.

30 Abdullah, S.; Matthews, M.; Frank, E.; Doherty, 
G.; Gay, G.; Choudhury, T. Automatic detection 
of social rhythms in bipolar disorder. J. Am. Med. 
Inform. Assoc. 2016, 23, 538–543.

31 Ramsperger, R.; Meckler, S.; Heger, T.; van Uem, 
J.; Hucker, S.; Braatz, U.; Graessner, H.; Berg, D.; 
Manoli, Y.; Serrano, J.A.; et al. Continuous leg 

dyskinesia assessment in Parkinson’s disease 
­clinical validity and ecological effect. Park. Relat. 
Disord. 2016, 26, 41–46.

32 Gossec, L.; Guyard, F.; Leroy, D.; Lafargue, T.; Seiler, 
M.; Jacquemin, C.; Molto, A.; Sellam, J.; Foltz, V.; 
Gandjbakhch, F.; et al.

Detection of Flares by Decrease in Physical Activity, 
Collected Using Wearable Activity Trackers in 
Rheumatoid Arthritis or Axial Spondyloarthritis: 
An Application of Machine Learning Analyses 
in Rheumatology. Arthritis Care Res. 2019, 71, 
1336–1343.

33 Bai, R.; Xiao, L.; Guo, Y.; Zhu, X.; Li, N.; Wang, Y.; 
Chen, Q.; Feng, L.; Wang, Y.; Yu, X.; et al. Tracking 
and monitoring mood stability of patients with 
major depressive disorder by machine learning 
models using passive digital data: Prospective 
naturalistic multicenter study. JMIR mhealth 
Uhealth 2021, 9, e24365.

34 Schwab, P.; Karlen, W. A Deep Learning Approach 
to Diagnosing Multiple Sclerosis from Smartphone 
Data. ieee J. Biomed. Health Inform. 2021, 25, 
1284–1291.

35 Aghanavesi, S. Smartphone­Based Parkinson’s 
Disease Symptom Assessment. Licentiate 
Dissertation, Dalarna University, Falun, Sweden, 
2017.

36 Maleki, G.; Zhuparris, A.; Koopmans, I.; Doll, 
R.J.; Voet, N.; Cohen, A.; van Brummelen, E.; 
Groeneveld, G.J.; De Maeyer, J.

Objective Monitoring of Facioscapulohumeral 
Dystrophy During Clinical Trials Using a 
Smartphone App and Wearables: Observational 
Study. JMIR Form. Res. 2022, 6, e31775.

37 Twose, J.; Licitra, G.; McConchie, H.; Lam, K.H.; 
Killestein, J. Early­warning signals for disease 
activity in patients diagnosed with multiple 
sclerosis based on keystroke dynamics. Chaos 
2020, 30, 113133.

38 Cho, C.H.; Lee, T.; Kim, M.G.; In, H.P.; Kim, L.; Lee, 
H.J. Mood prediction of patients with mood 
disorders by machine learning using passive 
digital phenotypes based on the circadian rhythm: 
Prospective observational cohort study. J. Med. 
Internet Res.2019, 21, e11029.

39 Little, R.J.A.; Rubin, D.B. Complete­Case and 
Available­Case Analysis, Including Weighting 
Methods; John Wiley & Sons, Ltd.: Hoboken, NJ, 
usa, 2014; pp. 41–58.

40 Demissie, S.; LaValley, M.P.; Horton, N.J.; Glynn, 
R.J.; Cupples, L.A. Bias due to missing exposure 



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials68 69part i /chapter 2

61 Garcia­Ceja, E.; Riegler, M.; Jakobsen, P.; Torresen, 
J.; Nordgreen, T.; Oedegaard, K.J.; Fasmer, O.B. 
Motor Activity Based Classification of Depression 
in Unipolar and Bipolar Patients. In Proceedings 
of the 2018 ieee 31st International Symposium 
on Computer­Based Medical Systems (CBMS), 
Karlstad, Sweden, 18–21 June 2018; pp. 316–321.

62 Liu, H. Feature Engineering for Machine Learning 
and Data Analytics. In Feature Engineering for 
Machine Learning and Data Analytics; Taylor & 
Francis Group: Boca Raton, FL, usa, 2018.

63 Nargesian, F.; Samulowitz, H.; Khurana, U.; Khalil, 
E.B.; Turaga, D. Learning feature engineering for 
classification. IJCAI Int. Jt. Conf. Artif. Intell. 2017, 
2529–2535.

64 Kuhn, M.; Johnson, K. Feature Engineering and 
Selection: A Practical Approach for Predictive 
Models; Chapman and Hall/CRC: Boca Raton, FL, 
usa, 2019.

65 Ronao, C.A.; Cho, S.­B. Human activity recognition 
with smartphone sensors using deep learning neu­
ral networks. Expert Syst. Appl. 2016, 59, 235–244.

66 Nweke, H.F.; Teh, Y.W.; Al­garadi, M.A.; Alo, U.R. 
Deep learning algorithms for human activity 
recognition using mobile and wearable sensor 
networks: State of the art and research challenges. 
Expert Syst. Appl. 2018, 105, 233–261.

67 Zdravevski, E.; Lameski, P.; Trajkovik, V.; Kulakov, 
A.; Chorbev, I.; Goleva, R.; Pombo, N.; Garcia, 
N. Improving Activity Recognition Accuracy in 
Ambient­Assisted Living Systems by Automated 
Feature Engineering. ieee Access 2017, 5, 
5262–5280.

68 McGinnis, R.S.; Mahadevan, N.; Moon, Y.; Seagers, 
K.; Sheth, N.; Wright, J.A., Jr.; Dicristofaro, S.; 
Silva, I.; Jortberg, E.; Ceruolo, M.; et al. A machine 
learning approach for gait speed estimation using 
skin­mounted wearable sensors: From healthy 
controls to individuals with multiple sclerosis. 
PLoS ONE 2017, 12, e0178366.

69 Maxhuni, A.; Muñoz­Meléndez, A.; Osmani, V.; 
Perez, H.; Mayora, O.; Morales, E.F. Classification 
of bipolar disorder episodes based on analysis 
of voice and motor activity of patients. Pervasive 
Mob. Comput. 2016, 31, 50–66.

70 Yamakawa, T.; Miyajima, M.; Fujiwara, K.; Kano, M.; 
Suzuki, Y.; Watanabe, Y.; Watanabe, S.; Hoshida, 
T.; Inaji, M.; Maehara, T. Wearable epileptic seizure 
prediction system with machine­learning­based 
anomaly detection of heart rate variability. 
Sensors 2020, 20, 3987.

71 Fuchs, C.; Nobile, M.S.; Zamora, G.; Degeneffe, A.; 
Kubben, P.; Kaymak, U. Tremor assessment using 
smartphone sensor data and fuzzy reasoning. BMC 
Bioinform. 2021, 22, 57.

72 Aich, S.; Pradhan, P.M.; Park, J.; Sethi, N.; Vathsa, 
V.S.S.; Kim, H.C. A validation study of freezing of 
gait (fog) detection and machine­learning­based 
fog prediction using estimated gait characteristics 
with a wearable accelerometer. Sensors 2018, 18, 
3287.

73 Rodríguez­Martín, D.; Samà, A.; Pérez­López, C.; 
Català, A.; Arostegui, J.M.M.; Cabestany, J.; Bayés, 
À.; Alcaine, S.; Mestre, B.; Prats, A.; et al. Home 
detection of freezing of gait using Support Vector 
Machines through a single waist­worn triaxial 
accelerometer. PLoS ONE 2017, 12, e0171764.

74 Supratak, A.; Datta, G.; Gafson, A.R.; Nicholas, R.; 
Guo, Y.; Matthews, P.M. Remote monitoring in the 
home validates clinical gait measures for multiple 
sclerosis. Front. Neurol. 2018, 9, 561.

75 Bro, R.; Smilde, A.K. Principal component analysis. 
Anal. Methods 2014, 6, 2812–2831.

76 Kim, J.; Lim, J. A Deep Neural Network­Based 
Method for Prediction of Dementia Using Big Data. 
Int. J. Environ. Res. Public Health 2021, 18, 5386.

77 Clustering. In Principles of Data Mining; Springer: 
London, UK, 2007; pp. 221–238.

78 Arabie, P.; Hubert, L.J. An Overview of Combinato­
rial Data Analysis. In Clustering and Classification; 
World Scientific: Singapore, 1996; pp. 5–63.

79 Lu, J.; Shang, C.; Yue, C.; Morillo, R.; Ware, S.; 
Kamath, J.; Bamis, A.; Russell, A.; Wang, B.; Bi, J. 
Joint Modeling of Heterogeneous Sensing Data for 
Depression Assessment via Multi­task Learning. 
In Proceedings of the Proceedings of the ACM on 
Interactive, Mobile, Wearable and Ubiquitous 
Technologies; Association for Computing 
Machinery: New York, NY, usa, 2018; Volume 2, pp. 
1–21.

80 Sabatelli, M.; Osmani, V.; Mayora, O.; Gruenerbl, A.; 
Lukowicz, P. Correlation of significant places with 
self­reported state of bipolar disorder patients. 
In Proceedings of the 2014 4th International 
Conference on Wireless Mobile Communication 
and Healthcare­Transforming Healthcare through 
Innovations in Mobile and Wireless Technologies 
(MOBIHEALTH), Athens, Greece, 3–5 November 
2014; pp. 116–119.

81 Faurholt­Jepsen, M.; Busk, J.; VinBerg, M.; 
Christensen, E.M.; HelgaÞórarinsdóttir; Frost, M.; 
Bardram, J.E.; Kessing, L.V. Daily mobility patterns 

data using complete­case analysis in the 
proportional hazards regression model. Stat. Med. 
2003, 22, 545–557.

41 Enders, C.K.; London, N.Y. Applied Missing Data 
Analysis; Guilford Press: New York, NY, usa, 2010.

42 Zhang, Y.; Folarin, A.A. Predicting Depressive 
Symptom Severity Through Individuals’ Nearby 
Bluetooth Device Count Data Collected by Mobile 
Phones: Preliminary Longitudinal Study. Available 
online: https://www.ncbi.nlm.nih.gov/pmc/arti­
cles/ PMC8367113/ (accessed on 5 January 2023).

43 Creagh, A.P.; Dondelinger, F.; Lipsmeier, F.; 
Lindemann, M.; De Vos, M. Longitudinal Trend 
Monitoring of Multiple Sclerosis Ambulation using 
Smartphones. ieee Open J. Eng. Med. Biol. 2022, 3, 
202–210.

44 Wu, C.­T.; Li, G.­H.; Huang, C.­T.; Cheng, Y.­C.; 
Chen, C.­H.; Chien, J.­Y.; Kuo, P.­H.; Kuo, L.­C.; Lai, 
F. Acute exacerbation of a chronic obstructive 
pulmonary disease prediction system using 
wearable device data, machine learning, and deep 
learning:Development and cohort study. JMIR 
mhealth Uhealth 2021, 9, e22591.

45 Jakobsen, P.; Garcia­Ceja, E.; Riegler, M.; Stabell, 
L.A.; Nordgreen, T.; Torresen, J.; Fasmer, O.B.; 
Oedegaard, K.J. Applying machine learning in 
motor activity time series of depressed bipolar and 
unipolar patients compared to healthy controls. 
PLoS ONE 2020, 15, e0231995.

46 Lekkas, D.; Jacobson, N.C. Using artificial 
intelligence and longitudinal location data to 
differentiate persons who develop posttraumatic 
stress disorder following childhood trauma. Sci. 
Rep. 2021, 11, 10303.

47 Richman, M.B.; Trafalis, T.B.; Adrianto, I. Missing 
data imputation through machine learning 
algorithms. In Artificial Intelligence Methods in the 
Environmental Sciences; Springer: Dordrecht, The 
Netherlands, 2009; pp. 153–169.

48 Jerez, J.M.; Molina, I.; García­Laencina, P.J.; Alba, 
E.; Ribelles, N.; Martín, M.; Franco, L. Missing data 
imputation using statistical and machine learning 
methods in a real breast cancer problem. Artif. 
Intell. Med. 2010, 50, 105–115.

49 Lakshminarayan, K.; Harp, S.A.; Goldman, R.P.; 
Samad, T. Imputation of Missing Data Using 
Machine Learning Techniques.In KDD Proceedings 
1996; AAAI Press: Palo Alto, CA, usa, 1996; Volume 
96.

50 Aggarwal, C.C. Data Mining; Springer International 
Publishing: Cham, Switzerland, 2015.

51 Ledolter, J.; Kardon, R.H. Does Testing More 
Frequently Shorten the Time to Detect Disease 
Progression? Transl. Vis. Sci. Technol. 2017, 6, 1.

52 Bazgir, O.; Habibi, S.A.H.; Palma, L.; Pierleoni, P.; 
Nafees, S. A classification system for assessment 
and home monitoring of tremor in patients with 
Parkinson’s disease. J. Med. Signals Sens. 2018, 8, 
65–72.

53 Williamson, J.R.; Telfer, B.; Mullany, R.; Friedl, K.E. 
Detecting Parkinson’s Disease from Wrist­Worn 
Accelerometry in the U.K. Biobank. Sensors 2021, 
21, 2047.

54 Buda, T.S.; Khwaja, M.; Matic, A. Outliers in 
Smartphone Sensor Data Reveal Outliers in Daily 
Happiness. Proc. ACM Interact. Mob. Wearable 
Ubiquitous Technol. 2021, 5, 1–19.

55 Buda, T.S.; Caglayan, B.; Assem, H. DeepAD: A 
generic framework based on deep learning for 
time series anomaly detection. In Lecture Notes 
in Computer Science (Including Subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes 
in Bioinformatics); Springer: Berlin/Heidelberg, 
Germany, 2018; pp. 577–588.

56 Arora, S.; Venkataraman, V.; Zhan, A.; Donohue, 
S.; Biglan, K.; Dorsey, E.; Little, M. Detecting and 
monitoring the symptoms of Parkinson’s disease 
using smartphones: A pilot study. Park. Relat. 
Disord. 2015, 21, 650–653.

57 Guyon, I.; Elisseeff, A. An Introduction to Feature 
Extraction. In Feature Extraction; Springer: Berlin/
Heidelberg, Germany, 2006; pp. 1–25.

58 Raju, V.N.G.; Lakshmi, K.P.; Jain, V.M.; Kalidindi, A.; 
Padma, V. Study the Influence of Normalization/
Transformation process on the Accuracy of 
Supervised Classification. In Proceedings of the 
2020 Third International Conference on Smart 
Systems and Inventive Technology (ICSSIT), 
Tirunelveli, India, 20–22 August 2022; pp. 729–735.

59 Dara, S.; Tumma, P. Feature Extraction by Using 
Deep Learning: A Survey. In Proceedings of 
the 2018 Second International Conference on 
Electronics, Communication and Aerospace 
Technology (ICECA), Coimbatore, India, 29–31 
March 2018; pp. 1795–1801.

60 Tizzano, G.R.; Spezialetti, M.; Rossi, S. A Deep 
Learning Approach for Mood Recognition from 
Wearable Data. In Proceedings of the ieee Medical 
Measurements and Applications, MeMeA 2020—
Conference Proceedings, Bari, Italy, 1 June–1 
July 2020; Institute of Electrical and Electronics 
Engineers Inc.: Piscataway, NJ, usa, 2020.



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials70 71part i /chapter 2

105 Chandrashekar, G.; Sahin, F. A survey on feature 
selection methods. Comput. Electr. Eng. 2014, 40, 
16–28.

106 Goldsmith, J.; Bobb, J.; Crainiceanu, C.M.; Caffo, 
B.; Reich, D. Penalized functional regression. J. 
Comput. Graph. Stat. 2011, 20, 830–851.

107 Prince, J.; Andreotti, F.; De Vos, M. Multi­Source 
Ensemble Learning for the Remote Prediction of 
Parkinson’s Disease in the Presence of Source­
Wise Missing Data. ieee Trans. Biomed. Eng. 2019, 
66, 1402–1411.

108 Motin, M.A.; Pah, N.D.; Raghav, S.; Kumar, D.K. 
Parkinson’s Disease Detection Using Smartphone 
Recorded Phonemes in Real World Conditions. 
ieee Access 2022, 10, 97600–97609.

109 Cakmak, A.S.; Alday, E.A.P.; Da Poian, G.; Rad, 
A.B.; Metzler, T.J.; Neylan, T.C.; House, S.L.; 
Beaudoin, F.L.; An, X.; Stevens, J.S.; et al. 
Classification and Prediction of Post­Trauma 
Outcomes Related to PTsD Using Circadian 
Rhythm Changes Measured via Wrist­Worn 
Research Watch in a Large Longitudinal 
Cohort. ieee J. Biomed. Health Inform. 2021, 25, 
2866–2876.

110 Tracy, J.M.; Özkanca, Y.; Atkins, D.C.; Ghomi, 
R.H. Investigating voice as a biomarker: Deep 
phenotyping methods for early detection of 
Parkinson’s disease. J. Biomed. Inform. 2020, 104, 
103362.

111 Abdulhafedh, A. Comparison between Common 
Statistical Modeling Techniques Used in Research, 
Including: Discriminant Analysis vs Logistic 
Regression, Ridge Regression vs lasso, and 
Decision Tree vs Random Forest. OAlib 2022, 9, 
1–19. 112. Sánchez­Maroño, N.; Alonso­Betanzos, 
A.; Tombilla­Sanromán, M. Filter methods for 
feature selection—A comparative study. In 
Lecture Notes in Computer Science (Including 
Subseries Lecture Notes in Artificial Intelligence 
and Lecture Notes in Bioinformatics); Springer: 
Berlin/Heidelberg, Germany, 2007; pp. 178–187.

113 Porter, B.W.; Bareiss, R.; Holte, R.C. Concept 
learning and heuristic classification in weak­
theory domains. Artif. Intell. 1990, 45, 229–263.

114 Wu, C.­T.; Wang, S.­M.; Su, Y.­E.; Hsieh, T.­T.; Chen, 
P.­C.; Cheng, Y.­C.; Tseng, T.­W.; Chang, W.­S.; Su, 
C.­S.; Kuo, L.­C.; et al. A Precision Health Service 
for Chronic Diseases: Development and Cohort 
Study Using Wearable Device, Machine Learning, 
and Deep Learning. ieee J. Transl. Eng. Health 
Med. 2022, 10, 2700414.

115 de Lima, A.L.S.; Evers, L.J.; Hahn, T.; de Vries, 
N.M.; Daeschler, M.; Boroojerdi, B.; Terricabras, 
D.; Little, M.A.; Bloem, B.R.; Faber, M.J. Impact of 
motor fluctuations on real­life gait in Parkinson’s 
patients. Gait Posture 2018, 62, 388–394.

116 Pulliam, C.; Eichenseer, S.; Goetz, C.; Waln, O.; 
Hunter, C.; Jankovic, J.; Vaillancourt, D.; Giuffrida, 
J.; Heldman, D. Continuous in­home monitoring 
of essential tremor. Park. Relat. Disord. 2014, 20, 
37–40.

117 Goni, M.; Eickhoff, S.B.; Far, M.S.; Patil, K.R.; Dukart, 
J. Smartphone­Based Digital Biomarkers for 
Parkinson’s Disease in a Remotely­Administered 
Setting. ieee Access 2022, 10, 28361–28384.

118 Livingston, E.; Cao, J.; Dimick, J.B. Tread carefully 
with stepwise regression. Arch. Surg. 2010, 145, 
1039–1040.

119 Li, F.; Yang, Y. Analysis of recursive feature 
elimination methods. In Proceedings of the the 
28th ACM/SIGIR International Symposium on 
Information Retrieval 2005, Salvador, Brazil, 15–19 
August 2005.

120 Kuhn, M.; Johnson, K.; Kuhn, M.; Johnson, K. An 
Introduction to Feature Selection. In Applied 
Predictive Modeling; Springer: New York, NY, usa, 
2013; pp. 487–519.

121 Senturk, Z.K. Early diagnosis of Parkinson’s 
disease using machine learning algorithms. Med. 
Hypotheses 2020, 138, 109603.

122 Zhang, X.D. Machine Learning. In A Matrix Algebra 
Approach to Artificial Intelligence; Springer: 
Singapore, 2020. 123. Russell, S.J.; Norvig, P. 
Artificial Intelligence: A Modern Approach, 4th ed.; 
Prentice Hall: Hoboken, NJ, usa, 2020.

124 Tinschert, P.; Rassouli, F.; Barata, F.; Steurer­Stey, 
C.; Fleisch, E.; Puhan, M.; Kowatsch, T.; Brutsche, 
M.H. Smartphone­Based Cough. Detection 
Predicts Asthma Control—Description of a Novel, 
Scalable Digital Biomarker; European Respiratory 
Society (ERS): Lausanne, Switzerland, 2020; p. 
4569.

125 ZhuParris, A.; Kruizinga, M.D.; van Gent, M.; 
Dessing, E.; Exadaktylos, V.; Doll, R.J.; Stuurman, 
F.E.; Driessen, G.A.; Cohen, A.F. Development and 
Technical Validation of a Smartphone­Based Cry 
Detection Algorithm. Front. Pediatr. 2021, 9, 262.

126 Fatima, M.; Pasha, M. Survey of Machine Learning 
Algorithms for Disease Diagnostic. J. Intell. Learn. 
Syst. Appl. 2017, 9, 1–16.

127 Ensari, I.; Caceres, B.A.; Jackman, K.B.; Suero­
Tejeda, N.; Shechter, A.; Odlum, M.L.; Bakken, 

in patients with bipolar disorder and healthy 
individuals. J. Affect. Disord. 2021, 278, 413–422.

82 Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, 
J.T. Deep learning for healthcare: Review, 
opportunities and challenges. Brief. Bioinform. 
2018, 19, 1236–1246.

83 Marx, V. The big challenges of big data. Nature 
2013, 498, 255–260.

84 Li, Y.; Ding, L.; Gao, X. On the decision 
boundary of deep neural networks. arXiv 2018, 
arXiv:1808.05385.

85 Juen, J.; Cheng, Q.; Schatz, B. A Natural Walking 
Monitor for Pulmonary Patients Using Mobile 
Phones. ieee J. Biomed. Health Inform. 2015, 19, 
1399–1405.

86 Cole, B.T.; Roy, S.H.; De Luca, C.J.; Nawab, S.H. 
Dynamical learning and tracking of tremor and 
dyskinesia from wearable sensors. ieee Trans. 
Neural Syst. Rehabil. Eng. 2014, 22, 982–991.

87 Peraza, L.R.; Kinnunen, K.M.; McNaney, R.; 
Craddock, I.J.; Whone, A.L.; Morgan, C.; Joules, 
R.; Wolz, R. An automatic gait analysis pipeline 
for wearable sensors: A pilot study in parkinson’s 
disease. Sensors 2021, 21, 8286.

88 Saeys, Y.; Abeel, T.; Van De Peer, Y. Robust feature 
selection using ensemble feature selection 
techniques. In Lecture Notes in Computer Science 
(Including Subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics); 
Springer: Berlin/Heidelberg, Germany, 2008; pp. 
313–325.

89 Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection 
in machine learning: A new perspective. 
Neurocomputing 2018, 300, 70–79.

90 Jabar, H.; Khan, R.Z. Methods to avoid over­fitting 
and under­fitting in supervised machine learning 
(comparative study). Comput. Sci. Commun. 
Instrum. Devices 2015, 70, 163–172.

91 Hall, M.A. Correlation­based Feature Selection for 
Machine Learning. Ph.D. Thesis, The University of 
Waikato, Hamilton, New Zealand, 1999.

92 Hall, M.A.; Smith, L.A. Feature selection for 
machine learning: Comparing a correlation­based 
filter approach to the wrapper. In Proceedings of 
the FLAIRS Conference 1999, Orlando, FL, usa, 1–5 
May 1999; Volume 1999, pp. 235–239.

93 Galperin, I.; Hillel, I.; Del Din, S.; Bekkers, E.M.; 
Nieuwboer, A.; Abbruzzese, G.; Avanzino, L.; 
Nieuwhof, F.; Bloem, B.R.; Rochester, L.; et al. 
Associations between daily­living physical activity 
and laboratory­based assessments of motor 

severity in patients with falls and Parkinson’s 
disease. Park. Relat. Disord. 2019, 62, 85–90.

94 Dong, C.; Ye, T.; Long, X.; Aarts, R.M.; van Dijk, J.P.; 
Shang, C.; Liao, X.; Chen, W.; Lai, W.; Chen, L.; et 
al. A Two­Layer Ensemble Method for Detecting 
Epileptic Seizures Using a Self­Annotation 
Bracelet with Motor Sensors. ieee Trans. Instrum. 
Meas. 2022, 71, 4005013.

95 Creagh, A.P.; Simillion, C.; Bourke, A.K.; Scotland, 
A.; Lipsmeier, F.; Bernasconi, C.; van Beek, J.; 
Baker, M.; Gossens, C.; Lindemann, M.; et al. 
Smartphone­and Smartwatch­Based Remote 
Characterisation of Ambulation in Multiple 
Sclerosis during the Two­Minute Walk Test. ieee J. 
Biomed. Health Inform. 2021, 25, 838–849.

96 Chen, O.Y.; Lipsmeier, F.; Phan, H.; Prince, J.; 
Taylor, K.I.; Gossens, C.; Lindemann, M.; de Vos, M. 
Building a Machine­Learning

Framework to Remotely Assess Parkinson’s Disease 
Using Smartphones. ieee Trans. Biomed. Eng. 
2020, 67, 3491–3500.

97 Steyerberg, E.W.; Eijkemans, M.J.C.; Habbema, 
J.D.F. Stepwise selection in small data sets: A 
simulation study of bias in logistic regression 
analysis. J. Clin. Epidemiol. 1999, 52, 935–942.

98 Austin, P.C.; Tu, J.V. Bootstrap Methods for 
Developing Predictive Models. Am. Stat. 2004, 58, 
131–137.

99 Zimmerman, D.W. Power Functions of the Test and 
Mann­Whitney Test Under Violation of Parametric 
Assumptions. Percept. Mot. Skills 1985, 61, 
467–470.

100 Urbanowicz, R.J.; Meeker, M.; la Cava, W.; Olson, 
R.S.; Moore, J.H. Relief­based feature selection: 
Introduction and review. J. Biomed. Inform. 2018, 
85, 189–203.

101 Kira, K.; Rendell, L.A. A Practical Approach to 
Feature Selection; Elsevier: Amsterdam, The 
Netherlands, 1992; pp. 249–256.

102 Verma, N.K.; Salour, A. Feature selection. Stud. 
Syst. Decis. Control 2020, 256, 175–200.

103 Yaman, O.; Ertam, F.; Tuncer, T. Automated 
Parkinson’s disease recognition based on 
statistical pooling method using acoustic features. 
Med. Hypotheses 2020, 135, 109483.

104 Rodriguez­Molinero, A.; Samà, A.; Pérez­Martínez, 
D.A.; López, C.P.; Romagosa, J.; Bayes, A.; Sanz, P.; 
Calopa, M.; Gálvez­Barrón, C.; De Mingo, E.; et al. 
Validation of a portable device for mapping motor 
and gait disturbances in Parkinson’s disease. JMIR 
mhealth Uhealth 2015, 3, e9.



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials72 73part i /chapter 2

Classification. Balt. J. Mod. Comput. 2017, 5, 
221–232.

150 Worster, A.; Fan, J.; Ismaila, A. Understanding 
linear and logistic regression analyses. Can. J. 
Emerg. Med. 2007, 9, 111–113.

151 Morrow­Howell, N. The M word: Multicollinearity 
in multiple regression. Soc. Work. Res. 1994, 18, 
247–251.

152 Schwenk, M.; Hauer, K.; Zieschang, T.; Englert, 
S.; Mohler, J.; Najafi, B. Sensor­derived physical 
activity parameters can predict future falls in 
people with dementia. Gerontology 2014, 60, 
483–492.

153 Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. 
Nature 2015, 521, 436–444.

154 Tu, J.V. Advantages and disadvantages of using 
artificial neural networks versus logistic regression 
for predicting medical outcomes. J. Clin. 
Epidemiol. 1996, 49, 1225–1231.

155 Mudiyanselage, T.K.B.; Xiao, X.; Zhang, Y.; Pan, 
Y. Deep Fuzzy Neural Networks for Biomarker 
Selection for Accurate Cancer Detection. ieee 
Trans. Fuzzy Syst. 2020, 28, 3219–3228.

156 Yagin, F.H.; Cicek, I.B.; Alkhateeb, A.; Yagin, B.; 
Colak, C.; Azzeh, M.; Akbulut, S. Explainable 
artificial intelligence model for identifying coviD-
19 gene biomarkers. Comput. Biol. Med. 2023, 154, 
106619.

157 Wang, Y.; Lucas, M.; Furst, J.; Fawzi, A.A.; Raicu, 
D. Explainable Deep Learning for Biomarker 
Classification of OCT Images. In Proceedings 
of the 2020 ieee 20th International Conference 
on Bioinformatics and Bioengineering (BIBE), 
Cincinnati, OH, usa, 26–28 October 2020; pp. 
204–210.

158 Fisher, J.M.; Hammerla, N.Y.; Ploetz, T.; Andras, 
P.; Rochester, L.; Walker, R.W. Unsupervised 
home monitoring of Parkinson’s disease motor 
symptoms using body­worn accelerometers. Park. 
Relat. Disord. 2016, 33, 44–50.

159 Frogner, J.I.; Noori, F.M.; Halvorsen, P.; Hicks, S.A.; 
Garcia­Ceja, E.; Torresen, J.; Riegler, M.A. One­
dimensional convolutional neural networks on 
motor activity measurements in detection of 
depression. In Proceedings of the HealthMedia 
2019—Proceedings of the 4th International 
Workshop on Multimedia for Personal Health 
and Health Care, Co­Located with MM 2019, Nice, 
France, 21–25 October 2019; pp. 9–15.

160 Meisel, C.; el Atrache, R.; Jackson, M.; Schubach, 
S.; Ufongene, C.; Loddenkemper, T. Machine 

learning from wristband sensor data for wearable, 
noninvasive seizure forecasting. Epilepsia 2020, 61, 
2653–2666.

161 Matarazzo, M.; Arroyo­Gallego, T.; Montero, P.; 
Puertas­Martín, V.; Butterworth, I.; Mendoza, C.S.; 
Ledesma­Carbayo, M.J.; Catalán, M.J.; Molina, J.A.; 
Bermejo­Pareja, F.; et al. Remote Monitoring of 
Treatment Response in Parkinson’s Disease: The 
Habit of Typing on a Computer. Mov. Disord. 2019, 
34, 1488–1495.

162 Weiss, K.; Khoshgoftaar, T.M.; Background, D.W. 
A survey of transfer learning. J. Big Data 2016, 3, 
1345–1459.

163 Kamishima, T.; Hamasaki, M.; Akaho, S. TrBagg: 
A Simple Transfer Learning Method and its 
Application to Personalization in Collaborative 
Tagging. In Proceedings of the 2009 Ninth ieee 
International Conference on Data Mining, Miami, 
FL, usa, 6–9 December 2009; pp. 219–228.

164 Fu, Z.; He, X.; Wang, E.; Huo, J.; Huang, J.; Wu, D. 
Personalized Human Activity Recognition Based 
on Integrated Wearable Sensor and Transfer 
Learning. Sensors 2021, 21, 885.

165 Chen, Y.; Qin, X.; Wang, J.; Yu, C.; Gao, W. FedHealth: 
A Federated Transfer Learning Framework for 
Wearable Healthcare. ieee Intell. Syst. 2020, 35, 
83–93.

166 Goschenhofer, J.; Pfister, F.M.J.; Yuksel, K.A.; 
Bischl, B.; Fietzek, U.; Thomas, J. Wearable­Based 
Parkinson’s Disease Severity Monitoring Using 
Deep Learning. In Lecture Notes in Computer 
Science (Including Subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in 
Bioinformatics); Springer: Berlin/Heidelberg, 
Germany, 2020; Volume 11908 LNAI, pp. 400–415.

167 Hssayeni, M.D.; Jimenez­Shahed, J.; Burack, M.A.; 
Ghoraani, B. Ensemble deep model for continuous 
estimation of Unified Parkinson’s Disease Rating 
Scale III. Biomed. Eng. Online 2021, 20, 1–20.

168 Zhang, Y.; Yang, Q. Special Topic: Machine Learning 
An overview of multi­task learning. Natl. Sci. Rev. 
2018, 5, 30–43.

169 Lee, G.; Yang, E.; Hwang, S. Asymmetric multi­task 
learning based on task relatedness and loss. In 
Proceedings of the International Conference on 
Machine Learning 2016, New York, NY, usa, 19–24 
June 2016; pp. 230–238.

170 Xin, W.; Bi, J.; Yu, S.; Sun, J.; Song, M. Multiplicative 
Multitask Feature Learning. J. Mach. Learn. Res. 
JmlR 2016, 17, 1–33.

171 Zhang, Z.; Jung, T.P.; Makeig, S.; Pi, Z.; Rao, 

S. Digital phenotyping of sleep patterns among 
heterogenous samples of Latinx adults using 
unsupervised learning. Sleep. Med. 2021, 85, 
211–220.

128 Ko, Y.­F.; Kuo, P.­H.; Wang, C.­F.; Chen, Y.­J.; 
Chuang, P.­C.; Li, S.­Z.; Chen, B.­W.; Yang, F.­C.; 
Lo, Y.­C.; Yang, Y.; et al. Quantification Analysis 
of Sleep Based on Smartwatch Sensors for 
Parkinson’s Disease. Biosensors 2022, 12, 74.

129 Farhan, A.A.; Yue, C.; Morillo, R.; Ware, S.; Lu, J.; 
Bi, J.; Kamath, J.; Russell, A.; Bamis, A.; Wang, B. 
Behavior vs. introspection: Refining prediction of 
clinical depression via smartphone sensing data. 
In Proceedings of the 2016 ieee Wireless Health 
(WH), Bethesda, MD, usa, 25–27 October 2016.

130 Derungs, A.; Schuster­Amft, C.; Amft, O. 
Longitudinal walking analysis in hemiparetic 
patients using wearable motion sensors: Is there 
convergence between body sides? Front. Bioeng. 
Biotechnol. 2018, 6, 57.

131 Freedman, D.A. Statistical Models. In Statistical 
Models: THeory and Practice; Cambridge 
University Press: Cambridge, UK, 2009. 132. 
Ahmed, S.T.; Basha, S.M.; Arumugam, S.R.; 
Kodabagi, M.M. Pattern Recognition: An 
Introduction, 1st ed.; MileStone Research 
Publications: Bengaluru, India, 2021.

133 Ruppert, D. The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction. J. Am. Stat. 
Assoc. 2004, 99, 567.

134 Opitz, D.; Maclin, R. Popular Ensemble Methods: An 
Empirical Study. J. Artif. Intell. Res. 1999, 11, 169–
198. 135. Kosasi, S. Perancangan Prototipe Sistem 
Pemesanan Makanan dan Minuman Menggunakan 
Mobile Device. Indones. J. Netw. Secur. 2015, 1, 
1–10.

136 Hastie, T.; Tibshirani, R.; Friedman, J. The Elements 
of Statistical Learning: Data Mining, Inference, and 
Prediction; Springer Science & Business Media: 
New York, NY, usa, 2013.

137 San­Segundo, R.; Zhang, A.; Cebulla, A.; Panev, 
S.; Tabor, G.; Stebbins, K.; Massa, R.E.; Whitford, 
A.; de la Torre, F.; Hodgins, J. Parkinson’s disease 
tremor detection in the wild using wearable 
accelerometers. Sensors 2020, 20, 5817.

138 Ahmadi, M.N.; O’neil, M.E.; Baque, E.; Boyd, 
R.N.; Trost, S.G. Machine learning to quantify 
physical activity in children with cerebral palsy: 
Comparison of group, group­personalized, and 
fully­personalized activity classification models. 
Sensors 2020, 20, 3976.

139 Faurholt­Jepsen, M.; Busk, J.; Frost, M.; VinBerg, 
M.; Christensen, E.M.; Winther, O.; Bardram, J.E.; 
Kessing, L.V. Voice analysis as an objective state 
marker in bipolar disorder. Transl. Psychiatry 2016, 
6, e856.

140 Jacobson, N.C.; Lekkas, D.; Huang, R.; Thomas, 
N. Deep learning paired with wearable passive 
sensing data predicts deterioration in anxiety 
disorder symptoms across 17–18 years. J. Affect. 
Disord. 2021, 282, 104–111.

141 Hastie, T.; Tibshirani, R.; Friedman, J. Statistics the 
Elements of Statistical Learning. Math. Intell. 2009, 
27, 83–85.

142 Patle, A.; Chouhan, D.S. svm kernel functions 
for classification. In Proceedings of the 2013 
International Conference on Advances in 
Technology and Engineering, ICATE 2013, Mumbai, 
India, 23–25 January 2013.

143 Kim, H.S.; Kim, S.Y.; Kim, Y.H.; Park, K.S. A 
smartphone­based automatic diagnosis 
system for facial nerve palsy. Sensors 2015, 15, 
26756–26768.

144 Luca, S.; Karsmakers, P.; Cuppens, K.; 
CroonenBorghs, T.; Van de Vel, A.; Ceulemans, B.; 
Lagae, L.; Van Huffel, S.; Vanrumste, B. Detecting 
rare events using extreme value statistics applied 
to epileptic convulsions in children. Artif. Intell. 
Med. 2014, 60, 89–96.

145 Ghoraani, B.; Hssayeni, M.D.; Bruack, M.M.; 
Jimenez­Shahed, J. Multilevel Features for 
Sensor­Based Assessment of Motor Fluctuation 
in Parkinson’s Disease Subjects. ieee J. Biomed. 
Health Inform. 2020, 24, 1284–1295.

146 Kramer, O. K­Nearest Neighbors. In Dimensionality 
Reduction with Unsupervised Nearest Neighbors. 
Intelligent Systems Reference. Library; Springer: 
Berlin/Heidelberg, Germany, 2013; Volume 51.

147 Jeon, H.; Lee, W.; Park, H.; Lee, H.J.; Kim, S.K.; Kim, 
H.B.; Jeon, B.; Park, K.S. Automatic classification 
of tremor severity in Parkinson’s disease using 
awearable device. Sensors 2017, 17, 2067.

148 Grunerbl, A.; Muaremi, A.; Osmani, V.; Bahle, 
G.; Ohler, S.; Troster, G.; Mayora, O.; Haring, C.; 
Lukowicz, P. Smartphone­based recognition 
of states and state changes in bipolar disorder 
patients. ieee J. Biomed. Health Inform. 2015, 19, 
140–148.

149 Pranckevicˇius, T.; Marcinkevicˇius, V. 
Comparison of Naive Bayes, Random Forest, 
Decision Tree, Support Vector Machines, and 
Logistic Regression Classifiers for Text Reviews 



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials74 75part i /chapter 2

the 2016 ieee International Conference of Online 
Analysis and Computing Science, ICOACS 2016, 
Chongqing, China, 28–29 May 2016; pp. 225–228.

195 Botchkarev, A. Performance Metrics (Error Mea­
sures) in Machine Learning Regression, Forecast­
ing and Prognostics: Properties and Typology. 
Interdiscip. J. Inf. Knowl. Manag. 2018, 14, 45–76.

196 di Bucchianico, A. Coefficient of Determination. 
In Encyclopedia of Statistics in Quality and 
Reliability; Wiley: Hoboken, NJ, usa, 2007.

197 Piepho, H. A coefficient of determination (r2) for 
generalized linear mixed models. Biom. J. 2019, 61, 
860–872.

198 Gelman, A.; Pardoe, I. Bayesian Measures of 
Explained Variance and Pooling in Multilevel 
(Hierarchical) Models. Technometrics 2006, 48, 
241–251.

199 Hodson, T.O. Root­mean­square error (rmse) or 
mean absolute error (mae): When to use them or 
not. Geosci. Model. Dev. 2022, 15, 5481–5487.

200 Mezzadri, G.; Laloë, T.; Mathy, F.; Reynaud­Bouret, 
P. Hold­out strategy for selecting learning models: 
Application to categorization subjected to 
presentation orders. J. Math. Psychol. 2022, 109, 
102691.

201 Gholamiangonabadi, D.; Kiselov, N.; Grolinger, 
K. Deep Neural Networks for Human Activity 
Recognition with Wearable Sensors: Leave­One­
Subject­Out Cross­Validation for Model Selection. 
ieee Access 2020, 8, 133982–133994.

202 Little, M.A.; Varoquaux, G.; Saeb, S.; Lonini, L.; 
Jayaraman, A.; Mohr, D.C.; Kording, K.P. Using 
and understanding crossvalidation strategies. 
Perspectives on Saeb et al. Gigascience 2017, 6, 
1–6.

203 Peterson, R.A.; Cavanaugh, J.E. Ordered quantile 
normalization: A semiparametric transformation 
built for the cross­validation era. J. Appl. Stat. 
2020, 47, 2312–2327.

204 Zhang, Y.; Yang, Y. Cross­validation for selecting a 
model selection procedure. J. Econom. 2015, 187, 
95–112.

205 Refaeilzadeh, P.; Tang, L.; Liu, H. Cross­Validation. 
In Encyclopedia of Database Systems; Springer: 
Berlin/Heidelberg, Germany, 2016; pp. 1–7.

206 Browne, M.W. Cross­validation methods. J. Math. 
Psychol. 2000, 44, 108–132.

207 Wainer, J.; Cawley, G. Nested cross­validation 
when selecting classifiers is overzealous for most 
practical applications. Expert Syst. Appl. 2021, 182, 
115222.

208 Kohavi, R. A Study of Cross­Validation and 
Bootstrap for Accuracy Estimation and Model 
Selection. 1995. Available online: http://robotics.
stanford.edu/~ronnyk (accessed on 5 January 
2023).

209 Vanwinckelen, G.; Blockeel, H. On estimating 
model accuracy with repeated cross­validation. In 
BeneLearn 2012: Proceedings of the 21st Belgian­
Dutch Conference on Machine Learning; Benelearn 
2012 Organization Committee: Ghent, Belgium, 
2012; pp. 39–44.

210 Parvandeh, S.; Yeh, H.­W.; Paulus, M.P.; McKinney, 
B.A. Consensus Features Nested Cross­Validation. 
bioRxiv 2020.

211 Goble, C.; Cohen­Boulakia, S.; Soiland­Reyes, S.; 
Garijo, D.; Gil, Y.; Crusoe, M.; Peters, K.; Schober, D. 
Fair computational workflows. Data Intell. 2020, 2, 
108–121.

212 Muehlematter, U.J.; Daniore, P.; Vokinger, K.N. 
Approval of artificial intelligence and machine 
learning­based medical devices in the usa and 
Europe (2015–20): A comparative analysis. Lancet 
Digit. Health 2021, 3, e195–e203.

213 Beckers, R.; Kwade, Z.; Zanca, F. The EU medical 
device regulation: Implications for artificial 
intelligence­based medical device software in 
medical physics. Phys. Med. 2021, 83, 1–8.

214 van Oirschot, J.; Ooms, G. Interpreting the EU 
Artificial Intelligence Act for the Health Sector; 
Health Action International: Amsterdam, The 
Netherlands, February 2022.

215 Agarwal, S.; LeFevre, A.; Lee, J.; L’engle, K.; Mehl, 
G.; Sinha, C.; Labrique, A. Guidelines for reporting 
of health interventions using mobile phones: 
Mobile health (mhealth) evidence reporting and 
assessment (mERA) checklist. BMJ 2016, 352, i1174.

216 Yang, J.; Soltan, A.A.S.; Clifton, D.A. Machine 
learning generalizability across healthcare 
settings: Insights from multi­site coviD-19 
screening. NPJ Digit. Med. 2022, 5, 69.

217 Petersen, E.; Potdevin, Y.; Mohammadi, E.; 
Zidowitz, S.; Breyer, S.; Nowotka, D.; Henn, S.; 
Pechmann, L.; Leucker, M.; Rostalski, P.; et al. 
Responsible and Regulatory Conform Machine 
Learning for Medicine: A Survey of Challenges and 
Solutions. ieee Access 2022, 10, 58375–58418.

218 FAIR Principles—GO FAIR. Available online: https://
www.go­fair.org/fair­principles/ (accessed on 16 
December 2021).

219 Fletcher, R.R.; Nakeshimana, A.; Olubeko, O. 
Addressing Fairness, Bias, and Appropriate Use 

B.D. Spatiotemporal sparse Bayesian learning 
with applications to compressed sensing of 
multichannel physiological signals. ieee Trans. 
Neural Syst. Rehabil. Eng. 2014, 22, 1186–1197.

172 Schneider, J.; Vlachos, M. Personalization of 
deep learning. In Data Science–Analytics and 
Applications: Proceedings of the 3rd International 
Data Science Conference–iDSC2020; Springer: 
Wiesbaden, Geramny, 2021; pp. 89–96.

173 Khademi, A.; El­Manzalawy, Y.; Buxton, O.M.; 
Honavar, V. Toward personalized sleep­wake 
prediction from actigraphy. In Proceedings of 
the 2018 ieee EMBS International Conference 
on Biomedical and Health Informatics, BHI 
2018, Vegas, NV, usa, 4–7 March 2018; Institute 
of Electrical and Electronics Engineers Inc.: 
Piscataway, NJ, usa, 2018; pp. 414–417.

174 Kuhn, M.; Johnson, K. Applied Predictive Modeling; 
Springer: New York, NY, usa, 2013.

175 Pal, M. Random forest classifier for remote sensing 
classification. Int. J. Remote Sens. 2005, 26, 
217–222.

176 Putin, E.; Mamoshina, P.; Aliper, A.; Korzinkin, M.; 
Moskalev, A.; Kolosov, A.; Ostrovskiy, A.; Cantor, 
C.; Vijg, J.; Zhavoronkov, A. Deep biomarkers of 
human aging: Application of deep neural networks 
to biomarker development. Aging 2016, 8, 
1021–1033.

177 Yang, L.; Shami, A. On hyperparameter 
optimization of machine learning algorithms: 
Theory and practice. Neurocomputing 2020, 415, 
295–316.

178 Waring, J.; Lindvall, C.; Umeton, R. Automated 
machine learning: Review of the state­of­the­art 
and opportunities for healthcare. Artif. Intell. Med. 
2020, 104, 101822.

179 Bergstra, J.; Ca, J.B.; Ca, Y.B. Random Search for 
Hyper­Parameter Optimization Yoshua Bengio. 
2012. Available online: http://scikit­learn.
sourceforge.net (accessed on 5 January 2023).

180 Beam, A.L.; Manrai, A.K.; Ghassemi, M. Challenges 
to the Reproducibility of Machine Learning Models 
in Health Care. JAMA 2020, 323, 305.

181 Ahlrichs, C.; Samà, A.; Lawo, M.; Cabestany, J.; 
Rodríguez­Martín, D.; Pérez­López, C.; Sweeney, 
D.; Quinlan, L.R.; Laighin, G.Ò.; Counihan, T.; 
et al. Detecting freezing of gait with a tri­axial 
accelerometer in Parkinson’s disease patients. 
Med. Biol. Eng. Comput. 2016, 54, 223–233.

182 Rosenwein, T.; Dafna, E.; Tarasiuk, A.; Zigel, Y. 
Detection of Breathing Sounds during Sleep 

Using Non­Contact Audio Recordings; Institute 
of Electrical and Electronics Engineers Inc.: 
Piscataway, NJ, usa, 2014.

183 Pérez­López, C.; Samà, A.; Rodríguez­Martín, D.; 
Moreno­Aróstegui, J.M.; Cabestany, J.; Bayes, A.; 
Mestre, B.; Alcaine, S.; Quispe, P.; Laighin, G.; et 
al. Dopaminergic­induced dyskinesia assessment 
based on a single belt­worn accelerometer. Artif. 
Intell. Med. 2016, 67, 47–56.

184 Bernad­Elazari, H.; Herman, T.; Mirelman, A.; 
Gazit, E.; Giladi, N.; Hausdorff, J.M. Objective 
characterization of daily living transitions in 
patients with Parkinson’s disease using a single 
body­fixed sensor. J. Neurol. 2016, 263, 1544–1551.

185 Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine 
Learning Interpretability: A Survey on Methods 
and Metrics. Electronics 2019, 8, 832.

186 Zhou, J.; Gandomi, A.H.; Chen, F.; Holzinger, 
A. Evaluating the Quality of Machine Learning 
Explanations: A Survey on Methods and Metrics. 
Electronics 2021, 10, 593.

187 Hossin, M.; Sulaiman, M.N. A Review on Evaluation 
Metrics for Data Classification Evaluations. Int. J. 
Data Min. Knowl. Manag. Process 2015, 5, 1–11.

188 He, H.; Ma, Y. Imbalanced Learning; Wiley: 
Hoboken, NJ, usa, 2013.

189 Wan, S.; Liang, Y.; Zhang, Y.; Guizani, M. Deep Multi­
Layer perceptron classifier for behavior analysis 
to estimate Parkinson’s disease severity using 
smartphones. ieee Access 2018, 6, 36825–36833.

190 Chicco, D.; Tötsch, N.; Jurman, G. The matthews 
correlation coefficient (mcc) is more reliable than 
balanced accuracy, bookmaker informedness, 
and markedness in two­class confusion matrix 
evaluation. BioData Min. 2021, 14, 1–22.

191 Jurman, G.; Riccadonna, S.; Furlanello, C. A 
Comparison of mcc and CEN Error Measures in 
Multi­Class Prediction. PLoS ONE 2012, 7, e41882.

192 Faurholt­Jepsen, M.; Busk, J.; HelgaÞórarinsdóttir; 
Frost, M.; Bardram, J.E.; VinBerg, M.; Kessing, 
L.V. Objective smartphone data as a potential 
diagnostic marker of bipolar disorder. Aust. N. Z. J. 
Psychiatry 2019, 53, 119–128.

193 Xu, Z.; Shen, D.; Nie, T.; Kou, Y. A hybrid sampling 
algorithm combining M­smote and enn based on 
Random forest for medical imbalanced data. J. 
Biomed. Inform. 2020, 107, 103465.

194 Zeng, M.; Zou, B.; Wei, F.; Liu, X.; Wang, L. 
Effective prediction of three common diseases 
by combining smote with Tomek links technique 
for imbalanced medical data. In Proceedings of 



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials76 77part i /chapter 2

table 1 Representation of a standard machine learning pipeline.

Stage Objective Example
stuDY  
Design

The ml pipeline is provided with a study 
objective in which the features and cor­
responding outputs are defined. The ml 
model aims to identify the associations 
between the features and outputs.

The study objective is to classify
Parkinson’s Disease patients and control 
groups using smartphone­based features.

Data  
preprocessing

Data preprocessing filters and transforms 
raw data to guarantee or enhance the ml 
training process.

To improve the model performance, one 
may identify and exclude any missing or 
outlier data.

feature  
engineering  
anD selection

Feature engineering uses raw data to 
create new features that are not readily 
available in the dataset.
Feature selection selects the most 
relevant features for the model objective 
by removing redundant or noisy features. 
Together, the goal is to simplify and 
accelerate the computational process 
while also improving the model process. 
For deep learning methods, the concept 
of ‘feature engineering’ is typically 
embedded within the model architecture 
and training process, although substan­
tial preprocessing steps may occur prior 
to that.

An interaction of two or more predictors
(such as a ratio or product) or re­repre­
sentation of a predictor are examples 
of feature engineering. Removing high­
ly correlated or non­informative features 
are examples of feature selection.
Note: The feature selection step can oc­
cur during model training

moDel training  
anD valiDation

During training, the ml model(s) iterates 
through all the examples in the training 
dataset and optimizes the parameters of 
the mathematical function to minimize 
the prediction error.
To evaluate the performance of the
trained ml model, the predictions of 
an unseen test set are compared with a 
known ground truth label.

Cross­validation can be used to optimize 
and evaluate model performance.
Classification models may be evaluated 
based on their prediction accuracy, sen­
sitivity, and specificity, while regression 
models may be evaluated using variance 
explained (r2) and Mean Absolute Error.
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table 3 Table of the inclusion and exclusion criteria used for study selection.

Category Criteria
population The study must be initiated by a research organization and not by the participants.

The participants must have a clinical diagnosis that is affected by the cns. Hence, 
studies that collected data from participants with no clinically confirmed diagnosis 
were not considered.

intervention The study must include the use of smartphone or non­invasive wearables to remotely 
monitor and quantify passive biomarkers under free­living conditions.

comparator A ground truth comparator for digital phenotyping such as clinical assessment, med­
ical records, or
self­reported outcomes.

outcomes A ml model that is used to classify a clinical label (such as a diagnosis, or clinical 
event), estimate symptom severity, or to detect treatment effects.

stuDY tYpe The paper must be about a human­centered observational study (cohort or longitu­
dinal) where the data were collected outside the clinic, lab, or hospital (free­living 
conditions). Hence, studies that use smartphones or
wearables as a form of intervention or as screening tools are not of interest.
The study must show if the ml models had ecological validity by validating the mod­
els using free­living data. The study has to have been written or translated into Eng­
lish and published within the last 10 years (2012 onwards).

table 2 An overview of the keyword strategy used for this study.

Domain Search String
technologY ((‘smartphone’[tiab] or ‘wearable’[tiab] or ‘remote + monitoring’[tiab] or

‘home + monitoring’[tiab] or ‘mobile + sensors’[tiab] or ‘mobile + montoring’[tiab] or
‘behavioral + sensing’[tiab] or ‘geolocation’[tiab] or ‘mHealth’[tiab] or
‘passive + monitoring’[tiab] or ‘digital + phenotype’[tiab] or ‘digital + 
phenotyping’[tiab] or ‘digital + biomarker’[tiab])

analYsis anD (‘machine + learning’[tiab] or ‘deep + learning’[tiab] or ‘random + forest’[tiab] 
or ‘neural
+ network’[tiab] or ‘time + series’[tiab] or ‘regression’[tiab] or ‘svm’[tiab] or 
‘knn’[tiab] or
‘dynamics + model’[tiab] or ‘decision + tree’[tiab] or ‘discriminant + analysis’[tiab] 
or ‘feature
+ engineering’[tiab] or ‘feature + selection’[tiab] or ‘data + mining’[tiab] or 
‘model’[tiab] or
‘classification’[tiab] or ‘diagnostic’[tiab] or ‘prognostic’[tiab] or ‘symptom + 
severity’[tiab] or
‘prediction’[tiab] or ‘monitoring’[tiab])

population anD (‘disease’[tiab] or ‘disorder’[tiab] or ‘diagnosis’[tiab] or ‘prognosis’ or
‘alzheimer’[tiab] or ‘parkinson’[tiab] or ‘Huntington’[tiab] or 
‘neurodegenerative’[tiab] or
‘degenerative’ or ‘tremor’[tiab] or ‘bipolar’[tiab] or ‘depression’[tiab] or 
‘manic’[tiab] or
‘anxiety’[tiab] or ‘vocal + biomarker’[tiab] or ‘amyotrophic + lateral + sclerosis’[tiab] 
or
‘central + nervous + system’[tiab] or ‘symptom’[tiab] or ‘psychosis’[tiab] or 
‘stroke’[tiab] or
‘muscular dystrophy’[tiab] or ‘Facioscapulohumeral Dystrophy’[tiab] or 
‘autoimmune’[tiab] or
‘seizure’[tiab] or ‘multiple + sclerosis’[tiab])

Date anD (‘2012/01/01’[pDat]:’2022/12/31’[pDat])
language anD (English[lang])
exclusion  
criteria

noT(‘animals’[tiab] or ‘implant’[tiab] or ‘hospital’[tiab] or ‘caregiver’[tiab] or
‘telemedicine’[tiab] or ‘telerehabilitation’[tiab] or ‘smartphone + addiction’[tiab] or
‘nursing’[tiab] or’screening’[tiab] or ‘recruitment’[tiab] or ‘diabetes’[tiab] or 
‘malaria’[tiab]
or ‘self­care’[tiab] or ‘self­management’[tiab] or ‘self­help’[tiab])

article tYpe anD (clinicalstudy[Filter] or clinicaltrial[Filter] or clinicaltrialphasei[Filter] or
clinicaltrialphaseii[Filter] or clinicaltrialphaseiii[Filter] or clinicaltrialphaseiv[Filter] 
or
controlledclinicaltrial[Filter] or meta­analysis[Filter] observationalstudy[Filter] or
randomizedcontrolledtrial[Filter] or systematicreview[Filter])
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figure 1 Flow diagram illustrating the paper selection process for this review.table 4 Clinical interpretations of common ML performance metrics. 

Term Equation Objective
accuracY Out of all the predictions, how many predictions were correctly 

identified as positive or negative?
precision How many predictions were correctly labeled as patients out of all 

correctly classified patients and misclassified healthy controls?
specificitY How many predictions were correctly labeled as healthy controls 

out of all healthy controls? In other words, of all healthy controls, 
who were correctly identified as such?

recall/ 
sensitivitY

Of all the patients, who were correctly classified/identified as 
such?

f1-score How many predictions were correctly labeled as patients (recall) 
and what was the accuracy with regards to correctly predicted pa­
tients (precision)?

mean sQuare  
error

What is the absolute difference between the true scores and the 
predicted scores?

root mean 
sQuare error

What is the average difference between the true and the predicted 
scores (in the same unit of the true scores)?

r2 What fraction of the variance in the data is captured by the model?

True Positive = TP, True Negative = TN, False Positives = FP, False Negatives = FN, Sum of Squares of Residuals = RSS, Total 
Sum of Squares = TSS, Number of Observations = N
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figure 3 Sample sizes of clinical populations included in selected studies, with x-axis (sample size) 
presented on a logarithmic scale.

figure 2 Clinical populations and the use of healthy controls in the selected studies.
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figure 5 General recommendations for building an effective and reproducible ML pipeline.figure 4 Machine learning algorithms and their respective objectives in the selected studies.
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optimal time window for the classification is the first day of data collec­
tion and the first week of data collection, which yielded an accuracy, sen­
sitivity, and specificity of 95.8%, 100%, and 94.4%, respectively. Features 
relating to smartphone acceleration, app use, location, physical activity, 
sleep, and call behavior were the most salient features for the classifica­
tion. Conclusions: Remotely monitored data collection allowed for the 
collection of daily activity data in patients with fshD and non­fshD con­
trols for 6 weeks. We demonstrated the initial ability to detect differences 
in features in patients with fshD and non­fshD controls using smart­
phones and wearables, mainly based on data related to physical and 
social activity.

Abstract

Background: Facioscapulohumeral dystrophy (fshD) is a progressive 
muscle dystrophy disorder leading to significant disability. Currently, 
fshD symptom severity is assessed by clinical assessments such as the 
fshD clinical score and the Timed Up­and­Go test. These assessments are 
limited in their ability to capture changes continuously and the full impact 
of the disease on patients’ quality of life. Real­world data related to phys­
ical activity, sleep, and social behavior could potentially provide addi­
tional insight into the impact of the disease and might be useful in assess­
ing treatment effects on aspects that are important contributors to the 
functioning and well­being of patients with fshD. Objective: This study 
investigated the feasibility of using smartphones and wearables to cap­
ture symptoms related to fshD based on a continuous collection of mul­
tiple features, such as the number of steps, sleep, and app use. We also 
identified features that can be used to differentiate between patients with 
fshD and non­fshD controls. Methods: In this exploratory noninterven­
tional study, 58 participants (n=38, 66%, patients with fshD and n=20, 
34%, non­fshD controls) were monitored using a smartphone monitor­
ing app for 6 weeks. On the first and last day of the study period, clinicians 
assessed the participants’ fshD clinical score and Timed Up­and­Go test 
time. Participants installed the app on their Android smartphones, were 
given a smartwatch, and were instructed to measure their weight and 
blood pressure on a weekly basis using a scale and blood pressure moni­
tor. The user experience and perceived burden of the app on participants’ 
smartphones were assessed at 6 weeks using a questionnaire. With the 
data collected, we sought to identify the behavioral features that were 
most salient in distinguishing the 2 groups (patients with fshD and non­
fshD controls) and the optimal time window to perform the classifica­
tion. Results: Overall, the participants stated that the app was well toler­
ated, but 67% (39/58) noticed a difference in battery life using all 6 weeks 
of data, we classified patients with fshD and non­fshD controls with 
93% accuracy, 100% sensitivity, and 80% specificity. We found that the 
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in a clinic at 1 specific moment, and do not cover the implications of the 
disease on social and physical activity during daily life. The progressive 
muscle weakness characterizing fshD leads to massive changes in 
the way people live their lives, affecting how they get around, how 
they complete daily activities, and whether they can work or care for 
children. Therefore, assessing disease severity may be improved by not 
only measuring muscle function but also evaluating social and physical 
activity data. This study aimed to address this by first classifying disease 
using a smartphone app and wearables to continuously remotely monitor 
features relating to biometric, physical, and social activities of patients 
with fshD in comparison with those of non­fshD controls. Subsequently, 
we performed a second analysis in which we aimed to assess disease 
severity. This analysis will be described in a different paper.

oBjectives

We investigated the feasibility of remotely monitoring multiple features 
such as step count, sleep, app use, and location tracking in patients with 
fshD and non­fshD controls. First, we evaluated the participants’ tolera­
bility of these devices. We then characterized the patients with fshD and 
non­fshD controls in terms of composites of social, physical, and biomet­
ric activities. We sought to: 
1 Distinguish patients with fshD from non­fshD controls using a classifi­

cation machine learning model and determine the minimum monitor­
ing window needed to perform the classification

2 Identify which of the remotely monitored features were most salient in 
differentiating between the 2 groups.

Methods
stuDy overvieW

We conducted a cross­sectional, noninterventional study in patients 
with fshD and non­fshD controls. A total of 58 participants (n=38, 66%, 
patients with genetically confirmed fshD and n=20, 34%, non­fshD 

Introduction
BackgrounD

A recent Dutch population study on facioscapulohumeral dystrophy 
(fshD) estimated that approximately 2000 people in the Netherlands and 
approximately 800,000 people worldwide are living with fshD.1 Often, 
early symptoms include difficulty whistling, smiling, and closing the 
eyelids while asleep. Weakening of the facial muscles is generally followed 
by scapular winging. This abnormal positioning of the shoulder bone 
impairs the movement of the shoulders and arms. Further weakening of 
the muscles is commonly observed in the upper arms and may progress 
to the hip girdle and lower legs in severe cases. Less visible symptoms of 
fshD are chronic pain and fatigue.2 In addition to the physical symptoms 
the diagnosis of fshD comes with an emotional and social burden. The 
highly variable and unpredictable progression of the disease can have 
a strong impact on the quality of life 3,4: 90% of the affected individuals 
have visible symptoms by the age of 20 years and 1 in 5 patients with fshD 
eventually becomes wheelchair dependent.5

No therapy is currently available that stops the progression of 
fshD.6-9 Patients thus must rely on symptomatic treatment such as 
medical devices or surgical intervention.2 The development of novel 
treatment options to delay or halt disease progression is currently 
under investigation. However, measuring the effect of such new 
treatments is complicated because disease progression is slow and no 
objective surrogate end points, predictive for clinical benefit, have been 
established. App­based technologies may help to monitor fshD symptom 
progression more closely and evaluate potential treatment effects on a 
continuous basis.

Currently, fshD symptom severity is assessed by clinical scoring of 
symptoms such as the fshD clinical score or mobility performance tests 
such as the Timed Up­and­Go test (tug) and Reachable Workspace 
assessment.10-12 These clinical severity and functional scores have 
several drawbacks. Scores change very slowly over time,13 are assessed 
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weakness by combining the functional evaluations of the 6 muscle groups 
affected in fshD. The scale is divided into 6 independent sections that 
assess the strength and the functionality of facial muscles, scapular gir­
dle muscles, upper limb muscles, distal leg muscles, pelvic girdle mus­
cles, and abdominal muscles.11 The tug assesses mobility and balance 
by measuring the time it takes for a participant to stand up from a seated 
position in a chair, walk 3 meters, turn around, walk back 3 meters, and sit 
down again.12 The user experience and perceived burden questionnaire 
was developed by the chDr to measure the impact of remote monitor­
ing of apps on smartphone performance. The questions are based on the 
overall experience of chDr with mobile apps.

remote monitoring Platform All participants were remotely 
monitored using the chDr Monitoring Remotely (chDr more) platform 
for 42 days. chDr more is a highly customizable platform that allows 
remote monitoring of participants using smartphones and wearables. 
The infrastructure used includes an Android app to collect data from 
smartphone sensors and a connection to the Withings Health (Withings) 
web­based platform to collect wearable data. All collected features are 
described in Table 1.

smartwatch, smart scale, and blood Pressure monitor In 
total, three commercially available Withings devices were used: (1) heart 
rate, step count, and sleep patterns were assessed by the Withings Steel 
hr smartwatch; (2) weight, Bmi, and skeletal muscle mass were assessed 
by the Withings Body+ scale; and (3) systolic blood pressure and diastolic 
blood pressure were assessed by the Withings blood pressure monitor. 
Data from the Withings devices were collected on the phone using Blue­
tooth and sent to the Withings storage servers before being transferred 
to a chDr server. Participants were instructed to wear the Withings Steel 
hr smartwatch continuously for the duration of the study, and they mea­
sured their weight and blood pressure themselves weekly using the With­
ings Body+ scale and Withings blood pressure monitor, respectively.

controls) were included in this study at the Centre for Human Drug 
Research (chDr) in Leiden, The Netherlands, between April 2019 and 
October 2019. Patients were recruited from The Netherlands and Belgium.

ethics approval

This study was performed in compliance with International Council for 
Harmonisation Good Clinical Practice and approved by the Stichting 
Beoordeling Ethiek Biomedisch Onderzoek Medical Ethics Committee 
(Assen, The Netherlands; ccmo number nl69288.056.19) according to Wet 
medisch­wetenschappelijk onderzoek met mensen (Dutch law on medi­
cal­scientific research with humans).

patient population

To represent the clinical fshD spectrum based on symptom severity 
and age, up to 40 patients with fshD (and 20 control participants) were 
deemed sufficient. As this study was exploratory, sample size was not 
based on power calculations. Eligible patients with fshD were aged >16 
years, had genetically confirmed fshD (fshD1 or fshD2), were symptom­
atic as demonstrated by the fshD clinical score of >0 and had an Android 
phone that they used as their main phone or were willing to use one for 
the duration of the study period. Patients with any comorbidity, expected 
to affect the measurements, were excluded. Eligible control participants 
were included using the same inclusion and exclusion criteria that were 
used to recruit the patients, except they did not have a diagnosis or symp­
toms of fshD.

Data collection

clinical assessments On the first and last days of the study period, 
the fshD clinical score assessment was performed in the group consist­
ing of patients with fshD, whereas the tug was performed in both groups. 
On day 42 in both groups the user experience was assessed and the per­
ceived burden questionnaire (Multimedia Appendix 1) administered. The 
fshD clinical score is a standardized clinical score that quantifies muscle 
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clinical relevance of the feature (eg, time spent on home and house apps 
were deemed clinically irrelevant). For the automated feature selection, 
variance inflation factor and stepwise regression were used to exclude 
multi­collinear features or features that did not provide additive informa­
tion, respectively.

classification models We used 4 categories of data sets for the 
classification of patients with fshD and non­fshD controls. These cate­
gories include the composite data (all features), social data (smartphone 
features relating to social location, social and communication app use, 
and phone calls), physical activity data (smartwatch features), and bio­
metric data (scale and blood pressure monitor features). We compared 
the performance of the logistic regression, random forest, and support 
vector machine classification models (Multimedia Appendix 2 15-22). The 
performance of these classification models was evaluated by the accu­
racy, sensitivity, specificity, and Matthews correlation coefficient (mcc). 
A grid search was performed to find the optimal hyperparameters (the 
parameters that determine the model’s structure) that would yield the 
highest sensitivity and specificity for each model. Furthermore, we per­
formed a 5­fold stratified cross­validation. Cross­validation is a resam­
pling method used to evaluate the prediction performance of the classifi­
cation models. The data were divided into 5 equal subsets, with the same 
fshD­to–non­fshD ratio within each subset; the model was trained on 4 
(80%) partitions of the data and tested on 1 (20%) partition. This proce­
dure was repeated 5 times, with each partition serving as a test set once. 
The performance of each model validation was then averaged.

identification of oPtimal time window In total, 6 weeks of data 
were collected for this study. As continuous and periodic data collection 
for long periods of time can be expensive and increase the risk of data 
loss, we investigated the minimum time window needed for reliable clas­
sification. First, we used an incrementally increasing time window to train 
the classification model, starting from day 1 and adding 1 day until we 

Privacy The data collection as part of this study may raise privacy and 
data safety concerns. Therefore, during development of the chDr more 
app, we addressed these concerns by building in several measures to 
maximize privacy for all participants. First, all data sources such as sms 
text messaging logs, phone calls, and microphone activation only report 
summative outcomes. These sources cannot send the content of mes­
sages or whole recordings to the chDr servers. In addition, location data 
only report relative location instead of absolute gps coordinates. Further­
more, all calculations such as human voice detection are performed on 
the Android phone itself and removed afterward and all personal data are 
coded and safely stored on certified chDr servers.

statistical analysis

data PreProcessing The data preprocessing and analysis pipelines 
were developed using Python (version 3.6.0; Python Software Founda­
tion). The Python library scikit­learn was used for the feature extraction 
and the development of the machine learning models.14 All data were 
manually and visually inspected for missing data and outlier data. The 
identified outliers (eg, traveling 10,000 kilometers in a single day) were 
subsequently removed from the analysis. Missing or excluded data points 
were not imputed.

feature extraction As disease progression in fshD is gradual, the 
fshD clinical scores and tug scores were expected to remain stable dur­
ing the 6­week period. The daily features were therefore averaged across 
a defined time window (for more information see p. 95: Identification of 
optimal time window). Table 1 provides a simplified overview of the fea­
tures that were extracted from the chDr more app and Withings sensors.

feature selection Before fitting the classification models to the 
data set, features were excluded using manual and automated feature 
selection. The authors (aZ, rJD, ac, evB, gJg, and JDm) of this paper man­
ually excluded features based on the degree of missing data and the 
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Data completeness is defined as having incoming data for each day of 
the clinical trial, except for the blood pressure and scale data, for which 
completeness is defined as having incoming data each week. As phone 
and sms text messaging data are activity triggered and are aperiodic, it 
is not possible to know whether data were missing. Table 3 provides an 
overview of data completeness for the chDr more app, Withings watch,  
Withings scale, and Withings blood pressure monitor and their respective 
sensors.

feature selection

Several features were manually excluded before modeling. Because of 
the number of participants missing body composition data, we excluded 
all the body composition data with the exception of weight. Furthermore, 
we excluded sms text message use features and app categories that were 
only used by only 5% (3/58) of the participants.

iDentification of optimal time WinDoW anD 
classification performance

Using all 6 weeks of data, the optimal classification model (lasso­penal­
ized logistic regression) achieved 93% accuracy, 100% sensitivity, 80% 
specificity, and 85% mcc. This classification model identified 15 fea­
tures that were relevant for differentiating between patients with fshD 
and non­fshD controls. Specifically, features such as app use, weight, 
location, physical activity, and sleep were important for differentiating 
between the 2 populations (Figure 2). Table 4 shows the predictive fea­
tures and their positive or negative associations with the classification 
label. The predictive features indicate that the participants in the group 
consisting of patients with fshD were less likely to engage in moderate 
physical activity and spend time on recreational apps such as entertain­
ment apps, music and audio apps, video players and editing apps, and 
games. The predictive features also showed that the participants in the 
group consisting of patients with fshD were more likely to spend more 
time at home and health locations than their non­fshD counterparts. 

included all 42 days of data. We examined which time window would yield 
the highest overall accuracy, sensitivity, and specificity. We compared the 
performances of 3 classification algorithms (least absolute shrinkage and 
selection operator [lasso]­penalized logistic regression, random forest, 
and support vector machine) to classify patients with fshD and non­fshD 
controls using the incremental time windows. Second, we used the opti­
mal time window to train the classification model and evaluated how sta­
ble the classification performance would be for the remaining 5 weeks of 
data. Here, we evaluated the stability of the algorithm based on the gen­
eralization error of the trained classification model.23

Results
Data collecteD

In total, 58 participants (n=38, 66%, patients with fshD and n=20, 34%, 
non­fshD controls) participated in the study. We did not meet our goal 
of 40 patients because of difficulties in recruiting patients in an accept­
able time span. The female­to­male ratio was the same in both popula­
tions; however, the median age of the control participants without fshD 
was lower than that of their counterparts with fshD. Table 2 illustrates 
the demographic and disease characteristics of the participants enrolled 
in this study. The fshD clinical scores and tug scores remained rela­
tively stable during the 6­week period (with a maximum intraparticipant 
change of 1 point for the fshD score and 0.63 seconds for the tug score).

perceiveD BurDen anD Data loss

As shown in Figure 1, overall, 3% (2/58) of the participants found the app 
on their phone to be annoying. Furthermore, 67% (39/58) of the partic­
ipants agreed that there was a noticeable difference in battery life, 43% 
(25/58) agreed that the constant presence of the app was noticeable on 
their smartphone, 28% (16/58) rated the constant visible notification as 
annoying, and 26% (15/58) of the participants noted a difference in the 
speed of their smartphone.
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Discussion
principal finDings

We investigated the feasibility of monitoring and characterizing the phys­
ical, social, and biometric features of patients with fshD and non­fshD 
controls using remote monitoring technologies. The use of the remote 
monitoring platform was well tolerated by all participants. Next, we 
found that a minimum of 1 day of data and a maximum of 1 week of data 
can be used to reliably classify the 2 populations. In fact, an fshD classifi­
cation model trained on data from a shorter time window outperformed 
a classification model trained on data from the entire 6­week period. Fur­
thermore, we illustrated that a classification model trained on the first 
week’s data yielded stable and reliable classification predictions across 
the remaining 5­week period.

Most (37/58, 64%) of the participants tolerated the chDr more app con­
stantly running on their smartphone (Figure 1). Of the 58 participants, 
only 2 (3%) stated that the app was annoying. However, the results show 
that some of the participants agreed that there was a noticeable differ­
ence in smartphone speed performance (14/58, 25%), stability (8/58, 14%), 
and overall battery life (39/58, 67%). Therefore, the presence of the app 
was noticeable for some (25/58, 43%) of the participants. The decrease in 
smartphone performance (ie, speed, stability, and battery performance) 
was likely due to the continuous sampling of the sensors. As this was the 
first study in this specific patient group with this platform, all smartphone 
sensors were frequently sampled to capture all possible features. With 
the collected data in this study, we identified the features that are useful 
in differentiating between patients with fshD and non­fshD controls. In 
future studies, noncontributing raw data such as data from the acceler­
ometer and gyroscope (both sampled at 5 Hz) can be turned off to reduce 
the burden on the battery performance and overall user experience. We 
do not know for certain whether, and how, the noticeability of the app 
affects participants’ behavior. Of the 58 participants, 6 (10%) stated that 
they noticed a change in smartphone use for themselves, which may 

Table 5 provides a summary of the number of selected features and the 
respective performance metric for each of the data sets fitted to the 
6­week lasso­penalized logistic regression model. The table illustrates 
that the composite data set model outperformed the models fitted to 
the social, physical activity, and biometric data sets. The mcc is used to 
select the best model because it corrects for class imbalances. The scores 
of the individual data sets are included to give an overview of their perfor­
mance on their own. The mcc values of the social activity, physical activ­
ity, and biometric logistic regression models were 52%, 38%, and −21%, 
respectively.

As for identifying the optimal time window for accurately classifying 
the patients with fshD and non­fshD controls, we found that training the 
random forest on the data collected on the first day and the data collected 
during the first week yielded an accuracy, sensitivity, specificity, and mcc 
of 95.8%, 100%, 94.4%, and 93.8% (Figure 3). This approach outperformed 
the classification models that were trained on all 6 weeks of data. We also 
trained classification models on the first week’s data and fitted the data 
from subsequent weeks to assess the stability of the classification perfor­
mance over time (Figure 4). We found that the random forest achieved the 
best overall performance, with a mean accuracy, sensitivity, specificity, 
and mcc of 95% (sD 0.9%), 97.6% (sD 3.6%), 94.1% (sD 0.9%), and 93.6% (sD 
0.1%), respectively. Figure 5 provides a shapley additive explanations plot 
that illustrates the magnitude and direction of the effect of a feature on 
a prediction. Of the 20 selected features, the top 5 (25%) most important 
features for the classification were mean kilometers traveled, 95% maxi­
mum distance from home, total kilometers traveled, 95% highest heart 
rate, and intense activity duration. For each of these features, the partici­
pants in the group consisting of patients with fshD had lower scores than 
the non­fshD controls.
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potentially predictive features. The features that researchers manually 
choose to include or exclude will influence the interpretability and stabil­
ity of the model. It should be noted that although sms text messaging fea­
tures were excluded, features regarding instant messaging app use were 
included.

Our classification models allowed for the identification of a stable set 
of features that were distinctive of fshD symptomology. We believe that 
identifying which remotely monitored features are relevant to fshD can 
be a first step toward continuous monitoring of symptom severity and 
disease progression. For example, our classification model identified 
sleep as a relevant feature for classifying patients with fshD. Other stud­
ies have found that patients with fshD typically experience sleep anom­
alies because of anxiety, respiratory muscle dysfunction, and pain.25-27 
This illustrates that the chDr more platform is sensitive enough to detect 
and monitor sleep anomalies among individuals with fshD outside of the 
clinic. Furthermore, location­related features were relevant for differen­
tiating between the 2 populations. In this study, the patients with fshD 
spent more time at home, in areas with public transportation, or at health 
locations than the healthy participants. Patients with fshD face a range of 
physical challenges because of the functional deterioration in the affected 
muscular regions. Consequently, patients with fshD may become more 
home bound and more reliant on public transportation for travel, as well 
as require more visits to their physicians. In conclusion, the chDr more 
platforms provide data that can be used to show differences in the daily 
lives of patients with fshD and controls without fshD.

We demonstrated that there is a trade­off among the classification 
accuracy, the number of sensor measurements, and the duration of 
the monitoring period. Previous studies have demonstrated that using 
data from multiple sensors improves the detection of mental and physi­
cal health status compared with using data from a single sensor.28-30 We 
illustrated that social activity, physical activity, and biometric data alone 
are insufficient for the accurate classification of fshD. Rather, the inclu­
sion of data from the smartphone, smartwatch, and scale improves the 

mean that they changed their behavior. Therefore, participants will know 
that they are participating in a study and that they are being constantly 
monitored even if the app is perfectly optimized. As a result, some sort of 
change in behavior can be expected.

As for the user experience and perceived burden questionnaire, we 
designed a questionnaire based on our own experiences with smart­
phone use and the predicted effects of the chDr more app on smart­
phones. This questionnaire was not validated in any other study. At the 
time of designing the study, there were no validated and published smart­
phone app questionnaires that would fit our purpose. For example, the 
mHealth App Usability Questionnaire24 focuses more on active smart­
phone apps, where there is interaction between the app and the partici­
pants. The chDr more app is a passive app, requiring almost no interac­
tion between the app and the user. Therefore, the questions should be 
more focused on the indirect effects of the app, such as more frequent 
crashes in other apps, subjective loss of snappiness of the operating sys­
tem, or issues with battery performance. Although our questionnaire is 
not validated, it was considered the best way to accurately capture the 
perceived impact of the chDr more app on smartphone use.

Feature selection is one of the most important processes for building 
a classification model. The inclusion of irrelevant features can confound 
the interpretability of the model because potentially predictive features 
would be excluded and therefore seem to be irrelevant. For example, 
because the patients with fshD had more text­related activity than the 
non­fshD controls, the sms text messaging features were selected 
as important classification features. Given that the sms text messaging 
features were not deemed clinically relevant because only 55% (21/38) of 
the patients with fshD and 50% (10/20) of the non­fshD controls actively 
sent outgoing sms text messages and the majority of the sms text mes­
sages were exchanged with unknown contacts, we excluded the sms text 
messages as a feature. As a result, features that were initially not selected 
by the model for inclusion, such as sleep, were now deemed important 
features. The sms text messaging features masked the relevance of other 



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials104 105part ii /chapter 3

on result in unrepresentative data. These data get mixed in the real data 
because these moments cannot be filtered out of the data with full cer­
tainty, resulting in unreliable data. Of note, there is no easy solution to 
this problem. It would be difficult to continuously check whether the par­
ticipants are carrying their smartphone using the built­in sensors. How­
ever, adherence to this requirement is an important aspect in remote data 
collection, emphasizing the need for clear instructions on this adherence 
aspect to participants during training sessions before study start.

The level of data loss from the Withings scale indicates that improve­
ment is needed to gather reliable scale data (Table 3). Data loss occurred 
for both the patients with fshD and the non­fshD controls, indicating 
that the loss of data was unlikely related to any of the fshD symptoms. 
Although clear instructions were given at the beginning of the study and 
all participants received a manual with the same instructions, we believe 
that the data loss was caused by improper use of the scale by the partici­
pants. The weight measurement consisted of two parts: measurement of 
weight and measurement of body composition. 

Weight was determined first, followed by a blinking notification on the 
display during the measurement of body composition. This might have 
given the impression to the participant that the measurement had been 
completed, causing them to interrupt the second part of the measure­
ment, resulting in an incomplete measurement. For future studies, we 
recommend incorporating a live training at the beginning of the study on 
the correct use of the scale.

Efficient clinical testing of any fshD intervention or of any drug tar­
geted at improving function of patients with fshD or delaying disease 
progression requires the availability of clinical biomarkers that ideally 
change relatively rapidly over time; correlate with, and allow for, predic­
tion of progression of the existing clinical severity and functional scores; 
and allow for identification of fast progressors. Using data collected in a 
home setting might provide a more comprehensive picture of the evo­
lution of a patient’s overall condition over time. This study is a first step 
in the development and validation process of using data collected by a 

performance of the fshD classification algorithm. Although the model­
ing of multi­sensor data can be advantageous, it can lead to several prac­
tical limitations. The inclusion of more features can increase the model’s 
complexity and thus limit the model’s explainability. Furthermore, the 
inclusion of more sensors and a longer monitoring period can be more 
expensive, potentially limiting the number of participants enrolled in a 
study, and increase the risk of data loss. Future studies will need to weigh 
the advantages and disadvantages of integrating smartphones, smart­
watches, scales, and monitoring period into their remotely monitored 
fshD clinical trials.

Despite the good performance of our model, this study includes some 
limitations. The patients with fshD and non­fshD controls were compara­
ble except for the age demographic. The median age of the non­fshD con­
trols was approximately 13 years less than that of the patients with fshD. 
Generally, the older the person, the less they tend to use their smartphone 
and, in particular, the less they tend to use communication and social 
apps.31 When characterizing patients with fshD and non­fshD controls 
based on active smartphone use, the model may be biased because of the 
difference in age. However, as seen in the results, only 1 feature of active 
smartphone use—time spent on recreational apps—was included in the 
final model for the characterization of patients with fshD, which may limit 
the impact of this difference. The other features used in the composite 
model consist of either physical activity features collected passively from 
the smartphone or biometric data collected from the Withings devices. 
Therefore, we believe that the impact of these contaminated data on the 
performance of our model is low.

The objective of our study was to capture continuous sensor data. How­
ever, these data can only be considered reliable when participants carry 
their smartphone and have it turned on all the time. During this study, all 
participants were instructed to do so. However, data captured when the 
participant was not carrying their smartphone could not be distinguished 
from data captured when the participant was carrying the smartphone. 
Therefore, all instances in which the smartphone is not carried or turned 
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table 1 Overview of all smartphone and wearable sensors used in this study and their respective 
extracted features.

Device and Sensor Features
smartphone
accelerometer Maximum magnitude of the acceleration: 98%
apps Number of times an app is opened; amount of time app is open in foreground
gps Total kilometers traveled per day; average kilometers traveled per trip; 95% maximum 

distance from home
google places Number of unique places visited; time spent at each unique location
calls Number of outgoing, incoming, and missed calls; number of calls from known and un­

known contacts
microphone Percentage of time a human voice is present
WearaBles (Withings)
Watch step count Total step count; mean steps per minute; mean steps per hour; maximum steps per hour
Watch heart rate Heart rate: 5%, 50%, and 95% ranges and sD of heart rate percentage of time spent in 

resting heart rate
Watch sleep Awake as well as light and deep sleep duration (minutes); number of awake as well as 

light and deep sleep periods; time to fall asleep (minutes)
Watch phYsical 
activitY

Soft, moderate, and hard activity duration

BlooD pressure 
monitor

Systolic and diastolic blood pressure

scale Weight (kg); muscle mass (kg); bone mass (kg); body fat (%); body water (%)
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table 4 Selected features for classifying patients with facioscapulohumeral dystrophy and 
controls without facioscapulohumeral dystrophy based on the complete 6-week composite data set. 
Unstandardized estimated coefficients indicate the direction of the association between the feature 
and the classification label.

Feature category Features Unstandardized estimated coeffi-
cients

Activity Moderate activity duration ­0.04
App Time spent on recreational apps ­0.53
Body Weight (kg) ­0.45
Location Distance from home: 95% 0.85
Time spent  
at location

Travel location 1.00
Home location 0.67
Unknown location 0.53
Health location 0.29
Public location ­0.12
Social location ­0.14
Commercial location ­0.94

Sleep Average total sleep duration 0.65
Light sleep duration ­0.35
Number of awake periods during a sleep session ­0.61
Maximum total sleep duration ­0.69

table 5 Summary of number of selected features and the respective performance metric for each 
of the data sets used to classify the patients with FShD from the controls without facioscapulohumeral 
dystrophy.

Dataset Number of selected 
Features

Accuracy (%) Sensitivity 
(%)

Specificity 
(%)

Matthews Correla-
tion Coefficient (%)

Composite 15 93 100 80 85
Biometric 5 57 89 0 ­21
Social 10 79 90 60 52
Physical Activity 13 71 78 60 38

table 2 Demographics of patients with facioscapulohumeral dystrophy (FShD) and controls 
without FShD (N=58).

Demographics Patients with fshD Non-fshD Controls
Sex, n(%)
Female 23 (61) 11 (55)
Male 15 (39) 9 (45)
Age (years), mean (sD: range) 45 (14.5; 18­64) 33 (12; 23­69)
Weight (kg), mean (sD: range) 80 (16; 52­130) 78 (18; 56­129)
Bmi (kg/m2), mean (sD: range) 26 (4; 20­44) 25 (5; 19­35)
fshD clinical score, mean (sD: range) 5 (3; 1­13) 0 (0; 0­0)
Timed Up­and­Go test (seconds), mean (sD: range) 8.8 (35; 5­15.81) 7.8(1.55; 6­12.09)

table 3 Overview of data completeness. The data completeness shows what percentage of data 
was collected among the participants during the 42 days of the study; hence, in total, there should be 
2436 daily instances and 232 weekly instances.

Sensor Feature  Overall data completion N (%)
Patients with fshD Controls without fshD
 n (%)  N n (%) N

Microphone 
(smartphone) 

Voice activation  1181 (74) 1596  688 (81.9) 840

Accelerometer 
(smartphone) 

Phone Acceleration  1260 (78.95) 1596  656 (78) 840

Google Places 
(smartphone)  

Places  1109 (69.49) 1596  616 (73.33) 840

gps (smartphone) Relative Location  1373 (86.03) 1596  785 (93.45) 840
App use (smartphone) Use event aggregate  1404 (87.97) 1596  779 (92.74) 840
Withings blood 
pressure monitor 

Blood pressure and 
heart rate

 1452 (91.15) 1596  630 (75) 840

Withings scale Body composition  173 (75.88) 228  88 (73.33) 120
Weight  205 (89.91) 228  108 (90) 120

Withings watch Activity duration  1505 (94.3) 1596  744 (88.57) 840
Heart rate  1181 (74) 1596  588 (70) 840
Step count  1491 (93.42) 1596  708 (84.29) 840
Sleep Summary  1408 (88.22) 1596  685 (81.55) 840
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figure 3 Performance of the incremental classification predictions for 3 classifiers (logistic 
regression, random forest, and support vector machine). The x-axis shows the time window for 
training the classification models starting from day 1 to day 42. The error bands represent the SD of the 
classification performance for the 5-fold cross-validation.

figure 4 Performance of 3 classifiers (logistic regression, random forest, and support vector 
machine) trained on the week 1 data and used to predict the classification diagnosis of the subsequent 
weeks of data. The error bands represent the SD of the classification performance for the 5-fold 
cross-validation.

figure 1 Feasibility and perceived burden of remote monitoring in patients with facioscapulo-
humeral dystrophy using smartphone-based technologies.

figure 2 Selected features for classifying patients with facioscapulohumeral dystrophy and those 
without FShD based on the composite data set using all 6 weeks of data and the least absolute shrinkage 
and selection operator–penalized logistic regression model. Unstandardized estimated coefficients 
indicate the direction of the association between the feature and the classification label.



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials114

figure 5 Shapley additive explanations (Shap) summary plot based on a random forest classifier 
that was trained on the week 1 data. The x-axis shows the feature importance, where features are ranked 
in descending order. The y-axis shows the Shap value that illustrates the direction of the association 
between the feature and facioscapulohumeral dystrophy severity. The color scheme reflects the 
probability of a participant being classified as a patient with facioscapulohumeral dystrophy.
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from day 1 to day 14) for the fshD Clinical Score, tug, and multitask esti­
mation yielded an average r2 of 0.65, 0.79, and 0.76 and an average rmse 
of 3.37, 2.05, and 4.37, respectively. Conclusions: We demonstrated that 
smartphone and remote sensor data could be used to estimate fshD clin­
ical severity and therefore complement the assessment of fshD outside 
the clinic. In addition, our results illustrated that training the models on 
the first week of data allows for consistent and stable prediction of fshD 
symptom severity. Longitudinal follow­up studies should be conducted 
to further validate the reliability and validity of the multitask model as a 
tool to monitor disease progression over a longer period.

Abstract

Background: Facioscapulohumeral muscular dystrophy (fshD) is a pro­
gressive neuromuscular disease. Its slow and variable progression makes 
the development of new treatments highly dependent on validated bio­
markers that can quantify disease progression and response to drug 
interventions. Objective: We aimed to build a tool that estimates fshD 
clinical severity based on behavioral features captured using smartphone 
and remote sensor data. The adoption of remote monitoring tools, such 
as smartphones and wearables, would provide a novel opportunity for 
continuous, passive, and objective monitoring of fshD symptom sever­
ity outside the clinic. Methods: In total, 38 genetically confirmed patients 
with fshD were enrolled. The fshD Clinical Score and the Timed Up and 
Go (tug) test were used to assess fshD symptom severity at days 0 and 
42. Remote sensor data were collected using an Android smartphone, 
Withings Steel hr+, Body+, and Bpm Connect+ for 6 continuous weeks. 
We created 2 single­task regression models that estimated the fshD Clin­
ical Score and tug separately. Further, we built 1 multitask regression 
model that estimated the 2 clinical assessments simultaneously. Further, 
we assessed how an increasingly incremental time window affected the 
model performance. To do so, we trained the models on an incrementally 
increasing time window (from day 1 until day 14) and evaluated the predic­
tions of the clinical severity on the remaining 4 weeks of data. Results: 
The single­task regression models achieved an r2 of 0.57 and 0.59 and a 
root­mean­square error (rmse) of 2.09 and 1.66 when estimating fshD 
Clinical Score and tug, respectively. Time spent at a health­related loca­
tion (such as a gym or hospital) and call duration were features that were 
predictive of both clinical assessments. The multitask model achieved an 
r2 of 0.66 and 0.81 and an rmse of 1.97 and 1.61 for the fshD Clinical Score 
and tug, respectively, and therefore outperformed the single­task mod­
els in estimating clinical severity. The 3 most important features selected 
by the multitask model were light sleep duration, total steps per day, 
and mean steps per minute. Using an increasing time window (starting 
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drug development have already demonstrated to be sensitive to differen­
tiating patients from healthy volunteers and are strongly correlated with 
clinician assessments.13-15 The widespread adoption of smartphones and 
wearables could provide new opportunities for objective and continuous 
monitoring of fshD disease progression outside the laboratory.

This study was designed to identify smartphone­based and remote 
sensor–based features that could be used to assess fshD disease sever­
ity. These features may enable the passive remote monitoring of disease 
progression and might potentially facilitate early detection of treatment 
effects on fshD symptoms and the patient’s quality of life. We hypothe­
sized that the behavioral features captured by these remote monitoring 
devices would capture the daily physical and social burden that patients 
with fshD experience. Although other neuromuscular disease studies 
with similar protocols have used machine learning to construct their dig­
ital end points, until now, different monitoring periods were arbitrarily 
selected by various researchers.16,17 Here, we investigated how different 
time windows affect the model’s performance to estimate one’s symp­
tom severity over time.18,19 As these features can vary considerably over 
time, we assessed the stability and test­retest reliability of the first week 
of data to estimate fshD disease severity for the remainder of the trial. In 
this paper, we describe the development of a novel tool based on smart­
phone and remote sensor data to provide remote estimation of fshD dis­
ease severity.

Methods
overvieW

This study is an extension of a previous longitudinal clinical study that 
investigated the feasibility of monitoring and characterizing patients 
with fshD and healthy controls in terms of biometric, physical, and social 
activities using data sourced from smartphones and other remote moni­
toring devices. Therefore, additional information regarding the data col­
lection and data quality has been previously published.15

Introduction

Facioscapulohumeral muscular dystrophy (fshD) is a progressive neu­
romuscular disease characterized by the wasting of muscles in the face, 
upper body, and legs.1 The onset and progression vary greatly between 
individuals.2 Early symptoms include difficulties in smiling, whistling, 
and shutting of the eyelids during sleep. These symptoms are followed by 
impaired upper­arm movements and walking. A total of 20% of individ­
uals with fshD eventually become wheelchair bound.2 Less visible fshD 
symptoms include fatigue and chronic pain.3 In addition to the physi­
cal burden, individuals with fshD also experience emotional, social, and 
socioeconomic burdens.4,5 As a result, patients report increased deterio­
ration in quality of life as the disease progresses.6

Currently, there are no therapies or interventions that prevent the 
wasting of muscles in patients with fshD.7 Muscle­strengthening drugs 
have been shown to have limited effect on the disease progression.8 As 
a result, patients with fshD largely rely on symptomatic treatments (eg, 
analgesics, exercise, and cognitive therapy). The development of novel 
treatment options to delay or halt fshD disease progression is currently 
under investigation.9,10 However, measuring the effect of such new treat­
ments is complicated, as disease progression is slow and no objective sur­
rogate end points, predictive for clinical benefit, have been established.

Two common clinical assessments for assessing fshD symptom sever­
ity are the fshD Clinical Score and Timed Up and Go (tug) test. The fshD 
Clinical Score is composed of an evaluation of the extent of the muscle 
weakness among 6 regions of the body.11 The tug is a test used to assess 
functional mobility.12 The test requires a participant to rise from a chair, 
walk 3 m forward, turn around, and return to the chair. These clinician­
rated assessments provide a snapshot of the disease status and are pri­
marily focused on muscular strength and function that are inherently sub­
jective. Identifying novel objective biomarkers for monitoring disease 
progression could additionally provide clinically relevant insights and aid 
drug development. Novel digital end points for neuromuscular disease 
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created a unique email address (containing patient identifiers) for each 
patient to couple the Withings device with chDr more, thus eliminating 
the need for using the patients’ personal email.

investigational technologies

Smartphone and remote sensor data were collected on the chDr more 
platform. This customizable platform enables the collection, ingestion, 
and management of data sourced from monitoring devices. The chDr 
more app was installed on the smartphone of each participant and allows 
for the unobtrusive collection of smartphone sensor data (sourced from 
the smartphone’s accelerometer, gyroscope, magnetometer, gps, light 
sensor, and microphone) as well as phone usage logs (eg, app usage, bat­
tery level, calls, and sms text messages).

The smartphone sensor data provide insights into a participant’s envi­
ronment, such as location type and travel patterns (gps), if human voices 
are present in the environment (microphone), and their physical activity 
(accelerometer and gyroscope). The phone usage logs give an indication 
of social activity (through social media and communication apps, calls, 
and sms text messages) and smartphone usage (app usage). The app also 
collected Withings health data.

In this study, 3 Withings devices were used: Withings Steel hr smart­
watch (monitors heart rate, sleep states, and a number of steps), Withings 
Body+ scale (monitors weight and body composition) and Withings Bpm 
Connect (monitors heart rate, systolic blood pressure, and diastolic blood 
pressure). Together the Withings features reflect the daily physical activi­
ties of each of the participants.

This is the first study that aimed to monitor and estimate fshD symp­
tom severity using smartphone and wearable data. As this was an explor­
atory longitudinal study, specifically aimed to identify smartphone­ and 
wearable­based features that were predictive of fshD symptom sever­
ity, we did not identify any literature with a similar protocol. To identify 
these novel features, we decided to collect data from all available sensors 
and features from the chDr more platform. As the symptoms of fshD can 

patients

This was a noninterventional, cross­sectional study involving patients 
with fshD. The study was performed between April and October 2019 in 
the Centre for Human Drug Research (chDr) research unit in Leiden, the 
Netherlands. Table 1 provides an overview of the demographic distribu­
tion of the patients with fshD enrolled in this study.

In total, 38 patients with genetically confirmed fshD from the Nether­
lands and Belgium were included in the study. Eligible patients were 16 
years or older, had genetically confirmed fshD, and had an fshD Clinical 
Score greater than zero. Patients had to be Android smartphone owners 
and willing to use either their own smartphone or an Android smartphone 
provided by chDr for the duration of the study period. Patients with inter­
nal medical devices such as a pacemaker or deep brain stimulator were 
excluded from the study, as these could interfere with the Withings scale 
measurements.20 Participants could not be pregnant or have a severe 
coexisting illness.

ethics approval

This study was approved by the Ethics Committee of BeBo, Assen, the 
Netherlands (nl69288.056.19) and was registered on ClinicalTrials.gov 
(nct04999735). Before any study­related activities, written informed con­
sent was obtained from the patients. Participants received monetary 
compensation for their time and effort during the trial.

To preserve the privacy of the patients, we deidentified the data and 
limited the amount of personally identified information collected from 
the smartphone and the connected devices. The location coordinates of 
the gps or the cellular networks were collected as relative coordinates 
(gps coordinates with respect to another predetermined location). For 
the calls and sms text messaging, only metadata are stored (ie, no actual 
phone calls or text is being processed and stored). The call and sms text 
messaging logs only store a partial phone number, making it impossible 
to identify the original phone numbers. As for the Withings devices, we 
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exhibited on a given day is the focus of fshD clinical evaluation. As there 
are no fshD assessments that assess fshD symptoms over a longer 
period, we did not explore other aggregation methods. Discrete features 
(eg, step count) were summed per day per participant. Continuous fea­
tures (eg, heart rate) were averaged per day per participant. Table 2 pro­
vides an overview of how the features were aggregated based on the data 
type. Table 3 summarizes which features were extracted from the smart­
phone and Withings sensors. In addition, Table 3 shows the features that 
were provided from the more platform but were not included for the anal­
ysis either due to outliers, missing data, or because they were not of clini­
cal interest.

feature selection

Before modeling, both expert­based manual and automated feature 
selections were performed. First, features were visually inspected by all 
authors. Excluded features were based on the number of available data 
points (eg, 9 participants did not have body composition data) and clin­
ical relevance (eg, time spent on parenting apps was deemed clinically 
irrelevant). Next, two automated feature selection strategies were com­
pared: (1) stepwise regression and (2) variance inflation factor (vif). The 
stepwise regression strategy was an iterative process to select predictive 
variables that met a significance criterion (P<.05). Both forward and back­
ward stepwise regression strategies were used. The vif was calculated for 
all pairwise combinations of features to identify collinear features. Pairs 
of features having a vif value greater than 10 were identified, and one of 
the features was subsequently removed for each of the pairs.24 For com­
parison, we also fitted the model without any automated feature selec­
tion strategies. For each regression model, we applied each of the feature 
selection strategies.

statistical analysis

Python (version 3.6.0) was used for the data analysis and modeling in 
conjunction with the Pandas,25 NumPy,26 Matplotlib,27 and Sklearn 

affect a patient’s travel abilities,21 physical activity, sleep,11,22 and social 
lives,23 we deemed these features relevant for estimating fshD symptom 
severity.

Data collection

Participants were monitored for 6 continuous weeks. On days 1 and 42, 
the clinical evaluations (fshD Clinical Score and tug) were performed. 
On day 1, the chDr more and Withings Health Mate apps were installed 
on their smartphones. Participants were asked to use their smartphones 
as normal. Participants were asked to continuously wear their Withings 
Steel hr smartwatch and weigh themselves and take their blood pressure 
weekly.

Data preprocessing

Before modeling of the data, all sensor data were preprocessed and con­
verted into features using Python (version 3.6.0) and the PySpark (version 
3.0.1) library. The raw data were checked for missing values and outliers. 
Missing values were defined as the absence of data for a specific feature 
for each day, except for 2 types of measurements: the weekly measure­
ments (eg, weight and blood pressure) and the data related to aperiodic 
activities (eg, phone calls or sms text messages). Missing data were not 
imputed. Outliers were detected by manual visual inspection rather than 
automated statistical techniques, as our objective was to identify poten­
tial outliers that were a result of potential measurement errors rather 
than participants’ behaviors. Measurement errors were deemed not rel­
evant to our analysis, whereas outliers in behavior could still provide 
insights into a participant’s symptom severity; therefore, sensitivity anal­
ysis was not conducted. Outliers would be subsequently excluded at the 
discretion of the authors (eg, removing overlapping sleep stages).

feature extraction

All raw data were collected from the smartphone and Withings devices. 
The features were then aggregated per day, as the symptom severity 
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and the rmse explain the variance and the error between the true clinical 
scores and the predicted scores of the regression models, respectively.

To assess how varying time window affects the model’s estimation of 
symptom severity, we used an incrementally increasing time window to 
train the regression models, starting with day 1 and adding the follow­
ing days until the first 2 weeks of data were included in the training set. 
To train, optimize, and assess each model’s generalizability, we applied 
a 5­fold nested cross­validation model. To validate the performance of 
these models, we used the remaining 4 weeks of data as an external val­
idation data set. To assess the stability of the trained models to yield 
consistent estimations of symptom severity, we trained the fshD Clin­
ical Score, tug, and multitask models on the first week of data. We esti­
mated the symptom severity for the subsequent weeks. We selected the 
first week, as each patient would have each day of the week represented 
in their data set.

In sum, we investigated 3 final models, 2 single­task models, and 1 mul­
titask model. For each model, we considered 3 types of regression models 
(the linear regression, the random forest regressor, and the gradient boost 
regressor). For each model, we considered 3 feature selection strategies 
(no automated feature selection, stepwise regression, and vif); hence, in 
total, we compared 27 models. Given that we are mainly interested in the 
comparison of the predictions of single­task and multitask models and 
the influence of the time windows on the predictions, we reported only 
the results of these models.

Results

No patients dropped out of the study. One patient was wheelchair­bound 
and therefore unable to perform the tug. The fshD Clinical Scores ranged 
between 1 and 13, with a median score of 5. The tug times ranged between 
5.5 seconds and 15.8 seconds, with a median time of 7.7 seconds. Before 
modeling, several features were manually excluded. Nine patients had 

packages.28 Three regression models were created: 2 single­task regres­
sion models, 1 for each clinical assessment and 1 for each multitask 
regression model, simultaneously estimating both clinical assessments. 
For the multitask regression model, a dummy variable was included to 
denote either the fshD Clinical Score or tug.

For all models, linear regression, random forest regressor, and gradi­
ent boost regressor were used. A grid search was performed to optimize 
the hyperparameters for each model. For the Elastic Net linear regression 
model, we optimized the hyperparameters for the α (range 0­200) and 
L1 ratio (range 0.0­1.0). For the random forest and gradient boost regres­
sors, we optimized the hyperparameters for the number of estimators 
(range 0­200), maximum depth (range 1­20), maximum features (range: 
auto, square root, log2), and maximum leaf nodes (range 2­20). In addi­
tion, we optimized the learning rate (range 0.0­1.0) for the gradient boost 
regressor.

Each model was validated using a group 5 outer­fold and 5 inner­fold 
nested cross­validation. By using group cross­validation, for each fold, we 
ensure that the participants in the validation are not also present in the 
training fold. While the data for all participants were used for the model­
ing, the cross­validation procedure was used for out­of­sample testing; 
hence, for each fold of the cross­validation procedure, only a subsample 
of participants’ data were used. Further, the random forest and gradient 
boost regressor models only consider a subsample of participants and 
features per decision tree node. The elastic­net linear regression penal­
ization would also reduce the potential features considered in the model. 
The cross­validation and models together would improve the generaliz­
ability and robustness of the models and therefore reduce the probability 
of spurious correlations.

We applied each of the feature selection strategies to each of the regres­
sion models and compared the results of each model. The model that 
provided the highest r2 (variance explained) and the lowest root­mean­
square error (rmse) was selected as the best­performing model. The r2 
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visits were predictive of tug. Figure 2 (bottom) illustrates the relationship 
between the predicted and actual tug times.

The multitask model achieved an r2 of 0.74 and an rmse of 1.89 for 
the fshD Clinical Score and tug prediction together. The same model 
achieved an r2 of 0.66 and an rmse of 1.97 for the fshD Clinical Score and 
an r2 of 0.81 and an rmse of 1.61 for the tug separately. The gradient boost 
regressor selected 50 predictive features. The relative feature importance 
is presented in Figure 3. The 5 most important features were light sleep 
duration, total steps per day, mean steps per minute, the number of times 
the social and communication apps were opened, and the number of 
incoming calls. Figure 4 illustrates the relationship between the predicted 
clinical scores and the actual clinical scores.

For each clinical score, we evaluated the effect of different monitor­
ing periods on the estimation of symptom severity. The best performing 
fshD Clinical Score single­task model, tug single­task model, and multi­
task model yielded the highest r2 on day 3 (0.70), week 2 (0.86), and day 
1 (0.86), and the lowest rmse on day 3 (2.8), week 2 (1.9), and day 6 (3.4), 
respectively. As seen in Figure 5, although our analysis has identified win­
dows that yielded the highest r2 and rmse, we found that the mean (sD) 
of the r2 and rmse for the fshD Clinical Score single­task model, tug sin­
gle­task model, and multitask model was 0.65 (0.03) and 3.37 (0.19), 0.79 
(0.05) and 2.05 (0.09), and 0.76 (0.08) and 4.37 (0.20), respectively. When 
evaluating the stability, the models trained on a week’s worth of data were 
used to estimate the symptom severity for subsequent days. We found 
that the fshD Clinical Score, tug, and multitask models achieved median 
r2 (median rmse) of 0.51 (3.66), 0.42 (2.44), and 0.72 (2.61), respectively (as 
seen in Figure 6).

Discussion
principal finDings

We developed and compared 2 regression models to monitor and esti­
mate fshD symptom severity outside the clinic with remote sensor data 

no body composition (eg, fat and muscle mass) data. As a result, the With­
ings body composition data (except weight) were excluded from the final 
analysis. We excluded sms text message–related features as not all the 
patients used sms text messaging (less than 30% of patients), and the sms 
text message features were not deemed clinically relevant. Further, we 
excluded smartphone apps from the analysis that were used by less than 
5% of the patients. We did not exclude any outliers as none of the data 
points were viewed as potential measurement errors. In a previous pub­
lication, we provided an overview of the proportion of observations that 
were missing per feature.15

The fshD Clinical Score for 24 participants did not change over the 
6 weeks. The scores of the remaining 14 participants changed by +1 or −1 
point. The average difference between the day 1 and day 42 tug scores 
was 0.38 seconds (95% CI 0.12­0.63). After reviewing the stability of the 
tug and fshD scores, we decided to use the averaged clinical assess­
ment scores as the outcomes for all models. Subsequently, each feature 
was also averaged over the 6 weeks. These averaged features were used as 
inputs for the regression models.

Using all 6 weeks of data, we built a single­task model that used the 
chDr more features to estimate the fshD Clinical Score for each partic­
ipant. Comparing the estimated scores and the true fshD Clinical Score 
yielded an r2 of 0.57 and an rmse of 2.09. This was achieved using vif­
selected features and Elastic Net–penalized linear regression. A total of 11 
features were predictive of the fshD Clinical Score, as seen in Figure 1. The 
features were related to app usage, blood pressure, location visits, and 
calling behaviors. Figure 2 (top) shows the estimated fshD Clinical Score 
in relation to the actual fshD Clinical Score.

Similarly, the comparison of the tug single­task model estimated tug 
and the actual tug yielded an r2 of 0.59 and an rmse of 1.66 (seconds) for 
each participant. This was achieved with forwarding selection stepwise 
regression and Elastic Net–penalized linear regression. In total, 13 feature 
were predictive of the tug score (Figure 1). The feature categories related 
to age, app usage, calling behaviors, sleep, physical activity, and location 
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severity and the complexity of the data set and model. However, given 
that the multitask model showed an important improvement over the sin­
gle­task models, we recommend using the multitask model for future esti­
mation of the fshD Clinical Score and tug.

It is critical to determine how much data are needed to obtain reliable 
inferences without burdening the patients and the clinicians. Insuffi­
cient data can lead to inaccurate extrapolations, whereas excessive data 
can lead to wasted time and resources. This study investigated how long a 
patient needs to be monitored to estimate symptom severity reliably. Our 
results demonstrated that behaviors exhibited that based on our sam­
ple, the optimal time window (based on the highest r2 and lowest rmse) 
varied for each task. The multitask model yielded the overall highest r2 
based on a training data set of the first day. Although we identified that 
5 days of data seem sufficient for training the multitask model, a longer 
or shorter time window would still provide consistent estimation of the 
symptom severity. However, our results also demonstrate that selecting 
any time window between days 1 and 14 would produce relatively stable 
results. Our results also demonstrated that training the multitask model 
on the first week of data allowed for constant and reliable estimations of 
symptom severity for the subsequent weeks. This further supports the 
notion that multitask should be used to estimate the clinical scores for 
longitudinal studies.

The agreement between the clinical scores and the remotely mon­
itored features did not achieve 100% adherence. This may be due to the 
sensors being unable to capture specific aspects of the clinical score. For 
example, features captured by the remote monitoring system may not 
provide sufficient proxies for arm, scapular, and abdominal weaknesses 
(which the fshD Clinical Score specifically addresses). Adding additional 
sensors and features could potentially allow for more complete model­
ing of fshD. For example, an additional accelerometer could try to capture 
arm swings 36 or detect the (limited) shoulder range of motion.37 Another 
explanation for the imperfect model fit is that the clinical scores have lim­
ited accuracy in capturing disease severity. There can be variation within 

to estimate the fshD Clinical Score and tug for each participant. For 
the first type of model, both clinical assessment scores were separately 
estimated using 2 single­task regression models. For the second type of 
model, both clinical assessment scores were simultaneously estimated 
using a multitask regression model.

The 2 single­task models selected features that were uniquely predic­
tive of each of the clinical scores. In addition, the models’ selected fea­
tures were found to be predictive for both scores (time spent at health 
locations and total call duration). Other studies have found that (a mod­
ified version of) the tug significantly correlated to the fshD Clinical 
Score,12,29 indicating that these clinical scores share mutual informa­
tion. Simultaneously estimating multiple tasks with shared features can 
improve the model performance.30-32 This supports the notion that a mul­
titask approach would improve the estimation of fshD symptom severity.

Indeed, the multitask modeling of both the fshD Clinical Score and the 
tug outperformed the single­task models. Additionally, the multitask 
model identified features not selected as important by the single­task 
models (eg, sleep and the resting heart rate). The clinical assessments and 
their respective single­task models only captured a limited range of dis­
ease symptoms, which misses the opportunity to model other aspects 
of the disease (eg, sleep impairments 33,34 and arrhythmic abnormali­
ties 35). The multitask model, however, identified features representa­
tive of a broader range of fshD symptoms. As shown in the shap (shap-
ley Additive exPlanations) plot (Figure 3), participants with a higher mean 
step per minute, light sleep duration, soft activity duration, and total steps 
(indicated by the red feature value) had lower shap values. This indicates 
that participants with more physical activity and better sleep quality had 
a lower fshD Clinical Score and tug. Although the multitask model out­
performed the single­task models, the multitask model required approx­
imately twice as many features as the single­task models. Using fewer 
features could be considered beneficial as it reduces the number of sen­
sors needed. Additionally, it eases the interpretation of the results. There­
fore, there is a tradeoff between the performance of estimation of disease 
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clinicians’ assessments of a patient’s status during a clinical trial based 
on the review of the patient’s in­clinic assessments and out­of­clinic daily 
activity.

We present an fshD tool that estimates the fshD Clinical Score and tug 
using smartphone and remote sensor data. The conclusions drawn from 
this study are preliminary in view of the relatively small sample size and 
cross­sectional study nature. Given the short observation period, we did 
not expect changes in the patients’ fshD scores. As a result, we could not 
validate the use of the model to estimate changes in the fshD severity 
over time. A trial where the fshD clinical score is expected to change could 
help validate the fshD tool’s capacity to detect changes in fshD symptom 
severity. Additionally, the fshD tool could be improved by including more 
patients with fshD and adding other remote sensors. All in all, the remote 
monitoring approach presented here could be a promising tool for moni­
toring fshD severity outside the clinic environment.

Conclusions

We presented a smartphone­based and remote sensor–based fshD tool 
that can estimate a patient’s fshD symptom severity. This is the first study 
to demonstrate how to monitor patients with fshD remotely and subse­
quently model their fshD Clinical Score and tug simultaneously. The tool 
holds potential for monitoring disease progression and drug intervention 
effects outside the clinic, pending a longitudinal follow­up study to vali­
date the capacity of the fshD tool to detect changes in the disease severity 
score over time due to disease progression or drug intervention.

a specific clinical score, as patients with the same scores may exhibit dif­
ferent fshD symptoms. For example, patients with scores between 2 
and 4 may have impairments related to facial muscles and upper limbs, 
whereas others may be unable to walk on their heels.11

The clinical scores provide snapshots of muscular strength and func­
tion, whereas the remote monitoring approach provides a more contin­
uous measure of (fshD­related) social and physical activity. Additionally, 
the clinical scores were assessed at the clinic, whereas the sampling of the 
remotely monitored features occurred at home, and in daily practice. Alto­
gether, these 2 clinical scores may not be the optimal clinical assessment 
strategies for fully assessing fshD symptom severity. These are only 2 of 
several fshD­related assessments that can be used in a clinical trial. The 
remotely monitored features may show different correlations with other 
fshD­related assessments such as the Clinical Severity Scale for fshD 38,39 
and the Pittsburgh Sleep Quality Index.39,40 Although the remotely mon­
itored features may not correlate strongly with the 2 clinical scores, they 
still provide relevant insights into fshD­related symptoms. Our multitask 
model could prove to be a promising tool for monitoring the fhsD severity 
based on patients’ everyday activities outside the clinic.

Although the models cannot replace the tug or fshD Clinical Scores for 
estimating the disease severity, these models can potentially be used as 
a (complimentary) tool in clinical studies. When validated in longitudinal 
studies, given the continuous sampling of data from multiple sensors, this 
fshD tool could potentially be used to track the symptom severity for long 
periods of time without patients having to visit a clinic. Previous studies 
have demonstrated that this approach of using smartphone­based mod­
els to quantify medication responses can be advantageous.37,38 When 
implemented in a clinical trial, the fshD tool might be evaluated as a 
tool to monitor drug effectiveness by tracking drug­induced changes in 
fshD symptom severity.41 Additionally, it might enable the identifica­
tion of improvements in specific aspects of the disease severity (e.g., mus­
cle function or sleep quality). Therefore, remote monitoring might aid 
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table 1 An overview of characteristics of the FShD participants (N=38).

Demographics Values
genDer, n

Female 23

Male 15
race, n

African American ­
Mixed 1
White 37

Age (years), mean (sD) (minimum, maximum) 44 (14.5) (18, 64)
Weight (kg), median (sD) (minimum, maximum) 79 (16) (52, 130)
Bmi (kg/m2), median (sD) (minimum, maximum) 25 (4) (20, 44)
fshD Clinical Score, median (sD) (minimum, maximum) 5 (3) (1, 13)
Timed Up and Go test (seconds), median (sD) (minimum, maximum) 7.7 (2.4) (5.5, 15.8)

table 2 A simplified summation of how the features were aggregated based on the data type.

Data Type Time Unit Example  
Feature

Aggregation 
Format

Example Aggregation

count Per day
Per hour

Steps Sum
Mean
Max

Total Steps
Max Steps Per Hour
Mean Steps Per Hour

continuous 
Data Within  
a range

Per day Heart Rate Min (5%)
Median 
(50%)
Max (95%)

Lowest 5% Heart Rate
Median Heart Rate
Maximum 95% Hr

Duration Per day App Usage Total Dura­
tion
Mean Dura­
tion

Total Duration of Social Apps Opened
Mean Duration of Social App Use Per Interaction

gps  
coorDinates

Per day Location Sum
Max
Mean

Total Distance Travelled
Mean And Max Distance From Home
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figure 1 Linear regression coefficients for the features selected by the single-task FShD Clinical Score 
and tUG models. Features with a coefficient of zero are not shown. 

FSHD: facioscapulohumeral muscular dystrophy; TUG: Timed Up and Go.

table 3 An overview of the features provided from the MOre platform and the features that were 
subsequently aggregated per day (with the exception of the body measurements as that was measured 
once a week).

Category more Features Derived Features (Per day) Excluded Fea-
tures

Demo-
graphics

Age
Gender

Age
Gender

accelera-
tion

Acceleration magnitude
Gyroscope
Magnetometer

98% Acceleration magnitude Mean  
Acceleration 
Magnitude

activitY Steps
Heart Rate
Physical activity  
duration
Calories

stePs: Total steps, max steps per hour, mean steps 
per hour heart rate: 5%, 50% & 95% beats per 
minute (BPMs), standard deviation of BPMs, % time 
spent in resting state Physical activity: soft, 
moderate and intense activity duration

Calories
Distance  
Travelled
Distance Per 
Step

apps app categories:
Health & Fitness,  
Recreational,  
Communication &  
Social, Tools, Shopping

Duration
Times Open

House & Home
Libraries & 
Demo
Reading
Travel

BoDY Diastolic Blood Pres­
sure
Systolic Blood Pressure
 Heart Pulse (Bpm) 
Weight 

Diastolic blood pressure
Systolic blood pressure
 Heart pulse (bpm) 
Weight 

Height (M) 
Fat mass (kg) 
Fat ratio (%) 
Hydration 
Muscle Mass 

location location categories:
Commercial, Health, 
Home, Leisure, Public, 
Social, Travel

Total duration at place 
Total distance travelled
Total no of unique places visited
Max distance from home
Time spent commuting 

social Calls
Voice

Number of calls
Number of unique numbers
Number of incoming, outgoing and missing calls
Number of calls from known & unknown numbers
Total duration of calls
Average duration of calls
% Time human voice is detected

Text messages 
(sms)

sleep Number of sleep sessions
Total sleep duration
Number of sleep phases (awake, light sleep and 
deep sleep)
Duration of sleep phases (awake, light and deep 
sleep)
Time between sleep sessions
Time to fall asleep 
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figure 3 Shap (Shapley Additive exPlanations) variable importance plot showing the feature 
importance of the top 20 most important features, in which the features are ranked in descending order. 
Each scatter point represents one prediction. The color of the scatter point reflects the value of the real 
data. If the actual value of the data point was high, then the color was red. If the value was low, then 
the color was blue. The Shap value, as illustrated on the x-axis, shows the direction and magnitude of 
each feature’s contribution toward predicting the facioscapulohumeral muscular dystrophy symptom 
severity.

figure 2 True FShD Clinical Scores and tUG times against the predicted scores using the respective 
FShD Clinical Score and tUG regression models. The lines represent a regression line with a 95% CI band. 

FSHD: facioscapulohumeral muscular dystrophy; TUG: Timed Up and Go.
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figure 4 Scatterplot of the estimated FShD Clinical Scores and tUG times in relation to the actual 
FShD Clinical Scores and tUG using the multi-task learning regression model. The lines represent the 
regression lines with a 95% CI band. 

FSHD: facioscapulohumeral muscular dystrophy; TUG: Timed Up and Go.

figure 5 Evaluating the performance of the single-task FShD Clinical Score, tUG, and the multitask 
FShD Clinical Score and tUG regression models trained on an incrementally increasing time window. The 
colored lines represent the 3 types of regression models trained on the data (Elastic Net, Random Forest 
Regressor, and Gradient Boosting Regressor). For each model and each incremental time window, the 
top and bottom plots show the r2 and rMSe, respectively. The lines represent the median performance, 
and the bands represent the 95% CI. 

FSHD: facioscapulohumeral muscular dystrophy; RMSE: root mean square error; TUG: Timed Up and Go.
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figure 6 Evaluating the performance of the single-task FShD Clinical Score, tUG, and the multitask 
FShD Clinical Score and tUG regression models trained on the first week of data to estimate symptom 
severity for the subsequent weeks. The colored lines represent the 3 types of regression models trained 
on the data (Elastic Net, Random Forest Regressor, and Gradient Boosting Regressor). For each model 
and each week, the top and bottom plots show the r2 and rMSe respectively. The lines represent the 
median performance, and the bands represent the 95% CI. 

FSHD: facioscapulohumeral muscular dystrophy; RMSE: root mean square error; TUG: Timed Up and Go.
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Introduction

An ideal biomarker would serve as a dynamic indicator of disease activity. 
The biomarker should be capable of predicting changes in disease pro­
gression over time, regardless of the treatment intervention.1,2 By lever­
aging advanced machine learning algorithms, researchers can integrate 
multiple objective biomarkers into composite biomarkers, enabling a 
more comprehensive and multifaceted understanding of disease activ­
ity and the impact of treatment interventions. Drug development for the 
treatment of depression is expected to benefit greatly from robust bio­
markers that reflect the etiology, phenomenology, and treatment man­
agement of the disorder. Depression is not only associated with subjec­
tive symptoms such as sadness, despair, and anhedonia, but also with 
negative behavioral and neurovegetative effects such as decreased psy­
chomotor activity and changes in appetite and sleep. A combination of 
objective physiological indicators and frequent subjective assessments 
can potentially be used as features to create a composite biomarker to 
estimate the presence or severity of depression, or even to quantify the 
effects of therapeutic interventions with drugs and/or psychotherapy.

The current gold standards for assessing depression severity and treat­
ment effects, such as the Hamilton Depression Rating Scale (hamD) and 
the Montgomery & Åsberg Depression Rating Scales (maDrs), are clini­
cian­administered questionnaires.3,4 As these questionnaires require an 
interview with a clinician, they are applied infrequently, and thus real­time 
behavioral assessments of depressed individuals cannot be obtained.5 Fur­
ther, retrospective self­reported appraisals can be compromised by recall 
bias and altered by socially desired reporting from patients.6,7 By relying 
on the current gold standards for the assessment of depression severity, 
researchers routinely miss out on real­time and real­world behavioral pat­
terns associated with depression, which may potentially attenuate treat­
ment effects. To address such limitations, there is a demand for developing 
and validating methodologically sound biomarkers to quantify depression 
severity in real­time under free­living conditions.

Abstract

Drug development for mood disorders can greatly benefit from the devel­
opment of robust, reliable, and objective biomarkers. The incorporation 
of smartphones and wearable devices in clinical trials provides a unique 
opportunity to monitor behavior in a non­invasive manner. The objec­
tive of this study is to identify the correlations between remotely moni­
tored self­reported assessments and objectively measured activities with 
depression severity assessments often applied in clinical trials. 30 unipo­
lar depressed patients and 29 age­ and gender­matched healthy controls 
were enrolled in this study. Each participant’s daily physiological, physi­
cal, and social activity were monitored using a smartphone­based appli­
cation (chDr more) for 3 weeks continuously. Self­reported Depression 
Anxiety Stress Scale­21 (Dass-21) and Positive and Negative Affect Sched­
ule (panas) were administered via smartphone weekly and daily respec­
tively. The Structured Interview Guide for the Hamilton Depression Scale 
and Inventory of Depressive Symptomatology–Clinical Rated (sighD-
iDsc) was administered in­clinic weekly. Nested cross­validated linear 
mixed­effects models were used to identify the correlation between the 
chDr more features with the weekly in­clinic sighD-iDsc scores. The 
sighD-iDsc regression model demonstrated an explained variance (r2) of 
0.80, and a Root Mean Square Error (rmse) of ±15 points. The sighD-iDsc 
total scores were positively correlated with the Dass and mean steps­per­
minute, and negatively correlated with the travel duration. Unobtrusive, 
remotely monitored behavior and self­reported outcomes are correlated 
with depression severity. While these features cannot replace the sighD-
iDsc for estimating depression severity, it can serve as a complementary 
approach for assessing depression and drug effects outside the clinic.
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a highly variable and heterogenous disorder;2 thus, an effective depres­
sion biomarker should consistently correspond with the heterogenous 
changes in depression over time. While the advances of remote sensing 
can provide researchers with fine­grain longitudinal datasets, it can be 
operationally and financially burdensome for patients and researchers to 
collect, store, and process such expansive and information­dense datas­
ets. Therefore, evaluating how much data is required to identify the ear­
liest, reliable, and minimally observable changes in the patients’ clinical 
status is crucial. This evaluation is necessary to minimize the impact of 
data collection on both the patients and researchers.

The current study consisted of two research objectives. First, we inves­
tigated the correlation of clinical ratings of depression, among unipo­
lar depressed patients and healthy controls, with remotely self­reported 
psychometric assessments and smartphone­ and wearable­based fea­
tures. Here, we defined features as individual measurable variables, such 
as average heart rate or total steps. Second, we examined how many data 
points are required to develop a reliable statistical model that can con­
sistently estimate the longitudinal variability of depression. The primary 
objective allows for the identification of reliable and clinically relevant 
depression biomarkers that can be monitored continuously in real­world 
conditions. The secondary objective focuses on the validation of a mini­
mum dataset required to maintain the accuracy, sensitivity, and spec­
ificity of the biomarkers. To achieve these objectives, we adopted linear 
mixed effects models to estimate the weekly Structured Interview Guide 
for the Hamilton Depression Scale and Inventory of Depressive Symptom­
atology (sighD-iDsc) clinician ratings using one, two, and three weeks of 
remotely collected data. Together, such correlated features can poten­
tially represent a composite digital mhealth biomarker for monitoring 
depression severity in longitudinal clinical trials.

Mobile health (mhealth) biomarkers are biomarkers derived from mobile 
health technologies, such as smartphones, wearables, and other porta­
ble devices that can be worn outside a controlled setting.8 Emerging lit­
erature on depression and mhealth biomarkers supports the notion that 
smartphones and wearable devices can overcome the limitations of tra­
ditional depression rating scales. The sensors embedded in these devices 
(e.g., accelerometers, Global Positioning Systems (gps), and micro­
phones) provide real­time, unobtrusive, passively collected data relat­
ing to behavioral patterns exhibited under free­living conditions.9–13 In 
turn, these data can offer insights into an individual’s sleep rhythms,14 
social interactions,15 and daily physical activities,16 all of which can be 
useful for quantifying depression severity. While the existing body of evi­
dence demonstrates that these digital mhealth biomarkers can be used 
to identify the presence of depressive symptoms or the estimation of daily 
mood, however, there are still three major critical gaps that remain to be 
understood. First, several studies in this field have relied on self­reported 
psychometric assessments, such as the Depression Anxiety and Stress 
Scale (Dass), the Positive and Negative Affect Schedule (panas), and 
Quick Inventory of Depressive Symptomatology (QiDs), for document­
ing depression severity.17,18 To date, we have only identified two studies 
that correlated digital mhealth biomarkers sourced from smartphone 
and wearable data with clinician’s assessment of depression among uni­
polar depressed patients.19,20 Therefore, more evidence is required for 
corroborating the clinical validity of these remotely monitored biomark­
ers in depression clinical trials. Next, these studies rarely include age­ or 
sex­matched non­depressed controls. Healthy controls can also present 
behaviors and symptoms observed among depressed patients.21 Observ­
ing behaviors exhibited by both depressed and non­depressed controls 
enables the identification of behaviors specific to depressed patients. 
This allows for the discovery of new candidate drugs that target the core 
symptoms of unipolar depression. Lastly, determination of the optimal 
monitoring period and data resolution needed for developing depres­
sion biomarkers has been overlooked in previous studies. Depression is 
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if they presented specific psychiatric co­morbidities (psychotic disorder, 
bipolar disorder, mental retardation, or cluster B personality disorders), 
presented a Columbia­Suicide Severity Rating Scale (c-ssrs) greater than 
5, alterations of antidepressant drug (including dose) during the trial 
period or use of sedative medications within 2 weeks of the beginning of 
the clinical trial. This was confirmed by their general practitioner, psychol­
ogist, or psychiatrist.

Eligible healthy controls were included if they had no previous or cur­
rent history (or family history) of psychiatric disorder or chronic co­mor­
bidities. Healthy controls were age and sex­matched with the mDD and 
pDD patients.

Participants received monetary compensation for their time and effort. 
The reimbursement was determined by a schedule approved by the Eth­
ics Committee and was based on the amount of time the participants had 
to spend participating in the study. This compensation was not linked to 
the quantity or quality of the data obtained.

chDr more anD Withings Devices

On Day 0 of the trial, the chDr more,23,24 Withings Healthmate,25 and 
chDr Promasys epro smartphone applications were installed on the par­
ticipant’s Android smartphones. The participants were also provided 
with a Withings Steel hr smartwatch. Training sessions were provided for 
the Withings devices and the Promasys epro application. All participants 
were monitored for 21 days continuously.

The chDr more app enables the unobtrusive collection of data from 
multiple smartphone sensors (the accelerometer, gyroscope, Global 
Positioning System, and microphone) and the smartphone usage logs 
(app usage and calls). The Withings Healthmate app collects data from 
the Withings devices provided to the participants. The Steel hr smart­
watch monitors the participants heart rate, sleep states, and step activity. 
The epro app prompted participants to fill in the Positive and Negative 
Affect Schedule (panas) twice daily and Depression, Anxiety and Stress 
Scale­21 (Dass-21) weekly. panas is a validated self­reported, brief and 

Methods
stuDy overvieW

This was a cross­sectional, non­interventional pilot study conducted by 
Centre for Human Drug Research (chDr) and Transparant Centre for Men­
tal Health in Leiden, The Netherlands. The participants were monitored 
between March 2019 to March 2020. Prior to any assessments, patients pro­
vided written informed consent. The trial was approved by the Stichting 
Beoordeling Ethiek Biomedisch Onderzoek ethics committee, Assen, the 
Netherlands, and was conducted in accordance with the Declaration of 
Helsinki at the Centre for Human Drug Research, Leiden, the Netherlands.

participants

Eligible patients and healthy controls were between the ages of 18­65 
years old and had a Body Mass Index (Bmi) between 18 to 30 kg/m.2 
Patients and healthy controls with severe coexisting illnesses that might 
interfere with study adherence or pregnant were excluded. Patients and 
healthy controls were required to use their own Android smartphone (ver­
sion 5.0 or higher) as the chDr more app was only available on Android 
App Store. Due to the Apple operating systems restrictions, the iPhone 
user device logs could not be accessed by the app.

Eligible patients had either a diagnosis of Major Depressive Disor­
der (mDD) without psychotic features or Persistent Depressive Disorder 
(pDD) according to the Dsm-iv (Diagnostic and Statistical Manual of Men­
tal Disorders) or Dsm-v. The diagnosis was provided by an attending gen­
eral practitioner, psychologist, or psychiatrist and was confirmed with 
the Mini International Neuropsychiatric Interview (mini) version 7.0. To 
be included in the study, each patient must have had a Structured Inter­
view Version of Montgomery­Åsberg Depression Rating Scale (maDrs-
sigma) score of more than 22 at screening. Further, the patients either 
received no antidepressant drug treatment at least 2 weeks prior to 
screening, or they were receiving an antidepressant drug treatment with a 
stable dose for at least 4 weeks prior to screening. Patients were excluded 
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collected from smartphones and wearable devices, into clinically relevant 
features. As illustrated by Mohr et. al, raw sensor data can be converted 
in low­level features and high­level behavioral markers.34 These features 
and behavioral markers can be used to identify a clinical state or disorder. 
Low­level features represent descriptive activities, such as time spent at 
home and total calls per day. High­level behavioral markers can reflect 
cognition (e.g., distractibility), behaviors (e.g., social avoidance), and 
emotions (e.g., depressed mood), which can be measured or estimated 
by the low­level features. For this study, we developed low­level features 
(e.g., total number of steps per day) that we correlated directly with the 
clinical state (i.e., depression severity) and to create high­level behavioral 
markers (e.g., mood) that could be correlated with the clinical state (as 
described in Supplementary Table 2).

In Table 1, we defined the high­level behavioral markers as sigh-iDsc 
symptom dimensions. The categorizations were manually grouped based 
on their conceptual similarities. In total, the authors created 15 dimen­
sions relating to Agitation, Anxiety (Psychic), Anxiety (Somatic), Guilt, 
Hypochondria, Interpersonal relationships, Mood, Retardation, Sex, 
Sleep, Somatic (General), Somatic (Gastrointestinal), Suicidal Ideation, 
Weight, and Work. In addition, the authors defined global dimensions as 
the total scores of sigh-D, iDs-c, and sighD-iDsc (the sigh-D and iDs-c 
combined) individually.

data Pre-Processing All data were inspected and preprocessed 
using Python (version 3.6.0) and the Pyspark (version 3.0.1) library. Raw 
data were inspected for missing data, outliers, and normality by the 
authors AZ and RJD. Missing data were defined as the absence of data for 
periodic features on a given day or given week (e.g., weight, blood pres­
sure, and the Dass). No missing data definition was provided for the ape­
riodic activities (e.g., phone calls) as there was no method to distinguish 
between missing data or no activity. As we used weekly aggregates for the 
modelling (for more information see p. 154:  Feature engineering), miss­
ing values were not imputed. The advantage is that when missing data are 

easy to administer, 20­item questionnaire that assess positive and nega­
tive affect.26 Dass-21 is a validated self­reported, 21­item measure of three 
negative emotional states: Depression, Anxiety and Stress.27,28 More infor­
mation about the apps and their respective sensors and features can be 
found in Supplementary Table 1.

clinical assessments

The Structured Interview Guide for the Hamilton Depression Scale and 
Inventory of Depressive Symptomatology (sighD-iDsc) assessments 
were conducted weekly (Day 7, 14, and 21) for all participants in­person 
at chDr by trained raters. The sighD-iDsc is a single and multi­faceted, 
and therefore efficient, assessment of depression. The sighD-iDsc inter­
view is a combination of the 17­item Hamilton Depression Rating Scale 
(sigh-D) and the 30­item Inventory of Depressive Symptomatology­Clini­
cian Rated (iDs-c).29,30 The sigh-D assesses single symptoms on a contin­
uous scale. It is a multidimensional scale that assesses a profile of factors 
relating to agitation, anxiety (psychic and somatic), guilt, libido, suicide, 
work, and interest.31 However, the 17­item scale is still limited in terms 
of scope. Some symptoms which are often associated with depressed 
behaviors (such as hypersomnia, weight gain, and reactivity of mood) 
are not rated.32 The iDs-c provides additional ratings relating to anxiety, 
anhedonia, mood, cognitive changes, and vegetative symptoms (relat­
ing to sleep, appetite, weight, and psychomotor changes).32 Hence, we 
included the iDs-c as a complementary assessment to provide a broader 
assessment of depressive symptomatology. iDs-c has been shown to 
have a higher sensitivity to detect changes in depression severity, there­
fore deeming it more advantageous for monitoring changes in symptom 
severity, especially for depression­related drug trials.33

sighd-idsc dimensions For this study, we investigated the corre­
lation between the remotely monitored features with the total depres­
sion severity scores (sighD-iDsc) and the scores of individual symptom 
dimensions. Multiple approaches can be taken to transform the raw data, 
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would increase the interpretability of the final statistical models.36 Typ­
ically, domain knowledge plays a pivotal role in selecting the most rele­
vant features. However, domain knowledge may not be sufficient when 
dealing with a multi­dimensional dataset. Hence, automatic feature selec­
tion techniques can be used to remove features that are highly correlated, 
exhibit low variance, or provide a limited amount of information about the 
dependent variable.37,38 Prior to the feature selection, 61 features were 
provided by the chDr more and epro platform (as seen in Supplementary 
Table 2). The number of features was reduced in a two­step approach. First, 
we used domain knowledge to eliminate features. We visually inspected 
features to remove features which exhibited a high degree of missing data 
(e.g., if the majority of subjects had missing values or had no data) or had 
limited clinical relevance (e.g., time spent on the ‘comics’ apps category 
was deemed irrelevant). Second, we used and compared three automated 
feature selection techniques: Correlation­based Feature Selection,39 Vari­
ance Thresholding,40 and Variance Thresholding in combination with Vari­
ance Inflation Factor (VIF).41 Each feature selection technique was used to 
select a subset of relevant features (based on the weekly aggregated fea­
tures) and these features were subsequently fitted to the regression mod­
els (see section Statistical Analysis).

Statistical analysis

estimation of siGhD-iDsC r (version 3.6.2) was used for statistical 
analysis. While the Pearson’s correlations are typically employed to esti­
mate the correlation coefficient between two outcome variables, corre­
lation coefficients in longitudinal settings (with possible missing values) 
cannot be obtained with this approach. Hence, we used Linear Mixed­
Effects models (lmm) to account for the between­ and within­subject vari­
ation over time.

We compared the lmm from the lme4 R package4243 and the generalized 
linear mixed models with L1­penalization from the glmmlasso r pack­
age.44 The glmmlasso models allow for further feature selection by reduc­

limited to a small number of observations, we can still achieve a compre­
hensive analysis with incomplete data without adjustment. The disadvan­
tage is that if participants were missing several days of data within one 
week, then the weekly aggregate would be biased towards days contain­
ing data. Outliers were removed if they were deemed illogical and impos­
sible (such as walking more than 70,000 steps per day). Log­ or square 
root­transformation was applied if the distribution of the feature was not 
normally distributed.

feature engineering

The features were provided by the Withings devices and chDr more app 
at different sampling frequencies (varying from each interaction to every 
10 minutes). Feature engineering is the process of selecting and trans­
forming features from raw data to extract and identify the most informa­
tive set of features. These engineered features represent a summarized 
measure of the collected data. For this study, cumulative parameters, 
such as step count, were summated per day per subject. Averaged fea­
tures, such as the heart rate (average beats per minute), which was pro­
vided every 10 minutes, were averaged per day per subject. Supplemen­
tary Table 1 illustrates how all the features were aggregated for each data 
type. The design of these features was based on available data provided 
by the smartphone and wearable devices, and on a previous published 
study that had a similar protocol.35

sighD-iDsc scores represent the depression severity over the last 
week. To create a dataset that is representative of activity over the last 
week, we transformed the daily activities into weekly averages. Hence, 
each patient and control had three data points, each point representing 
an average day in a single week. We have defined a ‘week’ as 6 days prior 
to the sighD-iDsc assessment and the day of the sighD-iDsc assessment.

feature selection

Feature selection is the process of identifying relevant features that can 
be used for model construction. The elimination of irrelevant features 
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data was used for model training, while the remaining 20% was used for 
model validation. For each loop, all features were standardized (by scaling 
to the unit variance after subtracting the mean), using the training data 
only. The 80% training data in the outer loop was used for the train and 
test split in the inner loop. By using stratification, each dataset split had 
the same distribution of patients and controls in each fold. This approach 
mitigates the risk of biased model evaluation due to class imbalance. The 
limitation of nested cross­validation is that the validation procedure gen­
erates a model for each outer­fold. For this study, we reported the average 
r2 and rmse (Root Mean Square Error) of the 100 outer­fold models. The 
r2 represents the percentage of variance that is explained by the remotely 
monitored features. The rmse represents the standard deviation of the 
error between the true depression severity scores from the predicted 
depression severity scores.

Training LMMs with 1,2, and 3 weeks of data

For the secondary objective, we examine the impact of the number of 
data points used to train the model would affect the model performance. 
To do so, we trained the regression models on the first week, the first two 
weeks, and three weeks of data. Here, we assume that an individual’s 
week­to­week behavior is habitual and therefore one week of data would 
constitute a minimally sufficient dataset for model building. We adopted 
a weekly aggregation approach for each model, where the data were 
aggregated on a weekly basis. Specifically, for the week 1 model, we had 
one aggregated weekly observation per subject. As for the week 2 mod­
els, we expanded the observations to two aggregated weekly data points 
per subject. For the training of the lmms, the dependent variable was the 
sighD-iDsc scores for each week. For the evaluation of the model for the 
hold­out dataset, the dependent variable was the sighD-iDsc for the 
third week of data (as shown in the Supplementary Figure 1). As shown in 
the Supplementary Figure 1, we validated the performance of the models 
using a hold­out validation dataset consisting of the third week of data. 

ing the weight of irrelevant features to zero.45 As seen in Equation 1, each of 
the employed lmms included a subject­specific random effect to account 
for the intra­subject correlations between the dependent and indepen­
dent variables. All other variables were included as fixed effects. No inter­
action terms were included in the model as we already had more unique 
features than unique participants, adding more interaction terms would 
only increase the complexity of the model, as observations within partic­
ipants may be autocorrelated. To assess if model assumptions were met, 
each model was visually inspected using quantile­quantile (Q-Q) plots.46

equation 1 Depression severity linear mixed effects model. Y is the vector that represents 
the weekly depression scores. X is the fixed effects design matrix, which includes columns for 
the intercept and the features. Z is the random effects design matrix, which includes columns 
for the subject-specific random effects. β and b represent the vectors for the fixed effects 
and subject-specific random effects coefficients respectively. ε represents the vector of the 
Independent and Identically Distributed (I.I.D.) error terms. 

Y = X β + Zb + ε
While a lmm of the sighD-iDsc total score would provide a broad assess­
ment of depression severity, lmms of the sighD-iDsc dimension scores 
would provide insights into an individual’s depression symptom pro­
file. In total, we developed 18 lmms, one for each of the global dimen­
sion scores, sigh-iDsc total score, sigh-D total score, iDs-c total score, 
and one for each of the sigh-iDsc symptom dimensions scores (as seen 
in Table 1). We did not develop a lmm for the insight dimension as there 
was no variation in this assessment during the study period and only one 
participant had a score of one (the remaining participants had a score of 
zero).

All lmms were validated using a repeated nested stratified shuffle split 
100 outer­fold (and 50 inner­fold) cross­validation. Cross­validation is a 
resampling method to assess the generalizability of a statistical model.47 
Nested cross­validation consists of having two non­overlapping cross­val­
idation layers. The inner cross­validation loop optimizes the model con­
figuration, and the outer cross­validation loop assesses the performance 
of the model generated in the inner loop.48 In each outer loop, 80% of the 
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the Dass, our expectation was to receive 4 responses per person, total­
ing 236 responses. However, we received only 196 responses, resulting 
in an 83% completion rate. Similarly, for the panas, we anticipated 42 
responses per person, amounting to a total of 2478 responses. However, 
we obtained 1585 responses, indicating a completion rate of 66%. We 
found that 64% of the 61 features had no outliers, 29% of the features (con­
cerning 15% of the participants) had one outlier, and the remaining 5% of 
the features (concerning 5% of the participants) had two outliers.

Performance of lmms Among the different feature selection meth­
ods and lmms used, the Variance Thresholding in combination with the 
lmm consistently yielded the highest r2 and lowest rmse across all the 
dependent variables. Hence, we only reported the results of these Vari­
ance Thresholding lmm depression severity models. When including both 
the healthy controls and the patients, the sigh-D, iDs-c, and sighD-iDsc 
lmms achieved an r2 of 0.80, 0.80, and 0.73 and a scaled rmse of 5.3, 9.9, 
and 15.1 respectively. Table 2 provides an overview of the performance of 
the 18 sighD-iDsc dimension lmms. The lmms with the highest r2 were the 
sighD-iDsc dimensions related to mood (0.72) and work (0.65). While the 
lmms with the lowest r2 were the sighD-iDsc dimensions related to retar­
dation (0.40) and hypochondria (0.40). Supplementary Table 1 highlights 
the advantages of including healthy controls in the lmms. When examin­
ing the predictive performances separately for patients and healthy con­
trols, it is observed that the r2 and rmse are lower compared to when 
they are combined. However, it is important to note that the overall pre­
dictive performance may still be valuable in both cases.

correlations For each of the lmms, we identified the correlation coef­
ficients and their significance between the remotely monitored features 
and the depression severity scores. As seen in Figure 2, there was a sig­
nificantly positive correlation between the mean sigh-D total score with 
the Dass­Anxiety and Dass­Stress (p<.05). Both the iDs-c and the sighD-
iDsc total scores were significantly positively correlated with the Dass­

To ensure that there was no data leakage between the training and vali­
dation datasets, we used 70% of the participants for the training dataset, 
and the remaining 30% for the validation dataset. The dataset was strati­
fied based on the depression symptom severity to ensure that the popu­
lation distribution was the same in each training and validation datasets. 
To assess the generalizability of the regression models, we applied 100 
outer­fold (50 inner­fold) nested cross validation, with each of the inner­
folds creating the optimal regression models based on the training datas­
ets and outer­folds consisting of the third week validation dataset.

Discussion

ParticiPant characteristics 30 patients and 29 healthy con­
trols were enrolled in the study. Data was collected between March 
2019 to March 2020. Supplementary Table 3 provides an overview of the 
demographic characteristics of the enrolled patients and healthy con­
trols. In total, 177 sighD-iDsc total scores were collected (3 weeks for 
all 30 patients and 29 healthy controls). The last healthy control was not 
included due to the coviD-19 lockdown.49 The patients had a mean maDrs 
total score of 29 (and standard deviation of ± 3.5), and maDrs was not col­
lected for the healthy controls as it was only used to screen the unipolar 
depressed patients. The patients had a mean sigh-D total score of 14.5 (± 
4.5) and a mean iDs-c total score of 30.5 (± 8.5). The healthy volunteers had 
a mean sigh-D total score and iDs-c total score of 1 (± 2) and 1(± 3) respec­
tively. Figure 1 illustrates the distribution of the sighD-iDs, sigh-D, iDs-c, 
and sighD-iDsc symptom dimensions total scores for both the patients 
and healthy controls.

data quality To assess the quality of our data, we examined the num­
ber of days, features, and participants with missing data. In Supplemen­
tary Table 4, we found that most of the missing data were from the sleep 
and location features, however the percentage of missing days were less 
than 5% of the days and related to 12% of the participants. In the case of 
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aggregated features used in the analysis (Supplementary Table 4). Given 
the low number of missing data and outliers, we did not observe any dif­
ferences in data quality between the depressed patients and controls. 
While we could not identify any similar trials to compare data quality, we 
deem that our protocol led to the collection of a robust and reliable data­
set. However, the aggregation of the data undermines the opportunity 
to identify potentially nuanced daily behaviors and higher order interac­
tions between multiple features. For example, social and physical activ­
ity behavior most likely differs per location and between weekdays and 
weekends, but these daily interaction features are not reflected in the cur­
rent dataset. The identification of higher order behavioral patterns or rou­
tines per location and per day could enrich the sensitivity of the compos­
ite biomarkers.

estimation of the sighd-idsc Our findings indicate that a combi­
nation of remotely monitored self­reported and objective features can 
serve as a composite biomarker to estimate weekly depression severity. 
We found our approach was better suited for evaluating the global dimen­
sions (sigh-D, iDs-c, and sigh-iDsc total scores), rather than the manually 
defined sighD-iDsc symptom dimensions, such as mood, weight, or sex 
(Table 2). The symptom dimension models were a moderate to strong rep­
resentation of work, somatic (general), interpersonal, anxiety (psychic) 
and mood dimensions and a poor representation of the hypochondria 
and retardation dimensions. This illustrates that the features obtained 
correspond to some but not all the sighD-iDsc dimensions. One explana­
tion for the limited agreement between the remotely monitored biomark­
ers and the sighD-iDsc dimensions is the comparison of objective mea­
sures with subjective assessments. For example, we compared objective 
sleep measurements (such as sleep duration, and the number of light 
and deep sleep periods) to the subjective interpretations of sleep qual­
ity by the patient or the clinician as reflected in the sighD-iDsc. Despite 
having several objective measures relating to sleep, we found that the 
sleep model captured less than half of the variance. Previous studies have 

Depression, Anxiety, and Stress total scores and significantly negatively 
(p<.05) correlated with the mean steps­per­minute and time spent travel­
ling. We found that the Depression, Anxiety, and Stress total scores (from 
the Dass) and location features were significantly correlated with 7 (Agita­
tion, Anxiety (Psychic), Anxiety (Somatic), Guilt, Interpersonal, Mood and 
Sex) and 6 (Agitation, Anxiety (Psychic), Guilt, Hypochondriasis, Retarda­
tion, and Sex) of the mean sighD-iDsc symptom dimensions respectively.

training lmms with 1,2, and 3 weeks of data Overall, we found 
that training the models on three weeks of data consistently yielded the 
highest r2 and the lowest rmse for each of the sighD-iDsc global and 
symptom dimensions compared to the models trained on the first week 
and first two weeks of data with the exception one dimension, Agitation 
(as seen in Figure 3). For the Agitation dimension, the models trained on 
the first two weeks of data yielded the highest r2. The difference in r2 
between the first week and the third weeks models was relatively mar­
ginal (a difference of 0.07) for the sighD-iDsc global dimension. However, 
the difference in the scaled rmse between the two models was notable, 
with a difference of 0.13.

Discussion

In this pilot study, we provided a comprehensive assessment of the rela­
tionship between depression severity and subjective and objective fea­
tures sourced from data collected by smartphone and wearable devices 
under free­living conditions. Our results illustrate that features related 
to self­reported depression, anxiety scores, stress scores, physical activ­
ity, and not social activities, were significantly correlated with depression 
severity. These features can collectively serve as a composite biomarker 
to estimate the gold standard in­clinic assessment, the sighD-iDsc.

data quality The missing and outlier data only impacted a minority 
of the participant’s data and did not lead to the exclusion of any weekly 
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Notwithstanding, we have not identified any research that supports the 
notion that unipolar depressed patients have increased walking speeds, 
rather, the current literature suggests that depressed patients exhibit 
more motor disturbances and thus reduced walking speeds.58 However, 
these inferences were based on instrumented gait assessments per­
formed in controlled settings, and not based on real­world evidence. 
This implies that inferences regarding gait or other motor disturbances 
assessed in the clinic may not always correspond with behaviors outside 
the clinic. Together, our findings highlight the importance of collecting 
both self­reported subjective and objective behavioral features, such as 
Dass, gait and travel patterns, in depression drug trials as they represent 
a more holistic biomarker of depression. Further, behaviors characteristic 
to depression that were identified within a clinical setting may not corre­
spond to behaviors exhibited outside a clinical setting.

number of weeks of data for training Our findings indicate 
that the models overall performed better when trained on three weeks 
of data, rather than one or two weeks (Figure 3). However, for the sighD-
iDsc global dimensions, the difference in the variance explained between 
the first week and three weeks of data was marginal. While the inclusion 
of three weeks of data notably reduced the prediction error. Depend­
ing on the mechanism of action of any given antidepressant drug, thera­
peutic effects may only become evident after several weeks of treatment 
with, for example SSRIs, or may rapidly occur and then dissipate over a 
week or two as with the nmDar antagonist ketamine.59,60 It is therefore 
crucial to determine how long and how often patients need to be moni­
tored to extract reliable and meaningful inferences from the data follow­
ing an intervention. Collecting excessive data can be time­consuming 
and resource­demanding, however having insufficient data can under­
mine the accuracy of the extrapolations. Although the present study 
was of non­interventional nature, this suggests that a minimum of three 
weeks of data are required to create a representative dataset that would 
build an accurate model that represents depression severity in future 

illustrated that objective sleep assessments are not strongly correlated 
with subjective reports of sleep.50,51 Discrepancies between the objective 
and subjective measures of sleep could be influenced by several factors, 
such as mood at the time of awakening,52 insomnia, negative bias, and 
impaired memory.53 These findings highlight that those subjective expe­
riences are not always represented by objective measures. Hence, in the 
context of clinical trials for depression, the identified relevant features are 
better suited for monitoring overall depression severity rather than moni­
toring specific depression symptoms.

inclusion of healthy controls The inclusion of health controls in 
the models provides several benefits. Firstly, by incorporating more par­
ticipants, the number of observations available for analysis increases. 
This larger sample size enhances the statistical power of the lmms, which 
leads to more reliable and robust predictions. Additionally, the inclusion 
of healthy controls introduces a broader range of depression severity 
scores, spanning from zero to minimal symptoms. In addition to enhanc­
ing the model’s ability to capture the full spectrum of depression severity 
and improving its generalizability, the wider range of scores also allows 
for the inclusion of potential remission in depressed patients. As their 
scores move towards zero, the model can accurately capture the possibil­
ity of their condition improving and reaching a state of remission.

correlation with the sighd-idsc dimensions Both the 
self­reported Dass and daily travel routines were consistently signifi­
cantly correlated with the sigh-D, iDs-c and sighD-iDsc global dimen­
sion total scores (Figure 2). More specifically, we found that depression, 
anxiety, and stress total scores were positively correlated with over­
all depression severity. In addition, participants with higher depression 
scores were more likely to walk faster, however, spent less time travelling. 
Our findings are supported by previous studies that found correlations 
between both smartphone­based self­reported assessments and loca­
tion­based behaviors 16,54,55 with in­clinic depression rating scales.13,56,57 
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Conclusion

We presented a novel approach to monitoring depression severity among 
unipolar depressed patients using data sourced from smartphone and 
wearable devices. In this longitudinal non­interventional study, we col­
lected a relatively robust dataset, consisting of a few missing data points 
and outliers. We identified the relevant smartphone­ and wearables­
based features that collectively create a biomarker that could estimate 
the sigh-D, iDs-c and sighD-iDsc global and symptom dimension total 
scores. Together, these findings suggest that objective and subjective fea­
tures captured by these remote monitoring devices can collectively serve 
as a composite biomarker to estimate depression severity under free­liv­
ing conditions.

interventional trials. However, the trade­off between the number of 
weeks used for training and the model performance was marginal.

limitations There are several limitations to our approach. Due to the 
small sample size, relatively short observation period, and the number of 
technical devices used (Android smartphone and Withings wearables), 
there is a limited understanding of what degree our findings are general­
izable to other cohorts, technical devices, and clinical assessments. A fol­
low­up study is needed to assess how well our findings can translate to 
other depressed patients whose data are collected in a different time 
period using different devices (such as an iPhone and Apple Watch). Fur­
ther, given the limited agreement between the objective measures of 
sleep and the sighD-iDsc sleep dimension scores, a follow­up study may 
choose to incorporate both objective and subjective measures of sleep 
such as polysomnography and self­report questionnaires related to sleep 
to further improve the reliability of the features.

aPPlication Based on our findings, remotely monitored features can­
not substitute the clinical assessment of depression severity. However, 
our approach can potentially serve as a complementary tool to assess 
clinical symptoms of depression over time in free­living conditions, since 
a number of subjectively reported indicators of depression can be missed 
between assessments and/or may be subject to recall bias during inter­
views. Remotely monitored composite biomarkers therefore are strong 
candidates for filling­in and complementing the retrospective gaps that 
are typical of in­person clinical assessments. Hence our approach is 
expected to benefit drug development for mood disorders, since it could 
aid the monitoring and assessment of depression severity during clini­
cal trials based on both in­clinic rater­based interviews and out­of­clinic 
activities and self­reported outcomes.
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table 2 Performance of the Variance Thresholding and LMM to estimate the total scores of the 
SIGh-D, IDS-c, SIGhD-IDSc global dimensions, and each of the SIGhD IDS-csymptom dimensions.

sighD-iDsc global and symptom dimensions Marginal r2 Mean Mean rmse
sigh-D 0.73 (±0.01) 5.30 (±0.17)
iDs-c 0.80 (±0.01) 9.90 (±0.32)
sighD-iDsc 0.80 (±0.01) 15.1 (±0.48)
agitation 0.47 (±0.01) 0.99 (±0.04)
anxietY (psYchic) 0.63 (±0.01) 1.70 (±0.06)
anxietY (somatic) 0.57 (±0.01) 1.16 (±0.06)
guilt 0.57 (±0.02) 1.01 (±0.04)
hYpochronDia 0.40 (±0.02) 0.27 (±0.02)
interpersonal 0.60 (±0.01) 0.56 (±0.02)
mooD 0.72 (±0.01) 3.04 (±0.10)
retarDation 0.40 (±0.02) 0.61 (±0.03)
sex 0.45 (±0.02) 1.01 (±0.05)
sleep 0.47 (±0.02) 2.34 (±0.07)
somatic (general) 0.62 (±0.02) 1.88 (±0.07)
somatic (gastrointestinal) 0.43 (±0.02) 0.71 (±0.03)
suiciDe 0.50 (±0.01) 0.32 (±0.02)
Weight 0.43 (±0.01) 0.37 (±0.02)
Work 0.65 (±0.01) 2.02 (±0.07)

table 1 Overview of the SIGhD IDS-c symptom and global dimensions and their associated SIGh-D 
and IDS-c questions.

sighD-iDsc symptom dimensions sigh-D iDs-c
Agitation 09. Agitation 24. Psychomotor agitation
Anxiety (Psychic) 10. Anxiety (Psychological) 06. Mood (Irritable)

07. Mood (Anxious)
27. Panic/phobic symptoms

Anxiety (Somatic) 31. Anxiety (Somatic) 26. Sympathetic arousal
Guilt 02. Feelings of Guilt
Hypochrondia 15. Hypochondriasis
Insight 17. Insight
interpersonal relationships 29. Interpersonal sensitivity
Mood 01. Depressed mood (sad, hope­

less, helpless, worthless)
05. Mood (Sad)
08. Reactivity of Mood
09. Mood variation
10. Quality of mood
16. Outlook (Self)
17. Outlook (Future)

Psychomotor retardation 08. Retardation; Psychomotor 23. Psychomotor slowing
Sexual function 14. Genital symptoms 22. Sexual interest
Sleep 04. Insomnia (Early)

05. Insomnia (Middle)
06. Insomnia (Late)

01. Sleep onset insomnia
02. Mid­nocturnal insomnia
03. Early morning insomnia
04. Hypersomnia

Somatic (General) 12. Somatic Symptoms General 20. Energy/Fatigability
25. Somatic complaints
30. Leaden paralysis / physical energy

Somatic (Gastrointestinal) 12. Somatic Symptoms (Gastro­
intestinal)

11. Appetite decreased
12. Appetite increased
28. Gastrointestinal

Suicidal Ideation 03. Suicide 18. Suicidal Ideation
Weight 16. Loss of Weight 13. Weight decreased

14. Weight increased
Activity/reward/hedonic tone 07. Work and Activities 15. Concentration/decision making

19. Involvement
21. Pleasure/enjoyment

Global dimensions sigh-D global score: Sum of all 
sigh­D dimension scores

iDs-c: Sum of all iDs-c dimension 
scores

sigh-D iDs-c: Sum of sigh-D and iDs-c
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figure 2 Overview of all significantly correlated features (p<0.05) for each of the (a) SIGhD-IDSc 
global and (B) symptom dimensions. The bars represent the correlation coefficients for each of the 
significant features. The color of the bars represents each of the SIGhD-IDSc global and symptom 
dimensions.

figure 1 A)Distribution of the SIGh-D, IDS-c, and SIGhD-IDSc global dimensions total scores for 
patients and healthy controls. (B) Distribution of the total scores of the SIGhD-IDSc symptom dimensions 
for patients and healthy controls. In both figures, red represents the healthy controls while blue 
represents the patients. The lower and upper box boundaries of the boxplots represent the 25th and 75th 
percentile range respectively. The line within the boxplot represents the median score. The black scatter 
plots represent the outliers. The width of the violinplot represents the population distribution of each of 
the scores.
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suPPlementary table 1 A summary of how the features were aggregated based on the data type.

Data Type Time Unit Example Feature Aggregation For-
mat 

Example Aggregation 

Count Per day Steps Sum 
Mean 
Max 

Total steps 
Max steps per hour 
Mean steps per hour 

Continuous data 
within a range 

Per day Heart Rate Min (5%) 
Median (50%) 
Max (95%) 

Lowest 5% heart rate 
Median heart rate 
Maximum 95% heart rate 

Duration Per day App Usage Total Duration 
 
Mean Duration 

Total duration of social 
apps opened 
Mean duration of social app 
opened per instance 

gps coordinates Per day Location Sum 
Max 
Mean 

Total distance travelled 
Mean and max dis­
tance from home 

figure 3 (a) and (B) represent the mean r2 and mean scaled rMSe for each of the SIGhD-IDSc global 
and symptom dimension LMMs. Each color represents the dataset used for training the models. The error 
bars represent the standard deviation across each of the 100 outer-fold predictions.
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suPPlementary table 3 An overview of demographic characteristics of the enrolled patients and 
healthy controls

Demographics Descriptor Patients Healthy controls
genDer Female

Male
24
6

25
4

race African American or Black
Asian
Mixed
Other
White

2
2
4
1
21

1
3
0
1
25

age Mean (stD)
Min, Max]

35(13)
18, 64]

35(13)
20, 63]

Bmi (kg/m2) Mean (stD)
Min, Max]

24(3)
20, 31.5]

24(3)
18, 31]

maDrs Mean (stD)
Min, Max]

29 (4)
23, 38]

N/A

sigh-D total Mean (stD)
Min, Max]

14.5(4.5)
6, 25]

1(2)
0, 8]

iDs-c total Mean (stD)
Min, Max]

30.5(8.5)
10, 62]

1(3)
0,21]

sigh-iDsc total Mean (stD)
Min, Max]

45(12)
16, 71]

3(5)
0,29]

suPPlementary table 2 An overview of the chDr MOreTM extracted features.

Category more Features Derived features Excluded Features 
Demographics Age; Gender   
acceleration
(smartphone)

Acceleration Magnitude 
Gyroscope 
Magnometer 

98% Acceleration magnitude Mean acceleration  
magnitude 

activitY
(smartphone)

Steps 
Heart Rate 
Physical activity duration 
Calories 

steps: total steps, max steps per 
hour, mean steps per hour heart 
r ate: 5%, 50% & 95% eats per min­
ute (bpms), standard deviation of 
BPMs, % time spent in resting state  
physiCal aCtivit y: soft, moder­
ate and intense activity duration 

Calories 
Distance travelled 
Distance per step 
 

apps
(smartphone)

aPP categories
Communication & Social
Health & Fitness, Recre­
ational, Shopping, Tools, 
Travel

Duration
Times open 

House & Home App
Libraries & Demo App
Reading App
All duration features 

BoDY
(Withings)

Diastolic blood pressure 
Systolic blood pressure 
 Heart pulse (Bpm)  
Weight  
 

 Height (M)  
Fat mass (kg)  
Fat ratio (%)  
Hydration  
Muscle Mass  

location
(smartphone)

location categories
Commercial, Health, 
Home, Leisure, Public, 
Social, Travel 

Total duration at place  
Total distance travelled
Total no of unique places visited 
Max distance from home 
Time spent commuting 

 

social
(smartphone) 

Calls 
Voice 

Number of calls 
Number of unique numbers 
Number of incoming, outgoing  

and missing calls 
Number of calls from known  

and unknown numbers 
Total duration of calls 
Average duration of calls
% Time human voice is detected 

Text messages (sms) 

sleep
(Withings) 

 Number of sleep sessions 
Total sleep duration 
Number of sleep phases (awake, 

light sleep and deep sleep) 
Duration of sleep phases (awake, 

light and deep sleep) 
Time between sleep sessions 
Time to fall asleep 

 

epro
(smartphone)

Self­assessments Twice daily panas
Weekly Dass­21
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Introduction

Coughing is a physiological mechanism of the respiratory system to clear 
excessive secretions. It can be caused by various acute and chronic dis­
eases, such as viral upper respiratory tract infections, bacterial infections, 
asthma, protracted bacterial bronchitis or tic cough, and is a common rea­
son for parents to seek medical consultation for their children.1,2 Several 
studies have shown that cough severity is correlated with disease activity 
in asthma and other pulmonary diseases,3–6 making cough frequency an 
attractive candidate biomarker for respiratory disease severity. Although 
coughing is traditionally quantified via self­ or parent­report in the form 
of questionnaires, technological advances allow for more sophisticated 
(semi­) automatic cough monitoring methods. Indeed, several commer­
cial and academic entities have endeavoured to develop cough detection 
algorithms, with varying success.7 The most notable and reliable examples 
are the Leicester Cough Monitor and the VitaloJak, which record sounds 
with a dedicated body­contact device and microphone, and subsequently 
use semi­automated counting methods.8,9 Several completely automated 
cough counting algorithms have been developed, mostly for an adult 
population, but none have proceeded towards widespread availability.7  
A summary of the key principles of automatic cough detection and a thor­
ough overview of cough counting technologies used in a clinical setting is 
provided by Hall et al. 10 A notable disadvantage of body­contact devices 
is that they are inconvenient in the field of pediatrics, especially in infants 
and toddlers. Additionally, pediatric cough sounds exhibit more variability 
across different ages due to the developing respiratory­ and vocal system, 
which can make robust detection more challenging. 11 An ideal algorithm 
would require no manual input, be able to monitor from a distance, and be 
operational on low­cost consumer devices that are readily available, such 
as smartphones. To date, no such algorithm has been developed in the 
field of pediatrics. This study aimed to develop an algorithm that objec­
tively and automatically counts cough sounds in children based on audio 
features collected via a smartphone application.

Abstract

Introduction: Coughing is a common symptom in pediatric lung disease 
and cough frequency has been shown to be correlated to disease activ­
ity in several conditions. Automated cough detection could provide a 
non­invasive digital biomarker for pediatric clinical trials or care. The aim 
of this study was to develop a smartphone­based algorithm that objec­
tively and automatically counts cough sounds of children. Methods: The 
training set was composed of 3228 pediatric cough sounds and 480,780 
non­cough sounds from various publicly available sources and contin­
uous sound recordings of 7 patients admitted due to respiratory dis­
ease. A Gradient Boost Classifier was fitted on the training data, which 
was subsequently validated on recordings from 14 additional patients 
aged 0–14 admitted to the pediatric ward due to respiratory disease. The 
robustness of the algorithm was investigated by repeatedly classifying a 
recording with the smartphone­based algorithm during various condi­
tions. Results: The final algorithm obtained an accuracy of 99.7%, sen­
sitivity of 47.6%, specificity of 99.96%, positive predictive value of 82.2% 
and negative predictive value 99.8% in the validation dataset. The corre­
lation coefficient between manual­ and automated cough counts in the 
validation dataset was 0.97 (p <.001). The intra­ and inter­device reliabil­
ity of the algorithm was adequate, and the algorithm performed best at 
an unobstructed distance of 0.5–1 m from the audio source. Conclusion: 
This novel smartphone­based pediatric cough detection application can 
be used for longitudinal follow­up in clinical care or as digital endpoint in 
clinical trials

.
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by an investigator using Audition software (Adobe). No filter was applied 
to remove ‘silent’ sections of the recording to ensure that the estimated 
accuracy reflects real­life conditions. As a result, the proportion of cough 
sounds in the validation dataset was 0.7%. The composition of the final 
training­ and validation dataset are displayed in Table 1.

auDio feature extraction anD selection

Audio feature were extracted from all audio clips using the Open­smile 
software (version 2.3.0, audeering).13 The software converted all audio 
clips into 1582 features per epoch. Epoch length was fixed at 0.5 s since the 
average cough duration in the training dataset was 0.3 s. The extracted 
features included several audio domains, such as Mel­frequency ceps­
tral coefficients and fundamental frequencies (F0) (Supporting Informa­
tion Text S1). Using manual inspection, the most robust features across 
multiple conditions were selected (Supporting Information Text S2) and 
only these features were included in the final dataset used for algorithm 
development.

algorithm Development anD valiDation

For the cough detection algorithm, we compared the classification per­
formance of two ensemble­based decision­tree classifiers: Random For­
ests and Gradient Boosting Machines. Both differ in their process to build 
learners (also known as ‘trees’). Random Forests classifiers build multi­
ple trees simultaneously, each tree learnings a random subsample of the 
data. This subsampling makes the final model more robust as it is less 
likely to be biased towards the training data. Gradient Boosting Machines 
classifiers build one tree at a time, and each new tree corrects the pre­
diction error of the previous tree. Five fold cross­validation was used to 
select the optimal features and hyperparameters for the model. Given 
that the number of coughs and non­coughs are imbalanced, the optimal 
classifier was selected based on the highest overall Matthew’s Correlation 
Coefficient (mcc). The mcc score provides a more informative and reliable 
evaluation of binary classifications compared to accuracy as mcc takes 

Materials and methods
ethics anD logistics

This study was conducted at the Centre for Human Drug Research (chDr, 
Leiden, The Netherlands) and the Haga Teaching Hospital, Juliana Chil­
dren’s Hospital (The Hague, The Netherlands). Institutional review board 
approval was obtained (registration number: T19­080), and the study was 
conducted in compliance with the general data protection regulation. The 
algorithm was developed as part of the chDr more® system, a remote 
monitoring clinical trial platform. Reporting was performed in accordance 
with eQuator guidelines.12

Data collection

A comprehensive training dataset was obtained from multiple sources. 
First, audio was extracted from 91 publicly available videos on YouTube 
that contained coughing children with an estimated age between 0 and 16 
years old. Furthermore, 334 non­coughing audio clips were gathered from 
YouTube, GitHub, and the British Broadcasting Corporation sound library. 
The non­coughing set contained various sounds that were expected 
to occur in real­life settings, such as talking, breathing, footsteps, cats, 
sirens, dogs barking, cars honking, snoring, glass breaking, and church 
clocks. Additionally, 21 children aged 0–16 and admitted due to pulmonary 
disease were included, after obtaining informed consent from parents, on 
the general ward of Juliana Children’s Hospital. Children were recorded 
during a day or night during the admission with a g6 (Motorola) smart­
phone. The smartphone contains two microphones and runs on Android 
8.0 Oreo. Data of the first 7 children (3 diagnosed with bronchiolitis, 2 diag­
nosed with pneumonia, 1 with viral wheezing and 1 with an upper respi­
ratory infection, age range from 2 weeks to 15 years) were used to sup­
plement the training dataset, with a maximum of the first 150 coughs per 
child to avoid overrepresentation of a single subject. Remaining cough 
sounds of the 7 children were discarded. Data from the other 14 subjects 
were used as validation dataset. All audio clips were manually annotated 
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of 73.7%, sensitivity of 99.6% and specificity of 99.9% in the training set 
(Table 2). The most important audio features the algorithm relied on were 
derived from the mel frequency and loudness categories (Supporting 
Information Text S3).

algorithm valiDation

For validation, 14 patients with respiratory disease aged 0–14 were 
recorded during a hospital admission. The median recording duration was 
632 (interquartile range [iQr]: 477–775) minutes. In total, 4123 0.5­s epochs 
contained coughing. The median cough count per subject was 150 (iQr: 
38–446). Table 2 displays the overall accuracy of the algorithm in the val­
idation dataset. Overall sensitivity was 47.6% and specificity was 99.96%. 
Due to the relatively low frequency of cough counts in the dataset, the npv 
and ppv in these real­world settings were 99.78% and 82.2%, respectively. 
The performance of the algorithm differed between subjects. Individual 
patient characteristics and classification accuracies are displayed in Table 
3. The correlation coefficient between manual cough count and auto­
mated cough count was 0.97 (p < .001, Figure 1).

limiteD algorithm roBustness tests

Repeated (n = 7) tests with the same device and show comparable perfor­
mance during each iteration (Figure 2A), while the inter­device variabil­
ity tests show some variability in cumulative cough count across devices 
(Figure 2B). The effect of the distance of the device to the audio source 
was assessed (Figure 2C) and demonstrated comparable accuracy for 0.5 
and 1 m distance. The accuracy was lower when the distance of the moni­
toring device from the audio source was increased. Finally, the effect of a 
small­ and large barrier was investigated, as well as the effect of ambient 
television sounds playing in the background (Figure 2D). During this test, 
it appeared that a small physical barrier did not impact algorithm perfor­
mance, but a large physical barrier and background television sounds led 
to a lower cumulative cough count.

into account the number of true and false positives and negatives when 
assessing classification performance. The selected model was then used 
to classify all 0.5­s epochs in the validation dataset. The sensitivity, spec­
ificity, mcc, positive predictive value (ppv), and negative predictive value 
(npv) were calculated for the complete validation dataset and per subject.

initial roBustness tests

Limited robustness tests were conducted to ensure the algorithm per­
forms comparably across a range of different conditions when applied 
as a smartphone application. First, a 27­min long audio­clip was gener­
ated which included coughing­ and household sounds, as well as sections 
with silence. The clip was subsequently played repeatedly from a speaker, 
while a g6 smartphone (Motorola) with the chDr more® application was 
placed in proximity. The application has incorporated opensmile soft­
ware and is able to calculate and transmit the generated audio features. 
The following conditions were tested: first, the intra­device variability 
was tested by repeating the assessment 7 times with the same device; sec­
ond, the inter­device variability was tested by repeating the assessment 4 
times with different devices of the same type; third, the effect of device dis­
tance (0.5, 1, and 4 m) from the audio source was assessed and finally accu­
racy was assessed when a small (plant and book) or large (loft bed) barrier 
was placed in front of the audio source and when television sounds were 
played in the background. Because the 0.5­s epochs from the original file 
and the output of the more® application could not be paired, cumulative 
cough count plots were generated and compared across conditions.

RESULTS
algorithm training

The training set consisted of 3424 0.5­s cough epochs of various sources, 
as well as 431,622 0.5­s non­cough epochs. The final algorithm, fitted 
through a Gradient Boost Classifier, achieved an accuracy of 99.6%, mcc 
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cough frequency in the case of an asthma exacerbation could be identified 
reliably with the current algorithm, and subsequent treatment leading to 
a significant decrease in nocturnal coughing will also be detectable even 
with the current sensitivity. In the future, algorithm output could be com­
bined with other non­invasive assessments known to be related to pulmo­
nary disease activity, such as physical activity, heart rate and pulmonary 
function monitoring, as well as electronic patient reported outcome mea­
sures. Together, this could provide a holistic overview of multiple aspects 
of pulmonary disease severity and quality of life.17

Multiple research groups have developed cough detection algorithms 
in recent years. However, only one was developed specifically for a pedi­
atric population.18 Although this algorithm was not applied in a mobile 
device. Still, pediatric cough detection is theoretically more challeng­
ing due to changing vocal cord acoustics during various stages of devel­
opment. In adults, the most widely reported cough detection devices 
are the Leicester cough monitor and the VitaloJak.7 These methods have 
been validated in independent datasets and appear both sensitive (91%–
99%) and specific (99%), but the use of dedicated microphones is less 
user­friendly in general, and the use contact­devices precludes their use 
in several age categories in pediatrics. Furthermore, the semi­automated 
counting method used by both devices remains laborious and requires 
training, which means that widespread use in large­scale clinical trials or 
in general care is not feasible. Other algorithms that count coughs auto­
matically have reported sensitivities of 78%–99% and specificities of 92%–
99%,7,18–23 but only a few have been applied on a smart phone.21,22,24 The 
one that most resembles the current study is a smartphone­based algo­
rithm developed by Barata et al.,21 who use a convolutional neural net­
work to classify nocturnal sounds in adult asthmatics and obtained a sen­
sitivity of 99.9% with a specificity of 91.5%.21 In addition, other projects 
are often based on data obtained in tightly controlled environments and 
lack validation in independent or clinical datasets,18,22–24 and may show 
a similar drop in accuracy during validation as was observed for the algo­
rithm developed here. For example, the PulmoTrack® device, designed for 

Discussion

The current manuscript described the development and initial valida­
tion of a novel cough detection algorithm in pediatrics. Publicly available 
audio recordings were combined with real­life recordings to fit an algo­
rithm that had excellent classification capability in the training dataset. In 
the validation dataset, a sensitivity of 47.6% and specificity of 99.96% was 
obtained, which resulted in a ppv of 82.2% and an npv of 99.8% in these 
real­world conditions. There was a strong correlation between manual 
cough count and automatic cough count. The accuracy of the algorithm 
in the validation set was confirmed by several robustness tests, which 
repeatedly showed a cumulative cough count that was roughly half of the 
true cough count across various conditions. The algorithm performed 
best when there was a relatively unobstructed maximum distance of 0.5–1 
m from the audio source.

The current sensitivity is suboptimal but does not disqualify the algo­
rithm, and we envision the current algorithm is already suitable for appli­
cation in several settings. Algorithm­derived cough count could be incor­
porated as (secondary) digital endpoint in pediatric pulmonary disease 
trials. For this application, clinical validation of cough count as digital end­
points should be performed first, focusing on demonstrating a difference 
between patients and healthy children, correlation of the novel endpoint 
with traditional endpoints or patient reported outcomes, and sensitivity 
to change in disease activity.14 In addition to clinical trials, applying this 
algorithm in clinical care is likely to be much more reliable than patient­ 
or parent recall regarding cough frequency.15,16 The strong correlation 
between manually­ and automatically­ counted coughs means the algo­
rithm can discriminate children that cough excessively from children that 
do not and can uncover individual trends over time, e.g., to characterize 
clinical recovery after a hospital admission, or to assess the effect of treat­
ment in excessively coughing patients with persistent bacterial bronchi­
tis. This is further supported by the very high specificity of the algorithm 
that is maintained in all validation tests. For example, change in nocturnal 
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First, accuracy could improve by addition of additional covariates such 
as age, sex, and diagnosis, although this would require some user input 
before use. Second, the exponential increase in processing power of 
mobile devices could allow for the development of personalized models 
in the future, which would both be trained, validated, and deployed on 
the participants’ own smartphones. A personalized classification model 
that is tuned to the cough characteristics of an individual could poten­
tially be much more accurate, considering the intra­individual variabil­
ity in cough sounds is assumed to be smaller compared to inter­individ­
ual variability. Future studies could also aim to quantify cough intensity, 
as this characteristic may have greater impact on quality of life than cough 
frequency.

CONCLUSION

This novel smartphone­based cough detection application is one of the 
first of its kind and able to count coughs in pediatric patients with a sensi­
tivity of 47%, specificity of 99.96%, ppv of 82% and npv of 99.8%. Although 
the observed sensitivity in the intended use must be improved in the 
future, the current algorithm may be reliable enough for longitudinal 
monitoring in the context of clinical trials­ or care, which will be evaluated 
during a clinical validation process.

automatic clinic­based monitoring, showed a reduced sensitivity of 26% 
compared to human annotation during validation in a new cohort.25

A major advantage of the algorithm developed in this study is the con­
version of raw audio into audio features on the smartphone before trans­
mission to the study center, which ensures the privacy of participants. 
The automated classification is another advantage, allowing devices to 
analyze and transmit cough counts in real­time. This study focuses on 
detecting single coughs, which was the reason for using a 0.5 s epoch dur­
ing algorithm development. In the future, aggregation of data into ‘cough 
bouts’ could add additional value in measuring the impact and severity 
of respiratory diseases.26 For real­world application of the algorithm, we 
envision that parents could use a spare phone to run the algorithm and 
leave the phone close to their child. Additionally, miniaturization of cur­
rent technology could lead to a dedicated clip­on device to attach to (the 
bed of) infants with respiratory illness. A limitation was the manual fea­
ture selection performed, which introduces a potentially subjective fac­
tor to the analysis. Furthermore, a laptop speaker was used during the ini­
tial robustness tests and using a higher quality speaker may have led to 
slightly different performance during these tests. However, we believe 
the device quality is sufficient for the purpose of testing repeatability and 
investigating the effects of differing conditions. During this study, a sin­
gle smartphone type (Motorola g6) was used, and the observed perfor­
mance may vary when other devices are used.27 Another potential prob­
lem would arise when the sensitivity of the algorithm would be highly 
dependent on the underlying disease that is studied, although there is no 
evidence of this in the validation dataset, such factors need to be studied 
further during clinical validation for which we can supply the algorithm 
to other interested academic groups. The current algorithm is devel­
oped as a one­size­fits­all solution that can classify coughs of all pediatric 
patient groups and ages and that only used sound features as input vari­
ables. Although the current accuracy appears sufficient to include as digi­
tal biomarker in the applications mentioned above, the accuracy of future 
algorithms could improve significantly with the cost of added complexity. 
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table 3 Performance of the final algorithm among individual subjects

Sub-
ject
(#)

Age Diagnosis Recording 
duration 

(min)

Manual  
Count  

(n)

Algorithm  
count  

(n)

Sens. Spec. mcc

1 14 years Pneumonia 4 22 7 32% 100% 55%
2 4 years Wheezing 717 63 49 73% 100% 73%
3 5 years Pneumonia 237 29 21 72% 100% 85%
4 1.5 years Pneumonia 609 16 6 19% 100% 31%
5 6 weeks Bronchiolitis 727 85 70 58% 100% 63%
6 3 years Pneumonia 792 454 344 69% 100% 79%
7 9 weeks Bronchiolitis 967 895 436 34% 100% 69%
8 4 years Pneumonia/

wheezing
497 29 17 52% 100% 88%

9 11 years Asthma 598 171 98 56% 100% 73%
10 5 weeks Bronchiolitis 873 1038 516 37% 100% 53%
11 2 years Pneumonia 434 474 355 70% 100% 81%
12 3 years Pneumonia 470 420 256 54% 100% 68%
13 13 weeks Bronchiolitis 654 128 45 34% 100% 57%
14 4 years Pneumonia 791 299 166 40% 100% 53%

table 1 Composition of training and validation datasets

Training dataset Validation da-
taset

YouTube  
(91 clips)

Various sourc-
es (334 clips)

Hospital  
(7 children)

Total Hospital  
(14 children)

Cough sounds (n) 2229 – 999 3228 4123
Noncough sounds (n) 9702 39,456 431,622 480,780 100,522
Total (n) 11,931 39,456 432,621 484,008 104,645
Cough proportion (%)1 18.5% 0% 0.2% 0.7% 0.4%
Mean cough duration (s) 0.3 – 0.3 0.3 0.3

1. Proportion of 0.5‐s epochs that contain cough sounds.

table 2 Performance of the final algorithm

Training dataset Validation dataset
Parameter Mean (sD) performance1 Overall performance
Accuracy 99.61% (±0.13%) 99.74%
mcc 73.67% (±0.16%) 62.40%
Sensitivity 99.62% (±0.13%) 47.56%
Specificity 99.89% (±0.09%) 99.96%
ppv 99.65% (±0.08%) 82.16%
npv 99.82% (±0.02%) 99.78%

1. Mean (SD) performance of fivefold cross‐validation. 
MCC, Matthew’s Correlation Coefficient; NPV, negative predictive value; PPV, positive predictive value.
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suPPlementary text s1 
oPensmile audio features  
OpenSMILe generated features from each 0.5 second epoch in the following domains: for each domain, 
the following statistics were derived by the openSMILe software:

Feature group Description
Fundamental frequency (F0) Pitch
Jitter and shimmer Voice quality
Mel­frequency cepstrum (coefficients) Power spectrum
Line spectral frequencies Frequencies
Loudness Sum of auditory spectrum. (Intensity & approximate loudness)
Voicing Probability of voicing

Statistics obtained from each feature during each 5-second epoch 

Arithmetic mean

Quartiles and iQr ranges (1­2, 1­3, 2­3)

Skewness and kurtosis

Linear regression slope, offset and approximation error

Relative position of minimum and maximum

Percentile 1%, percentile 99% and range

Standard deviation

Percentage of frames above 75/90% of range

supplementary text s2 
Opensmile feature selection 
Feature selection was performed using the audio file generated during the robustness tests. The file 
was played back through a laptop speaker (B&O pLaY, incorporated in hp Pavilion 15-cK094ND) during 
differing ambient conditions (see paragraph Initial robustness tests in Materials & Methods), once more 
through a dedicated speaker (Luxman L-114A amplifier, Dali 6006Se speaker), and finally also processed 
using openSMILe software on a personal computer. Considering the data was derived from the exact 
same audio file, the frequency distribution of features should be identical during all conditions (see 
Supplementary Figure S2a below). However, this was not the case for all features, particularly those 
that were derived from the extremes of each feature (e.g. Percentile 1% percentile 99%). Therefore, 
distribution plots were judged visually by the authors and each feature that demonstrated a clear 
difference in means or standard deviations across conditions was excluded from the final dataset. 
Manual selection was preferred over statistical methods to compare distributions, as the large size of the 
dataset meant that statistical tests such as the Kolmogorov-Smirnov would have too much statistical 
power and irrelevant deviations would be flagged as significant difference.

figure 1 Correlation manual- and automatic cough count in validation dataset. Pearson correlation 
between manually counted coughs and automatically detected coughs. Each dot represents an 
individual subject in the validation dataset..

figure 2 Performance of the algorithm under varying circumstances. (a) Intra-device repeatability. 
Each individual line represents a different session with the same device. (B) Inter-device repeatability. 
Each individual line represents a different session with a different device of the same type. (c) Influence 
of device distance from the audio source. (D) Influence of physical barrier or ambient background noise. 
In each of the panels, the light-blue line is the reference from the audio file. 



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials194 195part iii/chapter 6

suPPlementary figure s3 Feature importance plot of the final algorithm. On the y-axis, the  
10 most important features derived from the openSMILe software are displayed. The bars and the x-axis 
represent the relative importance of each feature.

supplementary fiGure s2a Example of distribution plots of each feature used during the 
feature selection process. Each color represents a different condition. Of the displayed features, the top 
right (mfcc_sma7_linregc1) and bottom left (mfcc_sma7_skewness) features were included in the final 
datasets.
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Introduction

Crying is a primary indicator of decreased infant well­being.1 Besides the 
normal crying­behavior that is natural for every infant, a change in cry 
duration, intensity or pitch can be a symptom of illness.2 Cry duration 
has been used as a biomarker for diagnostic and follow­up purposes for 
a wide range of clinical conditions of infancy, such as gastroesophageal 
reflux and cow milk allergy.3,4 However, traditional methods to record cry 
behavior, such as parent­ or nurse­ reported cry duration, are subjective 
and vulnerable to observer bias.5 On the other hand, more objective man­
ual annotating of audio recordings is labor intensive and may be subject 
to privacy­concerns by parents. An objective, automated and unobtrusive 
method to quantify crying behavior in an at­home and clinical setting may 
improve the diagnostic process in excessively crying infants, allow for 
objective determination of treatment effects by physicians, and enable 
researchers to include objectively determined cry duration as digital  
biomarker in clinical trials. Therefore, a classification algorithm is nec­
essary for the automatic recognition of cries in audio files. Given the  
importance for researchers to study the relationship between an infant’s 
crying patterns and their health, automatic detection and quantification 
of infant cries from an audio signal is an essential step in remote baby 
monitoring applications.6

Automatic cry detection has been reported in the form of remote baby 
monitors for non­intrusive clinical assessments of infants in hospital set­
tings,6–9 and several researchers have shown that classification of cry­ and 
non­cry­sounds is possible with machine­learning algorithms.10–12 How­
ever, most algorithms lack validation in a completely independent dataset, 
which is crucial to predict performance in new­ and real­world settings, 
while data regarding intra­ and inter­device variability and other factors 
that may influence repeatability is lacking as well.10,13,14 Finally, algorithms 
are often developed for use on personal computers or dedicated devices. 
Usability of an algorithm would be increased if it were available on low­
cost consumer­devices such as smartphones, which are readily available 

Abstract

Introduction: The duration and frequency of crying of an infant can be 
indicative of its health. Manual tracking and labeling of crying is labori­
ous, subjective, and sometimes inaccurate. The aim of this study was to 
develop and technically validate a smartphone­based algorithm able to 
automatically detect crying. Methods: For the development of the algo­
rithm a training dataset containing 897 5­s clips of crying infants and 1,263 
clips of non­crying infants and common domestic sounds was assembled 
from various online sources. Opensmile software was used to extract 
1,591 audio features per audio clip. A random forest classifying algorithm 
was fitted to identify crying from non­crying in each audio clip. For the 
validation of the algorithm, an independent dataset consisting of real­
life recordings of 15 infants was used. A 29­min audio clip was analyzed 
repeatedly and under differing circumstances to determine the intra­ and 
inter­ device repeatability and robustness of the algorithm. Results: The 
algorithm obtained an accuracy of 94% in the training dataset and 99% in 
the validation dataset. The sensitivity in the validation dataset was 83%, 
with a specificity of 99% and a positive­ and negative predictive value 
of 75 and 100%, respectively. Reliability of the algorithm appeared to be 
robust within­ and across devices, and the performance was robust to dis­
tance from the sound source and barriers between the sound source and 
the microphone. Conclusion: The algorithm was accurate in detecting 
cry duration and was robust to various changes in ambient settings.
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selected because the median cry duration (without a silent break) in the 
training dataset was 4s.

algorithm training

To prevent overfitting of the algorithm on non­robust audio features pro­
vide by the software, manual feature selection was performed to exclude 
features that exhibited different distributions when analyzed under 
different conditions (Supplementary Text 3). Feature selection was per­
formed using the audio file generated during the robustness tests. The 
file was played back through a laptop speaker during differing ambi­
ent conditions with (see paragraph Robustness­tests in section Materi­
als and Methods), a dedicated speaker, and processed to opensmile fea­
tures with the chDr more® application. Additionally, the raw file was 
processed using opensmile software on a personal computer. Consider­
ing the data was derived from the exact same audio file, the distribution 
of features should be identical during all conditions (Supplementary Text 
3). However, this was not the case for all features, particularly those that 
were derived from the extremes of each feature (e.g., Percentile 1% per­
centile 99%). Therefore, distribution plots were judged visually by the 
authors and each feature that demonstrated a clear difference in means 
or standard deviations across conditions was excluded from the final 
dataset. After selection, 980 features audio features remained in the data­
set. Two discriminative classifiers Random Forest and Logistic Regres­
sion17–20 and one generative classifier (Naïve Bayes) were considered for 
the classification of crying and non­crying sounds. For each classifier, a 
5­fold cross­validated grid­search to select the best combination of fea­
tures and hyperparameters was performed to minimize the error esti­
mates in the final model. The primary objective of the model was to iden­
tify crying and therefore, hyper­parameters that optimized for sensitivity 
were prioritized. This was followed by 5­fold cross­validation to robustly 
estimate the model performance and generalization of the model. The 
classifier with the highest Matthew’s Correlation Coefficient (mcc) was 
chosen as the final model and subjected to algorithm validation.

in most households and are easy to operate. Furthermore, smartphones 
have adequate processing power to analyse and transmit data continu­
ously for monitoring in real­time. The aim of this study was to develop and 
validate a smartphone­based cry­detection algorithm that is accurate, reli­
able, and robust to changes in ambient conditions.

Materials and methods
location anD ethics

This was a prospective study conducted by the Center for Human Drug 
Research (chDr) and Juliana Children’s Hospital. The study protocol was 
submitted to the Medical Ethics Committee Zuidwest Holland (iD 19­003, 
Leiden, Netherlands), who judged the protocol did not fall under the pur­
view of the Dutch Law for Research with Human Subjects (Wmo). The 
study was conducted in compliance with the General data protection reg­
ulation (gDpr). The algorithm was developed and reported in accordance 
with eQuator guidelines.15

algorithm Development

training dataset A training dataset was obtained from various 
online sources (Supplementary Table 2) and consisted of both crying­ 
and non­crying sounds. Non­crying sounds consisted of common real­life 
sounds and included talking, breathing, footsteps, cats, sirens, dogs bark­
ing, cars honking, snoring, glass breaking, and ringing of church clocks. 
Furthermore, non­crying infant sounds (hiccoughs, wailing, yelling, bab­
bling, gurgles, and squeaking), as well as adult crying sounds, were 
included in the training dataset. All sounds were played back through 
a loudspeaker and processed into non­overlapping 5­s epochs on a g5 
(Motorola, Chicago, il, usa) or g6 (Motorola, Chicago, il, usa) smart­
phones and. A total of 1,591 audio features (Supplementary Text 3) were 
extracted from each 5­s epoch with opensmile (version 2.3.0, audeering, 
Gilching, Germany) 16 on the smartphone. Each 5­s epoch was manually 
annotated as crying or non­crying by a single investigator. A 5­s epoch was 



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials204 205part iii/chapter 7

robustness tests A series of robustness tests was conducted to 
ensure that the developed algorithm was robust to varying conditions 
when used with a smartphone with the final application (chDr more®) 
installed, which is how the algorithm would be deployed in practice. A 
29­min­long clip containing 16.7 min of crying was played from a speaker 
with a smartphone with the chDr more® application in proximity. This 
application, developed in­house, has incorporated opensmile technol­
ogy and is able to extract and transmit audio features. The following con­
ditions were tested during this phase of the study: intra­device variabil­
ity (n = 10), inter­device variability (n = 10), distance from audio source 
(0.5, 1, 2, and 4 m) and by placing the phone behind several barriers and 
in the presence of background tv sounds. For intra­device variability, a 
single phone was used 10 times to determine repeatability within a single 
device. For inter­device variability, 10 different devices of the same type 
(g6) were used to determine the repeatability across devices. Because it 
was not technically possible to pair the application output with the raw 
audio features of the original recording, cumulative cry count plots were 
construed for each condition and compared with cumulative cries in the 
original recording. A schematic overview of the analysis steps is displayed 
in Supplementary Figure 1.

Results
algorithm training

The training set consisted of 897 5­s audio clips, as well as 1,263 non­crying 
5­s clips. Of the three methods applied to develop the algorithm, the Ran­
dom Forest method achieved the highest accuracy and mcc with 93.8 and 
87.3%, respectively (Table 1). The 10 most important audio features for the 
algorithm were derived from Mel Frequency cepstral coefficients, Mel fre­
quency bands and Voicing Probability. A variable importance plot of the 
10 most important features included in the final algorithm is displayed in 
Supplementary Figure 4.

algorithm valiDation

data collection An independent validation dataset was obtained 
from two sources. First, audio recordings were made in an at­home set­
ting of 4 babies aged 0–6 months using the g5 or g6 smartphones. Sec­
ond, audio recordings were made with the g5 or g6 smartphones of 11 
babies aged 0–6 months admitted to the pediatric ward due to various 
reasons. Audio recordings were made after obtaining informed consent 
from both parents and were stripped of medical­ and personal informa­
tion prior to analysis.

Performance analysis Each 5­s epoch in the recordings was anno­
tated as crying­ and non­crying by one annotator. In the case of doubt on 
how to classify an epoch, two additional annotators were included, and 
a choice was made via blinded majority voting. The developed algorithm 
was used to classify each epoch, and annotations and classifications were 
compared to calculate the accuracy, mcc, sensitivity, specificity, positive 
predictive value (ppv) and negative predictive value (npv) in the complete 
dataset and in the hospital­ and home datasets separately.

Post-Processing of cry ePochs into novel biomarkers Some 
infants are reported to cry often, but with short intervals in between. 
Only counting the number of epochs that contain crying for such infants 
could result in an underestimation of the burden for infants and parents. 
As such, the duration of ‘cry sequences’ (periods during which an infant is 
crying either continuously or occasionally) is an important additional fea­
ture. To calculate this, post­processing of detected cries was performed 
to calculate the number and duration of cry sequences as separate candi­
date biomarkers. A cry sequence was defined by the authors with a start 
criterion (at least six 5­s epochs containing crying within 1 min) and a stop 
criterion (no crying detected for 5 min). Individual timelines were con­
structed for true­ and predicted cry sequences to determine the reliability 
of the algorithm for this novel biomarker.
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by a television appeared to slightly decrease the specificity of the algo­
rithm, as the final cry count according to the algorithm was higher com­
pared to the true number of cries in the audio file.

Discussion

This paper describes the development and validation of a smartphone­
based cry detection algorithm in infants. A random forest classifier had 
the highest accuracy in the training dataset and achieved a 98.7% accu­
racy in an independent validation set. Although the sensitivity of 83.2% 
was slightly lower compared to the estimated accuracy in the train­
ing dataset, the individual classification timelines show that this should 
not lead to unreliable estimation of cry duration. The fact that most 
misclassifications occurred directly before or after crying indicates that 
such misclassifications may be due to cry­like fussing, which are difficult 
to classify for both the algorithm and the human annotators. Post­pro­
cessing of the detected cry epochs into cry sequences decreased the mis­
match and resulted in excellent performance for each individual infant.

The observed accuracy of the algorithm is comparable to others 
described in the literature, although there is large variation in reported 
accuracy. Traditional machine learning classifiers and neural network­
based classifiers have been used for infant cry analysis and classifica­
tion.21 We found that several studies that explored the use of minimum, 
maximum, mean, standard deviation and the variance of MFCCs and 
other audio features to differentiate normal, hypo­acoustic and asphyxia 
types using the Chillanto database.6 Support Vector Machines (svm) are 
among the most popular infant classification algorithms and routinely 
outperform neural network classifiers.22,23 Furthermore, Osmani et al. 
have illustrated that boosted and bagging trees outperform svm cry clas­
sification.24 Additionally, sensitivities between 35 and 90% with specific­
ities between 96 and 98% have been reported using a convoluted neural 
network approach.10,14 Ferreti et al. and Severini et al. also used a neu­
ral network approach and achieved a reported precision of 87 and 80%, 

algorithm valiDation

The 15 infants [mean age: 2 months (sD 1.9)] created a total of 150 min (1,805 
5­s epochs) of crying and 4,372 min (52,464 5­s epochs) of non­crying. The 
median cry duration of the infants recorded at home was shorter (1.4 min, 
iQr 0.58–2.6) compared to children recorded during their admission to the 
hospital (5.8 min, iQr 2.2–16.7). Performance of the algorithm in the inde­
pendent validation dataset is displayed in Table 1. Overall accuracy was 
98.7%, but sensitivity was lower (83.2%) compared to the performance in 
the training dataset. Due to the relatively low crying incidence compared 
to non­crying incidence, the specificity of 99.2% led to a ppv of 75.2%. Sup­
plementary Figure 5 displays individual timelines for each infant, dis­
playing the epochs where crying­ and misclassifications were present. 
After post­processing of cry epochs into cry sequences, the median num­
ber of cry sequences per infant in the validation dataset was 3 (iQr 1–3), 
for a total of 39 cry sequences. The median difference between true and 
predicted cry sequences was 1 (iQr 0.25–1). Furthermore, the median 
difference between true and predicted cry sequences duration was 6 min 
(iQr 2–15 min, Table 2). Individual timelines and concordance between 
true and predicted cry sequences are displayed in Figure 1.

algorithm roBustness

To ensure the algorithm and smartphone application performs 
sufficiently for the intended use, multiple tests were conducted to test 
robustness with the resulting smartphone application. Figure 2A shows 
the estimated repeatability of the algorithm by repeatedly classifying the 
same recording with the same device. Figure 2B shows the cumulative cry 
count of 8 different devices of the same type, which gives an indication of 
repeatability. The distance from the audio source, up to 4 meters, did not 
appear to impact the accuracy of the algorithm (Figure 2C). Finally, block­
ing the audio signal by placing the phone behind several physical barriers 
in front of the audio source demonstrated comparable accuracy across 
conditions (Figure 2D). Creating additional background noise generated 



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials208 209part iii/chapter 7

parents to overestimate the true duration of crying, and placebo­effects 
may cause parents to underestimate true cry duration after an interven­
tion.25 Additionally, parents may underreport nocturnal cry duration 
when they sleep through short cry sequences during the night. Current 
tracking of cry duration in clinical settings is performed by nurses, who 
have other clinical duties as well, possibly making the quality of the cry 
diary dependent on the number of patients under their care. While the 
consequences of all these factors are not easy to quantify, the combina­
tion of these sources of inaccuracy leads to the conclusion that objective 
and automated cry­monitoring could significantly improve the reliability 
of objective follow­up of cry duration in both clinical trials and ­care. Still, 
parental report of cry duration and cry behavior will remain an important 
component of follow­up.

A technical limitation of any Android application, including the more® 
application, is that continuous recording can be interrupted by other 
smartphone applications apps that also access the microphone, like 
phone calls. However, using a dedicated smartphone for the purpose of 
cry monitoring will diminish this limitation. Only Motorola g5/g6 phones 
were used during each phase of algorithm development and validation. 
Although performance on other smartphones is uncertain, the approach 
used in this paper could easily be replicated to adapt the algorithm to 
other devices and obtain a similar accuracy. In the future, incorporation 
of covariates such as age, sex or location in the model may improve classi­
fying capability even further, and further stratification could allow to dis­
criminate different types of crying. In this manner cries from asphyxiated 
infants,26 pre­term infants,27 or infants with respiratory distress syndrome 
could be differentiated from healthy infants.13 One potential technical 
limitation of our approach is the use of loudspeakers to create the train­
ing dataset. An ideal training dataset would include smartphone­based 
audio recordings of multiple subjects under different conditions over a 
long period of time. We found the most appropriate alternative was to re­
record open­sourced cry corpus using smartphone. While the playback 
could have potentially hindered the quality of the opensmile features 

respectively.11,12 However, algorithms often lack validation in an inde­
pendent dataset as, and real­life performance in new and challenging 
environments will most likely be lower. Our algorithm has several advan­
tages compared to other approaches that have been described in the 
past. Most importantly, the algorithm was validated on independent and 
real­life data obtained from two settings where the application could be 
used in the future. Validation invariably leads to a drop in accuracy com­
pared to the performance of the training data but gives reassurance 
regarding the generalizability of the algorithm in new settings that were 
not included during training. Furthermore, the algorithm can be deployed 
on all Android smartphones and no additional equipment is needed for 
acquiring the acoustic features. Although it is possible to implement com­
plex deep learning algorithms on portable devices, we demonstrated 
that a shallow learning algorithm such as a random forest achieves good 
classifying capability. This means that audio processing and classifica­
tion can be performed on the device in real­time with the more® applica­
tion, and thus, precludes direct transmission of audio to a central location 
with inherent preservation of privacy. Finally, the manual feature selec­
tion that was performed should lead to further generalizability of the algo­
rithm in new condition, since the observed variability in the excluded 
audio features would most likely result in a drop in accuracy in challeng­
ing acoustic environments. While automated feature selection methods 
could have been used, automated feature selection requires a static def­
inition of similarity between distributions within features. This is not a 
straightforward task. Given the nature of the features, we chose to man­
ually exclude features that presented a clearly different distribution from 
the rest of the features.

All in all, the performance of the algorithm in combination with the 
mentioned advantages indicate reliability of the algorithm and may be 
preferable over manual tracking of cry duration through a diary in sev­
eral situations. Although the literature regarding sources of inaccuracy in 
cry monitoring via a diary is sparse, several factors make manual track­
ing through a diary a subjective assessment.5 Observer bias can cause 
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table 1 Performance of the final algorithm

Training Dataset Validation Dataset
Parameter Performance  

[Mean (sD)]*
Hospital Subjects 
(n=11)(%)

Home Subjects  
(n=4) (%)

All Subjects  
(n=15)(%)

Accuracy 93.8% (±1%) 98.5 99.7 98.7
mcc 87.3% (±2.2%) 75.5 98.6 78.4
Sensitivity 93.8% (±1.1%) 80.6 97.5 83.2
Specificity 94.8% (±1.1%) 99.1 100 99.2
ppv ­ 72.2 100 75.2
npv ­ 99.4 99.6 99.5

table 2 Individual Algorithm Performance
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Hospital Dataset
1 764 145 120 80 99.5 66.2 99.7 3 5 37 59
2 610 65 43 90.7 99.6 60 99.9 3 3 19 21
3 245 12 11 90.9 99.9 83.3 99.9 1 1 5 6
4 648 52 20 80 99.5 30.7 99.5 3 3 17 25
5 540 17 12 91.7 99.9 64.7 99.9 1 1 7 8
6 317 721 711 82.3 95.6 81.1 95.9 7 7 117 122
7 16.5 26 24 87.5 97.1 80.7 98.2 1 1 6 8
8 441 200 148 66.5 98.2 52.5 98.9 7 8 55 72
9 77.5 70 80 75 98.8 85.7 97.7 3 3 18.5 26
10 365 99 79 62 98.8 49.5 99.2 3 3 22 36
11 452 320 290 87.9 98.7 79.7 99.2 6 7 64 80
Home Dataset
12 36 38 40 95 100 100 99.5 1 1 2.8 2.4
13 13 7 7 100 100 100 100 0 0 0 0
14 2 25 25 100 100 100 100 0 0 0 0
15 1 8 8 100 100 100 100 0 0 0 0

and thus the classification, it resulted in excellent classification perfor­
mance of the home and hospital recordings. Hence the impact of the qual­
ity of the loudspeaker­based dataset was deemed acceptable. A follow­up 
study that uses an original smartphone­based cry corpus could poten­
tially improve the accuracy of the classification algorithm. The start­ and 
stop criteria used to determine the beginning and end of a cry sequence 
are a new proposal that was not previously described in the literature. 
However, the criteria appear reasonable and individual timeline figures 
demonstrated that this post­processing step was able to generate a solid 
high­level overview of individual cry behavior. Still, alternative criteria 
could obtain similar accuracy and may be explored in the future.

The developed algorithm already provides an excellent overview of 
the cry behavior of infants and preliminary tests of the robustness of the 
resulting algorithm show inter­ and intra­device repeatability and reli­
ability up to 4 m from the audio source. The algorithm can replace current 
methods to track cry behavior, such as cry diaries, in clinical and at­home 
settings. However, more research is needed before implementing the cry 
duration and the amount of cry sequences as digital endpoint in trials. 
Clinical validation of cry duration and cry sequence count as digital bio­
marker in a patient population is necessary, and should focus on estab­
lishing new normative values for objectively determined cry sequence 
duration and count, the difference between patients and healthy con­
trols, correlation with disease­severity and sensitivity to change after an 
intervention.28

Conclusion

The proposed smartphone­based algorithm is accurate, robust to vari­
ous conditions and has the potential to improve clinical follow­up of cry 
behavior and clinical trials investigating interventions to enhance infant 
well­being.
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figure 2 Cumulative cry count during robustness tests. (a) Intra-device repeatability. Each individual 
line is a different run with the same phone. (B) Inter-device repeatability. Each individual line is a run with 
a different phone of the same type. (c) Influence of device distance from the audio source. (D) Influence 
of physical barrier or ambient background noise. In each of the panels, the light-blue line is the reference 
from the audio file.

figure 1 True and predicted cry sequence per infant
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supplementary table 2 Audio sources

Dataset Source Crying  
(5-second epochs)

Non-crying**  
(5-send epochs)

Training Datasets Github repository: ***
https://github.com/giulbia/baby_cry_detection

146 216
 

Freesound.org: ***
https://freesound.org/search/?q=infant+cry

102 15
 

British Broadcasting Company  
sound library: ***
https://sound­effects.bbcrewind.co.uk/

207 336
 

Home Validation
Dataset

Home Recordings 78 549
 

Hospital Validation  
Dataset

Hospital recordings 350 594
 

Merged epochs* 92 102 
Total  975 1812 

* Merged crying sounds with additional background noise. ** The non‐crying sound included common baby sounds 
(babies hiccoughing, gurling, babbling and yelling), common human sounds (breathing, coughing, talking), general 
indoor sounds (doors closing, footsteps and vacuuming) and general outdoor sounds (birds, thunder, sirens). 
*** This is a labelled collection of environmental audio recordings. The audio recordings have been extracted from 
public field recordings.

supplementary fiGure s1 Schematic overview of analysis steps
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suPPlementary text S3 Audio features and feature selection.  
 
OpenSMILE generated features from each 5 second epoch in the following domains:

Feature group Description

Fundamental frequency (F0) Pitch
Jitter and shimmer Voice quality
Mel­frequency cepstrum (coefficients) Power spectrum
Line spectral frequencies Frequencies
Loudness Sum of auditory spectrum (Intensity & approximate 

loudness)
Voicing Probability of voicing

 
For each domain, the following statistics were derived by the openSMILE software:

Statistics obtained from each feature during each 5-second epoch

Arithmetic mean
Quartiles and iQr ranges (1­2, 1­3, 2­3)
Skewness and kurtosis
Linear regression slope, offset and approximation error
Relative position of minimum and maximum
Percentile 1%, percentile 99% and range
Standard deviation
Percentage of frames above 75/90% of range

 

suPPlementary figure s3a Example of distribution plots of each feature used during the feature 
selection process. Each color represents a different condition. Of the displayed features, only the bottom 
left feature (mfcc_sma[1] skewness) was included in the final dataset.
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suPPlementary figure s5 True and predicted crying epochs per infantsuPPlementary figure s4 Variable importance Feature importance plot of the final algorithm. 
On the y-axis, the 10 most important features derived from the openSMILE software are displayed. The 
bars and the x-axis represent the relative importance of each feature.
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Introduction

Parkinson’s disease (pD) motor impairments can be characterized as 
slow and rigid and can lead to a gradual reduction in movement speed 
over time.1 The recommended instrument for assessing the severity of 
pD motor symptoms is the Movement Disorder Society’s revised version 
of the Unified Parkinson’s Disease Rating Scale, Part III (mDs-upDrs iii).2 
The mDs-upDrs iii offers a reliable and valid metric for evaluating motor 
manifestations in each body area affected by pD.3-5 There are two main 
limitations of the mDs-upDrs iii. First, the mDs-upDrs iii requires approx­
imately 15 minutes to complete with a trained rater, therefore making it 
time consuming and labor intensive.6 Thus, mDs-upDrs iii is not ideal for 
demonstrating the time of onset of fast­acting dopaminergic drugs, such 
as the inhaled and intranasal forms of levodopa (L­dopa)/carbidopa and 
apomorphine.7,8 Second, the mDs-upDrs iii provides only a coarse rating 
of motor function and therefore cannot identify or differentiate between 
specific kinematics of finger movements.3 As fine motor control abnor­
malities are typically the first manifestations of motor impairments in pD 
patients, it is important to develop composite biomarkers that are sensi­
tive to these changes.9 To address these limitations, there is a demand for 
biomarkers that detect fine­grained changes in motor function and are 
congruent with the mDs-upDrs.

Finger tapping tasks provide insights into fine motor activity 10,11 and 
have been shown to be quick, effective, and simple assessments for esti­
mating mDs-upDrs motor disability12,13 and assessing antiparkinso­
nian drug effects.14-19 These tasks provide insights into fin­ ger and fore­
arm movement speed, accuracy, amplitude, frequency, rhythm, and 
fatigue.10,14,20,21 pD patients often experience tremors, stiffness, and 
difficulty with movement, which can significantly impact their ability to 
perform daily activities, including buttoning a shirt, typing on a keyboard, 
or using utensils.22,23 As patients want treatments that will improve their 
ability to carry out daily activities, measuring motor function through tap­
ping biomarkers can provide a more direct and meaningful assessment of 

Abstract

The validation of objective and easy­to­implement biomarkers that can 
monitor the effects of fast­acting drugs among Parkinson’s disease (pD) 
patients would benefit antiparkinsonian drug development. We devel­
oped composite biomarkers to detect levodopa/carbidopa effects and to 
estimate pD symptom severity. For this development, we trained machine 
learning algorithms to select the optimal combination of finger tap­
ping task features to predict treatment effects and disease severity. Data 
were collected during a placebo­controlled, crossover study with 20 pD 
patients. The alternate index and middle finger tapping (imft), alternative 
index finger tapping (ift), and thumb–index finger tapping (tift) tasks 
and the Movement Disorder Society­Unified Parkinson’s Disease Rat­
ing Scale (mDs-upDrs) III were performed during treatment. We trained 
classification algorithms to select features consisting of the mDs-upDrs 
iii item scores; the individual imft, ift, and tift; and all three tapping 
tasks collectively to classify treatment effects. Furthermore, we trained 
regression algorithms to estimate the mDs-upDrs iii total score using 
the tapping task features individually and collectively. The ift compos­
ite biomarker had the best classification performance (83.50% accuracy, 
93.95% precision) and outperformed the mDs-upDrs iii composite bio­
marker (75.75% accuracy, 73.93% precision). It also achieved the best per­
formance when the mDs-upDrs iii total score was estimated (mean abso­
lute error: 7.87, Pearson’s correlation: 0.69). We demonstrated that the ift 
composite biomarker outperformed the combined tapping tasks and the 
mDs-upDrs iii composite biomarkers in detecting treatment effects. This 
provides evidence for adopting the ift composite biomarker for detecting 
antiparkinsonian treatment effect in clinical trials.
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on state by an investigator. Patients were included if they were between 
ages 20 and 85 years during screening, experienced self­described motor 
fluctuations, and were taking oral antiparkinsonian medication. Patients 
were excluded if they had known conditions that would affect L­dopa/car­
bidopa treatment or study compliance, such as previous intolerance, drug 
dependence, or psychiatric disease.

assessments

mds-uPdrs iii We selected the mDs-upDrs iii as the gold standard for 
the purposes of this study. The mDs-upDrs iii was conducted by trained 
raters at chDr. The examination took on average 15 minutes to complete. 
It was performed pre­dose and at 10, 30, 60, and 90 minutes after dosing.

finger taPPing tasks All the tapping tasks were performed twice 
pre­dose and once at 10, 25, 45, 60, 75, 90, and 105 minutes after dosing. If 
the tapping tasks and mDs-upDrs iii were planned simultaneously, then 
tapping tasks were performed first.

alternate index and middle finger taPPing and alternate 
index finger taPPing Each patient was provided with a touchscreen 
laptop equipped with the alternate index and middle finger tapping 
(imft) and alternate index finger tapping (ift) tasks.10 The patients were 
instructed to use the hand that was most affected (if both hands were 
equally affected, to use their dominant hand) and to perform each task as 
fast and accurately as possible for 30 seconds. For the imft, patients were 
asked to tap between the two targets (2.5 cm apart) with their index and 
middle fingers. For the ift, patients were asked to tap the targets (20 cm 
apart) with their index finger. The imft and ift require two different move­
ments; the imft and ift are dependent on fine finger and forearm move­
ments, respectively.10 Each of the two tasks generated 43 features relat­
ing to speed (eg, total number of taps), accuracy (eg, spatial error), rhythm 
(eg, intertap interval), and fatigue (eg, change in velocity) (Table S1).10,14

the impact of treatments on patients’ lives. Therefore, the tapping tasks 
could be considered of interest to both clinicians and patients.

The complexity of parkinsonism motor impairment manifestations 
cannot be captured by a single biomarker. By exploiting machine learn­
ing algorithms, we can combine multiple objective biomarkers into a sin­
gle composite biomarker that would represent a multi­dimensional char­
acterization of pD.24 Previous studies have demonstrated that composite 
biomarkers could effectively differentiate between pD and healthy con­
trols and estimate mDs-upDrs iii symptom severity.25-27 This study inves­
tigates the accuracy and sensitivity of composite tapping biomarkers to 
detect drug effects and to estimate disease severity among pD patients.

Patients and Methods

This is an extension of a previous study that investigated the reliability of 
tapping tasks to detect the longitudinal effects of L­dopa/carbidopa and 
to determine the correlation of the tapping features with the mDs-upDrs 
iii.14 The study was conducted at the Centre for Human Drug Research 
(chDr) in Leiden, the Netherlands, between July and November 2020 and 
is registered in the Netherlands Trial Register (trial nl8617).

stuDy overvieW

We conducted a double­blind, placebo­controlled, randomized, two­way 
crossover study with L­dopa/carbidopa in 20 pD patients that had recog­
nizable off episodes (symptoms not adequately controlled by their med­
ication).28 Patients received a semi­individual dose of the investigational 
drug. To ensure an off­on transition, the patients were given a supramax­
imal dose that was at least 25% higher than their usually administered 
morning dose.29

patient criteria

Enrolled patients had a clinical diagnosis of pD, as confirmed by a neu­
rologist, and a classification of a Hoehn–Yahr stages I to III during their 
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considered using the baseline­uncorrected values to reduce the num­
ber of measurements needed for treatment classification. The base­
line­uncorrected model would require only a single tapping assessment, 
whereas the baseline­corrected model would require two.

cross-validation We applied a nested k­fold cross­validation strat­
egy to assess the performance and the generalizability of the composite 
biomarkers.34 In nested cross­validation, the outer fold assesses the per­
formance of the model, whereas the inner fold performs the model and 
hyper­parameter selection. In our study, the outer­fold step was repeated 
100 times, with each iteration containing a different combination of train­
ing (80% of the data) and test sets (20%). Each outer training set was fur­
ther split into an inner training (80% of the data) and validation sets (20%). 
The inner­fold step was repeated 50 times, and the best­performing 
inner model would be evaluated in the outer fold. The final results would 
be represented as the averaged and standard deviation of the models 
selected by each outer fold.34 For the classification and regression mod­
els, we applied a group­shuffle split (same distribution of placebo and 
active treatments in each split) and a stratified­shuffle split (same dis­
tribution of mDs-upDrs iii scores in each split), respectively. To stratify 
the mDs-upDrs iii scores, we assigned each score to one of three binned 
ranges (eg, the baseline­corrected mDs-upDrs iii binned ranges were [­13, 
­8.76], [­8.76, ­4.53], and [­4.53, 0.3]). Each outer fold had the same distri­
bution of binned ranges. Stratification was not applied to the inner fold, 
as the small sample size would limit the number of samples available per 
bin. Within each inner fold, all features were standardized by subtract­
ing the mean and scaling to the unit variance. To identify the features that 
were predictive of the outcomes, we identified features that were selected 
at least once by all outer­fold models.34

classification of active or Placebo treatments Classification 
models were trained to classify the active or placebo treatments. As we 
intended to predict the probability of treatment at all time points, we 

thumb–index finger taPPing A wireless goniometer (Biometrics 
Ltd, Newport, uk) was placed on the metacarpal and proximal phalanx 
of the index finger of the most affected hand (if both hands were equally 
affected, to use their dominant hand).10,14,30 Each patient was instructed 
to sit comfortably, hold up the hand, and tap the index finger on the thumb 
as widely and quickly as possible continuously for 15 seconds. The thumb–
index finger tapping (tift) assesses unilateral sequential fine finger move­
ments. The 25 features of the tift include progressive changes in ampli­
tude, hesitations, and tapping speed during the task (Table S1).14

statistical analysis

All data preprocessing and statistical analyses were conducted using 
Python (version 3.8.0) (31) and the Scikit­Learn library (version 1.0.1).32

data PreProcessing All features were visually and statistically 
inspected for normality using histograms and Shapiro–Wilk tests, respec­
tively. Log or square root transformations were applied when the features 
were not normally distributed. Only features that were normally distrib­
uted were included in the analysis. Missing values were not imputed, and 
only complete cases were considered.

As the tapping composite biomarker is designed to be a proxy for over­
all motor function, we did not account for laterality of the tapping task in 
the biomarkers. The need for assessing the tapping tasks with both hands 
is therefore avoided, which could streamline the assessment process and 
reduce the burden on patients.

comPosite biomarkers We developed 10 composite biomark­
ers. The composite biomarkers represented the baseline­uncorrected or 
baseline­corrected mDs-upDrs iii 18­item scores; all three tapping tasks 
combined; and the ift, imft, and tift tasks individually. From a statisti­
cal viewpoint, we corrected for baseline to remove any concomitant vari­
ability in the treatment response, which would therefore improve the 
precision of the treatment detection.33 From a practical viewpoint, we 
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with elastic­net regularization (optimized for α and the l1 ratio) was used 
to predict the mDs-upDrs iii total score at 90 minutes using the 105­minute 
tapping biomarkers. These two time points were compared, as it was pre­
viously shown that the ift and tift showed significant and moderate­to­
strong correlations with the mDs-upDrs iii.14 Further, the 90­ and 105­min­
ute tapping tasks were equally as close to the 90­minute mDs-upDrs iii in 
timing and therefore we assumed would perform equally well.

To assess the performance of the models, we estimated the mean abso­
lute error (mae) of the outer­fold models. We evaluated the correlation 
between the predicted and true mDs-upDrs iii scores at all timepoints 
for each outer­fold model. Like the classification models, the mDs-upDrs 
iii scores were estimated at other time points with the 20% patients who 
were not used for training. Additionally, as for the classification models, 
those data were also used to estimate the repeatability and effect size.

Results
Data collecteD

Twenty pD patients participated in this study. An overview of the demo­
graphic and disease characteristics of the patients was published previ­
ously ;14 14 patients were male, and their ages ranged from 48 to 70 years. 
Patients received one to four capsules of 100/25 mg L­dopa/carbidopa as 
they had a supramaximal morning levodopa equivalent dose (leD) rang­
ing from 47 to 391 milligrams. The median mDs-upDrs iii score when using 
regular medication was 23 and 22 on their placebo and active treatment 
days, respectively.14

We analyzed 31 imft, 31 ift, and 25 tift features. No features were 
excluded due to nonnormal distribution. Due to goniometer damage, we 
had missing data for 1 patient in the placebo condition and 2 patients in 
the active condition. As 6 patients had difficulties performing the imft, 
this led to missing data. However, the missing data were equally distrib­
uted across the treatment conditions and therefore deemed missing at 
random.

chose the last measurements to train the models. The mDs-upDrs iii 
classification model was trained on the 90­minute mDs-upDrs iii item 
scores.14 The tapping classification models were trained on measure­
ments taken immediately after the mDs-upDrs iii starting at 105 minutes.
To identify the optimal classification model, we compared three 
classification models: support vector machines, logistic regression, 
and linear discriminant analysis (lDa). These classification models were 
selected as they are easy to implement and to interpret.35-37 Previous 
studies have also used these algorithms to classify pD diagnosis or esti­
mate mDs-upDrs iii.38-41 Models were compared based on their mean 
accuracy, precision, and f1 scores.40

In addition, each model selected by the outer folds was used to predict 
the treatment at the other time points, with 20% of patients who were 
not used for training. This would allow researchers to identify at which 
time point treatment effects are detected. For each time point, the mean 
and standard deviation of the class probabilities were based on the pre­
dicted log­odd ratios from each fold. Additionally, these probabilities 
were used to estimate the repeatability and effect size. The repeatability 
was assessed by calculating the intraclass correlation coefficients (icc) 
using the placebo results only. Using a random intercept model with the 
intercept and time point as fixed effects, the icc was calculated by divid­
ing the between­subject variance by the sum of the between­subject and 
within­subject variances. The effect size was calculated using all avail­
able data and a random intercept model with intercept, time point, treat­
ment, and interaction between time point and treatment as fixed effects. 
In addition, the effect size was calculated as the contrast between the 
probabilities after treatment and the averaged baseline probabilities 
divided by the square root of the sum of the between­subject and within­
subject variations.

estimation of the mds-uPdrs iii total score To assess if the 
tapping composite biomarkers (baseline uncorrected and baseline cor­
rected) could estimate the mDs-upDrs iii total score, linear regression 
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respectively) (Figure S2). The mDs-upDrs iii demonstrated higher repeat­
ability than the tapping tasks. Whereas the baseline­uncorrected mDs-
upDrs iii biomarker obtained an excellent icc, the ift and tift both 
achieved good iccs (0.78, 0.80) (42). However, the iccs of the baseline­cor­
rected mDs-upDrs iii and the ift, imft, and tift biomarkers decreased to 
a moderate icc range between 0.52 and 0.66.42

estimation of mDs-upDrs iii

The mean mDs-upDrs iii total scores at 90 minutes for the placebo and 
active treatments were 33.5 and 22.0, respectively. When baseline­cor­
rected, the mean mDs-upDrs iii scores for the placebo and active treat­
ments were 0.3 and ­13.0, respectively (Figure 3).

The best­performing baseline­uncorrected regression models were the 
tift and ift composite biomarkers, which achieved the lowest average 
mae of 10.31 and 10.36, respectively. In addition, the tift and ift showed 
large effect sizes of 1.47 and 2.23, respectively, when estimating the mDs-
upDrs iii. The best­performing baseline­corrected model was the ift 
composite biomarker, which yielded the lowest average mae of 7.87. For 
both the baseline­uncorrected and baseline­corrected models, the best­
performing composite biomarkers outperformed that of the composite 
biomarkers of the three tasks. For the ift features, the features that were 
mutually selected by both models were similar to that of the ift classifica­
tion features (Figure 2; Figure S1).

estimation of mds-uPdrs iii at all time Points The predicted 
and true mDs-upDrs iii scores were significantly correlated for the base­
line­corrected and baseline­uncorrected models (Table 2). Once again, 
the best positive correlations were achieved by the tift baseline­uncor­
rected composite biomarker (r = 0.58, P < 0.01) and the ift baseline­cor­
rected composite biomarker (r = 0.69, P < 0.01). The greatest difference in 
the true mDs-upDrs iii scores between the placebo and active treatment 
interventions was at 90 minutes (Fig. 3). The tapping tasks achieved a 
moderate to good icc (Table 2).

classification of placeBo anD active treatments

We found that the lDa classifier consistently yielded the highest accuracy 
for all models (for both baseline uncorrected and baseline corrected); 
thus, we reported only the lDa results.

classification of treatment effects The best­performing base­
line­uncorrected composite biomarker, the ift, yielded an accuracy, pre­
cision, f1 score, and large effect size of 68.50%, 70.23%, 68.93%, and 1.60 
respectively (Table 1). The best­performing baseline­corrected compos­
ite biomarker, the ift, achieved a higher average accuracy, precision, 
f1 score, and large effect size of 83.50%, 93.95%, 80.09%, and 2.58. Both 
models outperformed the mDs-upDrs iii classification models across all 
metrics. The ift features that were mutually identified as important fea­
tures for the baseline­uncorrected and baseline­corrected classification 
models were related to accuracy (e.g., spatial errors and the bivariate con­
tour ellipse area), fatigue (e.g., velocity changes), and velocity (e.g., inter­
tap intervals) (Figure 1).

classification of treatment effects at all time Points In 
Figure 2, the classification models were applied to all time points, show­
ing the mean predicted probability of an active (>0.5) or placebo treat­
ment (<0.5). In the baseline­corrected ift, tift, and mDs-upDrs iii mod­
els, the mean predicted probability of a patient receiving a placebo 
treatment was consistently less than 0.5. In contrast, when active treat­
ment was administered, the baseline­corrected ift and mDs-upDrs 
iii model had a mean predicted probability above 0.5 from 60 minutes 
onward. The baseline­corrected imft and tift models crossed the 0.5 
thresholds after 45 minutes. We found that the baseline­corrected ift bio­
marker determined a large effect size (0.81) at 30 minutes, whereas the 
baseline­ uncorrected ift biomarker reached a large effect size of 0.84 
at 60 minutes. The mDs-upDrs iii achieved a large effect size at 60 min­
utes (1.69 and 1.04 for baseline corrected and baseline uncorrected, 
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on the patient’s tapping profile during their off state and adjusting for 
baseline removes variation in the L­dopa/carbidopa response.

estimation of mDs-upDrs iii

We found that the baseline­corrected ift biomarker, despite yielding the 
best performance among all the biomarkers, achieved a prediction error 
of approximately eight points and was significantly moderately corre­
lated using the mDs-upDrs iii. The prediction error is comparable to exist­
ing sensor­based composite biomarkers used to estimate the mDs-upDrs 
iii. Studies using data sourced from an Axitvity ax3 (placed on the wrist 
and back or only the wrist) to estimate the gold standard achieved an mae 
ranging from 4.29 to 6.29 points.47,48 The tapping biomarkers predicted a 
smaller range of mDs-upDrs iii scores compared to that of the true mDs-
upDrs iii scores (Figure 3). It is likely due to using only hand and forearm 
motor function assessments to predict the mDs-upDrs iii total scores, 
which includes motor assessments of other regions affected by pD, such 
as gait, facial expression, and speech.4 As the correlations of the true and 
predicted mDs-upDrs iii scores were moderate (Table 2), the tapping bio­
markers still showed concurrent validity with the gold standard. This sug­
gests that the tapping biomarkers could provide clinicians with an under­
standing of the acute effects of drugs on motor fluctuations within a short 
monitoring period.

Despite the discrepancies between the true and predicted mDs-upDrs 
iii total scores, with the advancements in technology, it is not unusual 
for the performance of new clinical assessments to outperform the cur­
rent gold standard. However, the discrepancy between the two assess­
ments influences the accuracy estimates of the new clinical assessments, 
and as it would be interpreted as a prediction error.49 Therefore, we argue 
that accurate estimation of the mDs-upDrs iii score is not essential for the 
adoption of the composite biomarker as a new complementary assess­
ment for estimating symptom severity. Rather, the consequences result­
ing from the disagreement between the gold standard and the tapping 
composite biomarkers should be investigated.

Discussion
Detection of treatment effects

The ift biomarker (baseline corrected and baseline uncorrected) was, on 
average, more predictive of and more sensitive to treatment effects than 
the mDs- upDrs iii biomarker in terms of accuracy, precision, and clini­
cal significance (as supported by the effect­size performances) (Table 1). 
This is significant as the ability to detect changes in aspects of motor func­
tion that may be missed by traditional assessments allows for a more sen­
sitive measure of treatment efficacy. This can be valuable for detecting 
small and early changes in motor function that are indicative of a treat­
ment response. The most important ift features used to classify treatment 
effects are in concert with previous studies (Figure 1) that also identified 
that forearm movements relating to velocity, amplitude, and rhythm are 
sensitive to anti­ parkinsonian drug effects.10,15,43,44 We demonstrated that 
treatment effects were detected at 45 and 60 minutes for the tift and ift 
composite biomarkers, respectively (Figure 2). This finding is notable as 
the mean onset of L­dopa/carbidopa action is about 50 minutes (45). This 
suggests that tapping tasks can detect the onset of oral L­dopa/carbi­
dopa. The mDs-upDrs iii was not performed at 45 minutes, so it could not 
be determined whether the mDs-upDrs iii biomarker could detect treat­
ment effects at 45 minutes. These findings further propound that the tap­
ping tasks are practical and sensitive composite biomarkers for detecting 
motor response changes induced by anti­ parkinsonian drugs (46). Further, 
the large effect sizes can potentially reduce sample size requirements and 
enhance power for future tapping task trials that assess treatment effects.

The performance of the classification models (except for the icc) 
improved when the features were baseline corrected. Despite this, both 
models provide practical and clinical value. The baseline­uncorrected 
models required only a single measurement and represented the current 
motor function status. The baseline­corrected models require two mea­
surements and represent the changes in motor function over time. The 
increased performance suggests that treatment response is dependent 
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Conclusion

In conclusion, the ift biomarker was more predictive of and sensitive to 
the detection of treatment effects than the mDs-upDrs iii biomarker; 
therefore, the tapping biomarkers appear to hold promise for evaluating 
the early and rapid effects of antiparkinsonian drugs. Moreover, the tap­
ping task is easy to perform and can be done in clinical settings as well 
as at home by patients themselves, making it a practical and convenient 
method for monitoring disease progression and treatment response. 
Using tapping biomarkers, clinicians can obtain accurate and reliable 
data that can inform treatment decisions in real time.

future Work

We demonstrated that the tapping composite biomarkers could detect 
the onset of oral L­dopa/carbidopa at 45 minutes. A follow­up study could 
investigate if the tapping composite biomarkers could detect an earlier 
onset of an even faster­acting antiparkinsonian drug, such as inhaled apo­
morphine that has an onset as early as 8 minutes.8 This would further vali­
date the sensitivity of the tapping composite biomarker to detect fast­act­
ing dopaminergic drug effects.

Our sample size may limit the generalizability of this study’s findings 
as a small sample size may not be representative of the broader popu­
lation of patients with pD, making it difficult to generalize its results to a 
larger population.50 This is particularly relevant for pD studies, where 
the disease can manifest in different ways and progress at different rates 
in different patients. To mitigate the effect of the small sample sizes, we 
employed cross­validation to bootstrap and validate the models against 
different groups of patients. We propose conducting a follow­up trial to 
implement the tapping tasks among more pD patients with more diverse 
mDs-upDrs iii profiles. The data collected from the trial can be used as 
an independent data set to assess the validity, reliability, and generaliz­
ability of our current methods. Although composite biomarkers have the 
advantage of capturing multiple aspects of motor function, the effects of 
individual components within the composite biomarker must be care­
fully examined to avoid misleading interpretations of the results. For 
example, a treatment that improves tapping speed but worsens tapping 
rhythm may result in an overall neutral effect, making it difficult to inter­
pret the treatment’s efficacy. Like other composite measures, such as the 
mDs-upDrs iii total score, it is crucial to examine the effects of each fea­
ture of the composite biomarker separately, as well as in conjunction with 
the overall composite score, to better understand the treatment’s impact 
on finger motor function.
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suPPlementary table 1 Overview of features for the Alternate Index and Middle Finger Tapping 
(IMFt), Alternate Index Finger Tapping (IFt), Thumb-Index Finger Tapping (tIFt)(8)

Task Endpoint (unit) Acronyms

tift Amplitude: Slope from linear regression  
of each tap’s amplitude against time.  
(degrees and degrees/seconds)

Mean (tam)
Change (tac)

tift Angle frequency change: Change in peak  
tapping frequency over time (Hz/min) 
Angle change (degrees2/s) 

Frequency Mean (afm)
Frequency Change (afc)
Angle Mean (aam),
Angle Change (aac)

imft, ift Bivariate contour ellipse angle (degree)
Bivariate contour ellipse area (mm2)
Bcea represents the area of an ellipse which 
encompasses the fixation points

Bcea angle (Bct)
Bcea area (Bca)

imft, ift Distance travelled between consecutive taps 
(centimetres)

Total (Dtt)
Average (Dta)
Standard Deviation (Dts)
Covariance (Dtv)
Change between first/last (DtD)
Change between intervals (Dtc)

imft, ift, tift Inter­Tap Interval: Time between two  
consecutive taps (milliseconds) 

Average (ita)
Standard Deviation (its)
Covariance (itv) Change between (itc) 
Change between first/last (itD)

imft, ift Missed Taps: Total number of double/missed 
taps (DBltt)
Ratio good taps: total taps (DBltr) (count)

Total number of double/missed taps (DBltt)
Ratio good taps: total taps (DBltr)

imft, ift Number of Halts: Number of taps where the 
inter­tap interval is larger than 2 * itm (count)

noh

tift Peak frequency area under the curve:  
The total power around the peak frequency  
in the power spectrum around the peak  
frequency (degrees2)

Amplitude (fpa)
Frequency (fpf)
Area under the curve (fpp)

imft, ift Ratio good taps:total taps: Taps on the  
correct side (left/right) of the screen

tnt

imft, ift Spatial error:
Sum of the Euclidean distances between  
each tap and the center of the target
(millimeters)

Total (set)
Average (sea)
Standard Deviation (ses)
Covariance (sev)
Change between (seD)
Change between first/last (sec)

imft, ift, tift Total number of taps tnt
imft, ift Total taps inside and outside target Taps within the target circle (tit)

Taps outside the target circle (tot)

table 1 The mean and standard deviations of the accuracy, precision, F1 score, and effect size for 
each biomarker (at 90 minutes for MDS-UpDrS III and 105 minutes for the tapping task) are based on the 
100 outer folds of the nested cross-validation

Tasks Accuracy Precision F1-score icc Effect-size

Baseline- 
uncorrecteD 

imft 56.90% 
(±15.09%) 

61.67% 
(±22.53%) 

56.56% 
(±18.07%) 

0.60
(± 0.25) 

0.64 
(± 0.57) 

ift 68.50% 
(±12.56%) 

70.23% 
(±16.31%) 

68.93% 
(±14.9%) 

0.78
(± 0.21) 

1.60 
(± 0.82) 

tift 67.72% 
(±15.84%) 

65.55% 
(±21.03%) 

67.51% 
(±18.22%) 

0.78 
(± 0.22) 

1.14 
(± 0.80) 

All 3 Tasks 63.0% 
(±16.91%) 

64.35% 
(±27.32%) 

59.82% 
(±23.16%) 

0.68
(± 0.29) 

0.91 
(± 0.68) 

mDs-upDrs 
iii item scores 

63.75% 
(±11.25%) 

61.20% 
(±10.9%) 

68.90% 
(±11.52%) 

0.92
(± 0.10) 

1.03 
(± 0.60) 

Baseline- 
correcteD 

imft 66.86% 
(±15.23%) 

70.83% 
(±17.25%) 

69.01% 
(±15.04%) 

0.57
(± 0.17) 

1.44 
(± 0.98)  

ift 83.50% 
(±10.74%) 

93.95% 
(±11.25%) 

80.09% 
(±14.92%) 

0.53
(± 0.16) 

2.58 
(± 0.90) 

tift 77.86% 
(±14.97%) 

82.32% 
(±21.43%) 

74.72% 
(±18.44%) 

0.52 
(± 0.17) 

1.14 
(± 0.80) 

All 3 Tasks 77.98% 
(±13.26%) 

81.85% 
(±21.15%) 

74.66% 
(±19.17%) 

0.48
(± 0.18) 

0.91 
(± 0.61) 

mDs-upDrs 
iii item scores 

75.75% 
(±14.45%) 

79.95% 
(±17.64%) 

73.93% 
(±16.42%) 

0.66
(± 0.11) 

2.12 
(± 1.25) 

table 2 Average correlation and Icc (95% CI) between the true and predicted MDS-UpDrS scores 
across all time points for the repeated nested cross-validation 100 outer-fold predictions.

Tasks Correlation  
coefficient (r)

p-value icc Effect-size

Baseline- 
uncorrecteD

imft 0.10 [0.03, 0.16] p<.05 [<.05, 0.05] 0.69 [0.65, 0.73] 0.67 [0.53, 0.81]

 ift 0.52 [0.45, 0.59] p<.01 [<.01, <.01] 0.80 [0.76, 0.83] 1.02 [0.91, 1.14]
tift 0.58 [0.53, 0.63] p<.05 [<.01, <.05] 0.78 [0.74, 0.82] 1.47 [1.27, 1.67]
All 3 Tasks 0.11 [0.04, 0.18] p<.05 [<.05, 0.05] 0.66 [0.61, 0.71] 0.75 [0.62, 0.88]

Baseline- 
correcteD

imft 0.34 [0.27, 0.40] p<.05 [<.01, 0.06] 0.48 [0.44, 0.52] 1.10 [0.92, 1.28]

ift 0.69 [0.65, 0.73] p<.001[<.001,<.005] 0.45 [0.42, 0.48] 2.23 [2.01, 2.45]
tift 0.65 [0.60, 0.69] p<.001 [<.001, <.001] 0.50 [0.46, 0.54] 1.37 [1.20, 1.54]
All 3 Tasks 0.56 [0.52, 0.61] p<.05 [<.001, <.05] 0.43 [0.39, 0.47] 1.06 [0.91, 1.21]



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials242 243part iv/chapter 8

figure 1 The average feature coefficients of the respective features selected by the LDa (linear 
discriminant analysis) classifier for each finger tapping task feature and the MDS-UpDrS III (Movement 
Disorder Society-Unified Parkinson’s Disease Rating Scale, Part III) item score features (baseline-
uncorrected and baseline-corrected models). The error bars represent the 95% confidence interval.

Task Endpoint (unit) Acronyms

imft, ift Mean of each finger tap’s velocity  
(centimetres/minute)

Average (vea)
Standard Deviation (ves)
Covariance (vev)
Change between first/last (veD)
Change between intervals (vec)

tift Mean of each finger tap’s velocity 
(degrees/second)2

Mean (tvm)
Change (tvc)

tift Velocity Amplitude (degrees/second)2 Velocity Amplitude Mean (vam)
Change (vac)

tift Velocity Closing: Average of the amplitude 
(i.e. angle) travelled per second for each tap 
when moving the index finger towards the 
thumb (closing); velocity extracted from the 
derivative of the amplitude (degrees/second)

Mean (cvm)
Change (cvc)

tift Velocity Frequency (Hz) Mean (vfm)
Change (vfc)

tift Velocity Opening: Average of the amplitude 
(i.e. angle) travelled per second for each tap 
when moving the index finger away from the 
thumb (opening); velocity extracted from the 
derivative of the amplitude (degrees/s)

Mean (ovm)
Change (ovc)

[continuation of Supplementary Table 1] 
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figure 3 Average true and predicted MDS-UpDrS III (Movement Disorder Society-Unified Parkinson’s 
Disease Rating Scale, Part III) scores with standard deviation from 0 to 105 minutes post dose for the 
placebo (blue) and active (orange) treatment interventions when baseline corrected.

figure 2 The mean predicted probability that active treatment was administered in the placebo 
(blue) and active (orange) treatment groups. The green dotted line represents the 0.5 decision boundary. 
The bands represent the 95% confidence interval.
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suPPlementary figure 2 Effect sizes of each of the tapping tasks and the Movement Disorder 
Society-Unified Parkinson’s Disease Rating Scale, Part III, composite biomarkers at each time point.

suPPlementary figure 1 The average feature coefficients selected by the elastic-net linear 
regression models for each of the composite biomarkers under baseline-uncorrected and baseline-
corrected conditions. The errors represent the 95% confidence intervals.
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condition. By capturing real­time data on a patient’s everyday function­
ing, these devices can provide a nuanced, longitudinal view of disease 
severity, which, in turn, allows for the potential to track the symptomatic 
impact of therapeutic interventions. Thus, the utilization of these mobile 
technologies for the objective quantification of ADLs not only offers a 
more direct, reliable, and comprehensive measure of disease severity but 
also illuminates the dynamics of disease progression and the potential 
efficacy of pharmacological interventions.

As illustrated by the literature review in Chapter 2, these mobile health 
(mhealth) biomarkers offer a multi­faceted and data­driven approach 
towards monitoring disease status, disease progression, and treatment 
responses, which enables a better understanding and management of 
these neurological and psychiatric disorders. These mhealth biomarkers 
involve the integration of multiple mhealth features ranging from data 
from smartphone, tablets, wearables, and clinical measures. Machine 
Learning (ml) can be valuable when there is an ambiguity or a lack of con­
sensus regarding which features are relevant (or to what extent they are 
relevant) in predicting an outcome. Such novelty and ambiguity are inher­
ent when dealing with mhealth data, due to the diversity of sensors used 
for data collection, as well as the complex interactions between disease 
profiles, lifestyles, environmental factors, social interactions, and other 
uncontrolled external factors. While the current scientific literature and 
clinicians’ understanding of disease profiles can aid the identification of 
relevant features, the interplay between these features for a given indi­
vidual or population can be difficult for experts to discern. Given this diffi­
culty, clinicians may be less enthusiastic about including these new mea­
sures into clinical trials. This thesis proposes that for mhealth devices 
and ml to truly benefit healthcare, they must provide substantial benefits 
to patients and clinicians beyond a digitized gold standard measurement. 
This thesis argues that these mhealth biomarkers can provide a nearly 
continuous, remote, unobtrusive profile of disease in a way that tradi­
tional gold standard measurements, digital or not, cannot.

Introduction

This discussion chapter will unpack the motivation behind the develop­
ment and adoption of mhealth biomarkers for clinical diagnosis, symp­
tom severity estimation, and treatment effect detection. As with any 
novel biomarker, there are multiple implications and limitations span­
ning the ethical, privacy, and practical domains. These considerations, 
especially for clinicians and their potential broader applicability to other 
cns disorders, will be discussed. Moreover, I will discuss the potential of 
mhealth composite biomarkers for future clinical trials. The conclusion 
will provide a clear grasp of the present state, obstacles, and potential 
future of mhealth biomarkers in clinical environments.

mhealth biomarkers: from research to clinical 
application

Central Nervous System (cns) diseases have profound impacts on various 
facets of daily functioning. Traditionally, the evaluation of disease sever­
ity is largely reliant on temporally confined assessments conducted indi­
rectly by clinicians who only intermittently engage with patients, poten­
tially supplemented by auxiliary information sourced from patient’s close 
acquaintances, such as spouses. Consequently, the current approaches 
inherently yield a relatively episodic and potentially distorted view of 
disease progression. Traditionally, the evaluation of disease severity 
is largely reliant on temporally confined assessments conducted indi­
rectly by clinicians who only intermittently engage with patients, poten­
tially supplemented by auxiliary information sourced from patient’s close 
acquaintances, such as spouses. Consequently, the current approaches 
inherently yield a relatively episodic and potentially distorted view of dis­
ease progression. In contrast, objective evaluation of Activities of Daily 
Living (aDl) facilitated by smartphone, wearables, and tablets offers 
a more immediate, continuous, and accurate portrayal of a patient’s 
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the biomarker. For fshD, a genetic test is required for a diagnosis,23 while 
a mDD patient would be diagnosed if they persistently demonstrate five 
or more depressive symptoms (such as depressed mood, anhedonia, 
lack of energy, poor concentration, or sleep disturbances).5 The subjec­
tive and descriptive nature of the mDD clinical scales reduces its sensitiv­
ity to subtle psychomotor symptoms. Chapters 3 successfully developed 
classification models that could distinguish between Facioscapulo­
humeral dystrophy (fshD) patients and healthy controls. This study lev­
eraged remotely collected multi­faceted data, including information 
on social interactions, location, and sleep activity, to classify a clinical 
diagnosis that was assessed on genetic, functional, or behavioural fac­
tors. This innovative approach expands our knowledge beyond the lim­
ited measurements obtained within the confines of a clinical setting. By 
harnessing the power of mhealth technologies and data analytics, we 
can now capture real­life experiences and behaviours that were previ­
ously unexplored. However, it is crucial to assess the clinical validity of 
these biomarkers to ensure their effectiveness and accuracy in real­world 
applications.

Given that mhealth devices mainly collect real­world data, these 
biomarkers may be influenced by real­world factors, such as location, 
weather, life­style factors, and concomitant drug use.1 Individual vari­
ations in behaviour can potentially affect the reliability of the biomark­
ers. If a composite biomarker can accommodate the inherent variabil­
ity observed in real­world settings, while consistently producing reliable 
results, it can be considered a viable and validated measurement. Thus, 
longitudinal studies and test­retest reliability analyses can help deter­
mine the stability and consistency of these biomarkers. As addressed in 
Chapter 2, research on the consistency and repeatability of a compos­
ite biomarker, as well as its ability to account for long­term variability, is 
currently limited. To ensure that the biomarkers developed in this the­
sis were reliable and consistent, Sections 2 to 4 explored the compos­
ite biomarkers’ ability to consistently achieve consistent and repeatable 
results across subjects and time windows. Specifically, Chapters 3 to 5 

Classifying a diagnosis

Evaluating the classification performance of a mhealth composite bio­
marker in distinguishing patients from healthy controls is a crucial fac­
tor in assessing its suitability for the intended purpose. The magnitude 
of difference between the two groups can provide insights into the level 
of change in disease activity and aid in estimating sample sizes for future 
clinical trials.1 However, the premise that a specific treatment will ren­
der a patient with a cns more like a healthy individual is not always via­
ble, especially in the context of cns disorders, thus comparison to healthy 
controls is not always necessary or meaningful. Instead, a crucial factor 
lies in identifying differences between someone with mild symptoms and 
someone at a more advanced stage of the disease. Nevertheless, for the 
initial development and validation process, we have created classifiers 
capable of distinguishing between control subjects and patients. If suc­
cessful classification is achieved, the mhealth features used to develop 
the composite biomarkers can provide valuable information for under­
standing disease activity. This information can further inform the devel­
opment of targeted interventions and monitoring strategies for patients 
with these conditions.

For a biomarker to have clinical utility, it must demonstrate clinical 
validity. Clinical validity refers to the ability of a biomarker to accurately 
identify, predict, or estimate the presence or severity of a disease or condi­
tion. mhealth biomarkers currently aim to approximate clinicians’ deci­
sions based on the available training data. While a clinical diagnosis has 
long been the gold standard, the diagnostic potential of mhealth bio­
markers may offer novel insights into disease and treatment activities. 
The selection of an appropriate reference gold standard measurement 
significantly influences the clinical validation process of mhealth bio­
markers, as the biomarker’s performance is inherently tied to the qual­
ity and validity of the chosen gold standard. The reliance on a gold stan­
dard measure with limited validity or substantial interrater variability can 
introduce potential biases and undermine the accuracy and reliability of 



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials258 259part v /chapter 9

with fshD, mDD, and Parkinson’s Disease (pD). While the composite bio­
markers demonstrated in each of these chapters showed a certain degree 
of promise and applicability, their alignment with the gold standards was 
not perfect. This highlights potential gaps for investigation and areas for 
refinement in measurement and predictive accuracy. Based on the stud­
ies addressed in thesis, there may be three causes for the discrepancy.

First, the mhealth sensors cannot monitor all behaviours that are 
assessed by the gold standard. For example, in Chapter 4, the mhealth 
sensors may have failed to capture arm, abdominal, and scapular weak­
nesses (which are assessed by the fshD Clinical Score).6 The identified 
limitation underscores the importance of discerning the specific aspects 
of disease activity that can and cannot be effectively monitored using 
mhealth sensors. However, despite this limitation, the study demon­
strated the potential of mhealth­derived biomarkers in measuring the 
extent of disease severity beyond the confines of the clinical setting. This 
capability offers valuable insights into the manifestation of disease activ­
ity and its impact on a patient’s daily quality of life.

Secondly, objectively monitored behaviour and subjective percep­
tion of behaviour are not always correlated. As shown in Chapter 5, the 
daily, detailed, and objective measures of sleep were not well­correlated 
with the subjective and weekly reported sleep quality. Several factors can 
influence the subjective reporting of sleep, including mood at the time of 
awakening,7 insomnia, impaired memory, and negative bias.8 Previous 
studies have also confirmed that objective sleep assessments do not cor­
relate with subjective reports of sleep.9,10 This indicates that while objec­
tive measures may provide more accurate and reliable data about disease 
activity, subjective reports may still provide valuable insights into an indi­
vidual’s perception and experience of their own behaviours.

Thirdly, it is conceivable that the composite biomarker offers supe­
rior capabilities in measuring disease activity than the gold standard 
or at least captures distinct dimensions of disease activity that are not 
quantified by the gold standard. The tapping composite biomarkers pre­
sented in Chapter 8 offer a more objective, nuanced, and comprehensive 

demonstrated that using the first week of data for the development of a 
ml­biomarker allowed for consistent and stable prediction of symptom 
severity for the remainder of the trial period. This finding highlights the 
importance of collecting enough data for the development of a reliable 
composite biomarker and at least one week of data appears to be neces­
sary for the accurate estimation of clinical severity and the monitoring of 
disease activity outside the clinic. Chapters 6 and 7 demonstrated con­
sistent intra­ and inter­device reliability of the cough and cry biomarkers 
across different audio recording settings. Chapter 8 illustrated that train­
ing the composite biomarkers on a single timepoint enabled repeatable 
and reliable estimations of treatment effects and mDs-upDrs iii scores 
across other time points. In conclusion, the studies included in this the­
sis, conducted under different settings and with different clinical popula­
tions, suggest that composite mhealth biomarkers show promise regard­
ing measurement validity.

Estimating symptom severity

Symptom severity estimation based on composite biomarkers provides 
an objective and standardized measurement for tracking disease pro­
gression and treatment response. The development and validation of 
composite biomarkers for the estimation of symptom severity in clini­
cal trials play a crucial role in determining if the composite biomarker can 
serve as a meaningful endpoint in clinical trials. The robust relationship 
between the composite biomarker’s predicted symptom severity score 
and the gold standard score indicates the relative effectiveness of the 
biomarker in capturing and quantifying symptom severity, thereby sup­
porting its utility in clinical trials. While a perfect correlation may never be 
achieved due to the nature of the data collected, further research should 
determine if the observed discrepancy is acceptable and if the cause of 
the discrepancy is due to the limitations of the composite biomarker or of 
the gold standard. Chapters 4, 5, and 8 were aimed at developing com­
posite biomarkers that could estimate the symptom severity of patients 



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials260 261part v /chapter 9

of a biomarker as solely a predictive or diagnostic tool. This focus shifts 
towards providing an additional layer of evidence of the biomarkers’ 
unique ability to capture clinically relevant changes and potentially high­
lighting the limitations of the gold standard.

Limitations of mhealth composite biomarkers

The nature of the mhealth devices used raises questions regarding the 
accuracy and reliability of the data, as factors such as device quality, sen­
sor reliability, data collection protocols, and user adherence can lead to 
inconsistent or complete data. In turn, this can affect the reliability and 
validity of the composite biomarkers, and their subsequent predictions. 
To overcome these issues, this thesis proposes two main methodologies.

First, given that mhealth data is collected under free­living environ­
ments and requires patients’ consent and engagement, seamless inte­
gration of mhealth data collection tools into existing clinical workflows 
is crucial. The tools should be user­friendly, compatible with the patient’s 
lifestyle and mobile phone, and should be able to provide consistent, and 
formative results to the clinicians. Hence, it’s crucial to report the quan­
tity of missing data for each study and if possible, as shown in Chapters 
3, report the study participants’ experience with the remote monitoring 
platform to understand the causes of the missing or poor­quality data.

Second, a large and representative dataset is necessary to build a robust 
and generalizable biomarker. With a larger sample size, the model can cap­
ture a wider range of patterns, relationships, and variations in the data, 
leading to improved accuracy and generalizability of predictions. The 
larger sample size reduces the variability in the performance estimates, 
providing more reliable assessments of the model’s strengths and weak­
nesses. Further, it provides a broader range of instances for the model 
to learn from, facilitating the identification of more intricate and subtle 
relationships between features. A representative dataset would reflect 
a true distribution of the target population, including various demo­
graphic factors, characteristics, and potential confounding variables. By 

depiction of a pD patient’s fine finger movement than the mDs-upDrs iii. 
It is important to acknowledge that composite biomarkers may exhibit 
advantages over the gold standard in terms of sensitivity and specific­
ity. Through the utilization of mhealth data and ml, these composite bio­
markers have the potential to identify subtle disease markers that may be 
overlooked or missed by conventional clinical observations. By leverag­
ing these advanced approaches, researchers can gain deeper insights into 
the complexities of disease activity and potentially enhance the precision 
and effectiveness of monitoring disease activity and treatment effects.

Further studies are needed to bridge the gap between mhealth sen­
sors and traditional clinical assessments. Understanding the relation­
ship between objective data, the gold standards, and patient feedback is 
pivotal. Additionally, refining composite biomarkers will drive more pre­
cise clinical monitoring. These steps are crucial for seamlessly integrating 
mhealth tools in clinical trials.

Detecting treatment effects

To evaluate if the composite biomarker is fit­for­purpose for assessing 
treatment effects, the biomarker needs to be evaluated for its ability to 
respond to changes in disease activity in response to a treatment. Chap-
ter 8 explored the ability of a tablet­based composite finger tapping bio­
marker to detect anti­parkinsonian (dopaminergic) treatment effects 
among pD patients. This study investigated if a composite biomarker 
demonstrates comparable or superior performance to the gold standard 
in the detection of treatment effects. The approach taken in this chap­
ter introduces a unique perspective compared to previous chapters, as 
the gold standard measurement was not the predicted outcome itself. 
Instead, the focus was on comparing the sensitivity and efficacy of the 
biomarker in relation to the gold standard in the detection of treatment 
effects. This novel approach presents a fresh methodology for evaluat­
ing the validity of a biomarker in clinical trials as it offers a broader per­
spective on biomarker evaluation, going beyond the traditional notion 
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disease status, disease activity, and treatment response. These biomark­
ers can potentially help clinicians refine or redefine how they view disease 
beyond traditional siloed disease­specific definitions. Further, the auto­
mated processing of large volumes of data could enable fast predictions, 
which would save valuable time for clinicians.

Despite their promise, it’s important to note that composite biomarkers 
should not be considered as a replacement for traditional clinical assess­
ments. Traditional clinical assessments, which typically involve a compre­
hensive evaluation of a patient’s medical history, physical examination, 
and laboratory tests, are crucial in providing an accurate diagnosis and 
monitoring of disease activity. Further, they can infer an understanding of 
subjective and contextual factors that may not be easily captured in the 
medical datasets. ml rely on understanding the patterns within a train­
ing data, which may not represent all possible scenarios, and less likely 
to represent rare or complex cases. The critical thinking of clinicians may 
allow them to adapt their knowledge to diagnose challenging or atyp­
ical conditions. While mhealth biomarkers has shown promise for clini­
cal assessment, this thesis argues that it is essential to view ml as a tool to 
augment human expertise rather than a complete replacement.

The objective of a remotely monitored clinical trial should be to 
develop a synergistic approach that leverages the strengths of traditional 
clinical assessments, mhealth devices, and ml. By harnessing the power 
of composite biomarkers alongside traditional clinical assessments, we 
can better quantify disease activity and provide more effective and per­
sonalized care to patients. This integrated approach has the potential to 
aid future developments in clinical research and contribute to significant 
advancements in healthcare.

Implications for other Cns disorders

Developing mhealth biomarkers for mDD, pD, fshD, and hospitalized 
infants carries several potential implications for the development and 
application of mhealth biomarkers for other cns disorders. The proto­
cols and methodologies for the data collection and mhealth biomarker 

incorporating diverse samples, the model becomes more robust to vari­
ations and biases present in the data, ensuring its predictions are reliable 
across different subgroups or settings.

Reflecting on the chapters in this thesis, to estimate the minimum data­
set size for mhealth­based clinical trials, consider the desired effect size, 
statistical power, variability in the specific outcome, type of outcome (e.g., 
classification vs. severity), potential data collection issues, and the com­
plexity introduced by external factors and free­living conditions. Adjust­
ments should be made based on real­world constraints and the quality of 
mhealth data. For example, in a follow­up study, the objective would be 
to detect a 10% improvement in fshD symptoms under free­living condi­
tions. We recognize that sleep activity can affect the fshD assessments, 
and hence a larger sample size would be needed to account for the sleep 
variability. If the study spans a long period, environmental or behavioral 
factors such as seasons, physiotherapy sessions, or living conditions may 
affect the physical activity measurements. Therefore, researchers may 
choose to stratify their sample based on seasons, therapy, or living condi­
tions to account for these variations.

Due to the limited sample sizes of the studies in this thesis and the liter­
ature review, it’s difficult to claim if the composite biomarkers may gener­
alize well to diverse populations, settings, or clinical trial protocols. As a 
result, the performance of composite biomarkers may vary across differ­
ent trials and patient populations, which highlights the need to validate 
their effectiveness across different contexts.

Implications for clinicians

The benefits of using of mhealth technologies and ml to provide a clin­
ical prediction include efficiency, consistency, accessibility, and data­
driven insights. As these technologies do not experience fatigue or inter­
rater variability, they can ensure more consistent and less variable clinical 
outcomes. The collection and analysis of diverse data sources, including 
patient­reported outcomes, physiological measurements, and behav­
ioral data can enable a more comprehensive and faster understanding of 
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Ethical implications

The ethical governance of mhealth biomarkers is a crucial aspect to con­
sider in their integration into clinical trials. Clinicians and healthcare pro­
viders tend to exhibit higher levels of trust in ml­derived biomarkers that 
are explainable and transparent in their decision­making process. Under­
standing how each feature or input influences the final predictions of the 
biomarker can be important for its adoption. While deep learning mod­
els have shown remarkable prediction accuracy in various domains, 
they often lack interpretability.4,5 Unlike traditional ml models that can 
provide insights into the relationships between input features and pre­
dictions, deep learning models operate as black boxes, making it chal­
lenging to explain their decision­making process. This lack of interpret­
ability raises concerns about the accountability and fairness of mhealth 
biomarkers.

When an inaccurate prediction is made by an mhealth biomarker, it 
raises questions about who should be held responsible for any harm­
ful or fatal consequences. The lack of interpretability in ml models hin­
ders the ability to understand and address potential biases, errors, or 
limitations of the biomarker’s predictions.4,5 It becomes essential to 
ensure that the use of mhealth biomarkers in clinical trials follows rig­
orous ethical guidelines, including transparency, accountability, and 
mechanisms for addressing potential harms or errors. The integration of 
mhealth biomarkers in clinical practice requires a balance between the 
benefits they offer and the ethical consequences they entail. While high 
prediction accuracy is desirable, it should be accompanied by interpret­
ability and transparency to ensure the fair and responsible use of these 
biomarkers. Ethical governance frameworks that emphasize explain­
ability and accountability can help address concerns related to poten­
tial biases, errors, or unintended consequences associated with mhealth 
biomarkers.

development and application can potentially be transferred and applied 
to other areas such as bipolar disorder, Amyotrophic Lateral Sclerosis, and 
Alzheimer’s disease. This cross­fertilization of methodologies can acceler­
ate the progress of biomarker research in these related conditions. It could 
allow researchers and clinicians to identify similarities and differences in 
symptom severity and treatment responses across various conditions. 
Similar physiological and behavioural patterns may exist across different 
conditions, and using the same biomarker to monitor both populations 
may facilitate comparative analysis between different clinical populations. 
For example, the social activity biomarker to identify depressive episodes 
among mDD and bipolar patients. This enhances the generalizability of the 
research findings and allows for broader application and transferability of 
knowledge across a wider range of clinical populations.

Impact on future clinical trials

By identifying the optimal sensors, features, and data collection peri­
ods for the development of composite biomarkers, future clinical tri­
als can be more efficient, less time­consuming, and less costly, which in 
turn can alleviate the study burden for both patients and clinicians. reduc­
ing the feature space and the amount of data required also reduces the 
need for more complex ml algorithms that may potentially limit interpret­
ability and therefore adoption. More specifically, feature selection tech­
niques can help remove noise and irrelevant data, improving the accuracy 
of the analysis and the interpretability of the final biomarker. Parts 2 to 
4 of the thesis employed various feature selection approaches to identify 
the most relevant features for analysis. This is crucial for informing future 
clinical trials about the specific features and corresponding sensors that 
are essential for achieving their research objectives. Additionally, in Parts 
2 and 3, the studies described determined the amount of data necessary 
to develop a reliable composite biomarker. These findings emphasize the 
significance of data curation and its role in obtaining a dependable and 
informative composite biomarker.
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Conclusion

The development and application of composite biomarkers using 
mhealth devices and ml holds significant promise for clinical research. 
These biomarkers can integrate diverse data sources and provide a more 
comprehensive understanding of disease status, symptom severity, and 
treatment effects. The use of mhealth devices and ml in clinical trials 
presents opportunities for real­time data collection, disease symptom 
monitoring under free­living conditions, and more accurate and timely 
detection of treatment effects. However, there are challenges and con­
siderations that need to be addressed. These include ensuring the clini­
cal validity and reliability of these novel biomarkers, by addressing opti­
mized and standard data collection protocols, and maintaining ethical 
and privacy governance in the integration of mhealth technologies in 
clinical trials. Further, the adoption and acceptance of mhealth bio­
markers by clinicians and healthcare providers depend on factors such as 
interpretability and explainability. Explainable biomarkers that provide 
insights into how features effect the biomarker predictions can enhance 
trust and facilitate their integration into clinical (research) practice. Over­
all, these discussions highlight the potential of mhealth devices and ml in 
complementing clinical research. While there are challenges to overcome, 
the advancements in this field offer exciting opportunities for advancing 
the field of cns research.

Privacy implications

The integration of mhealth biomarkers in clinical trials brings forth sig­
nificant privacy concerns and implications. The utilization of mhealth 
biomarkers in clinical trials entails the collection of an unprecedented 
amount of personal information about study participants.6 In this the­
sis, the mhealth technologies used were the study participants’ smart­
phones and third­party wearable devices. It is important to acknowledge 
that these technologies, although widely available, are not specifically 
designed as medical devices, which limits the clinician’s control over their 
functionalities. One6 aspect of concern is the level of control that individ­
uals, including the study participants and device developers, have over 
these devices. Since these technologies are owned and operated by the 
participants themselves, the clinician or researcher may have limited 
ability to regulate or monitor their usage. This lack of control introduces 
potential vulnerabilities in terms of data security and privacy.7 Unauthor­
ized access to such sensitive information can have severe consequences, 
including identity theft, discrimination, or exposure of personal health 
details.7 Aggregated and de­identified data, if mishandled or inade­
quately protected, can still carry privacy risks when re­identified or com­
bined with other datasets. This highlights the importance of robust data 
anonymization and de­identification techniques to safeguard the privacy 
of study participants.

To mitigate these privacy concerns and potential harms, it is essen­
tial to implement stringent privacy protection measures. This includes 
obtaining informed consent from participants, ensuring secure data 
transmission and storage, and adhering to relevant privacy regulations 
and guidelines. Additionally, transparent communication with partic­
ipants about data usage, anonymization practices, and the purpose of 
data collection can foster trust and promote participant engagement. By 
prioritizing privacy protection and adhering to best practices, clinicians 
can strike a balance between leveraging the benefits of mhealth bio­
markers and safeguarding the privacy of study participants.
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data to create remotely monitored biomarkers, we can potentially create 
novel mHealth biomarkers that can be used for diagnosis classification, 
symptom severity estimation, and quantification of treatment effects. 
These biomarkers can potentially generate novel insights that may be 
missed by the clinical gold standard assessments, making it possible to 
gain a deeper understanding of disease states.4 However, this relatively 
young field still requires further research and standardization to encour­
age adoption of these technologies into clinical trials.

In the following sections, I will summarize the findings and discus­
sions presented in my previous thesis chapters that explore the var­
ied applications and challenges of mHealth biomarkers in clinical trials. 
I will address how these biomarkers can be developed and applied for 
diagnosis classification, and as a result offer novel insights into disease­
related behavioural profiles that may be elusive in conventional clini­
cal settings. Additionally, the role of mHealth biomarkers in estimating 
symptom severity will be discussed, and I will examine the importance of 
developing mHealth biomarkers that are reliable across different condi­
tions and populations. I will also speak to how these biomarkers can be 
designed for treatment detection, setting the stage for longitudinal mon­
itoring of treatment efficacy. Finally, I will delve into the limitations of 
mHealth biomarkers, identifying areas that warrant further research and 
standardization.

Disease Classification

In the context of clinical trials, disease severity classification biomark­
ers not only offer a quantifiable measure to assess the baseline severity 
of a disease among trial participants, but it can also act as a reference to 
track disease progression over time. When evaluating the effectiveness 
of investigational drugs, these biomarkers become invaluable. If the drug 
aims to influence the trajectory of a disease, a change in the biomarker’s 
course over time can be indicative of the drug’s effect. As a result, leverag­
ing disease severity classification biomarkers can enhance the precision 

Introduction

The traditional methods of monitoring Central Nervous System (cns) dis­
eases often rely on sporadic in­person clinical assessments conducted 
under clinical settings, which may offer an incomplete or distorted rep­
resentation of a patient’s condition.1,2 This episodic and in­person 
approach can miss fluctuations in a patient’s condition and doesn’t cap­
ture a complete picture of their daily living. However, advances in mobile 
health (mHealth) technologies, including smartphones, wearables, and 
tablets, offer a potential solution for addressing these limitations by 
enabling continuous, real­time data collection on a patient’s daily liv­
ing.3 These mHealth technologies can monitor a variety of health met­
rics, like heart rate, sleep patterns, and daily physical activity through­
out the day and night, regardless of the patient’s location. Using mHealth 
technologies to remotely collect data unobtrusively can provide a clini­
cian a more complete overview of a patient’s clinical status. The integra­
tion of mHealth and ml into clinical trials should be viewed as a comple­
ment to, rather than a replacement for, traditional clinical methodology. 
The clinical expertise of humans, which includes clinical experience and 
human rapport remains irreplaceable. As both mHealth technologies, ml, 
and clinical practices continue to evolve, this integrated approach allows 
for a more dynamic and data­driven approach, which may ensure that the 
design of clinical trials remain at the forefront of both technological and 
medical advancements.

The sheer volume and complexity of data generated through mHealth 
devices can present new challenges. It’s not merely the size but the het­
erogeneity of the data that makes manual analysis not just labor­inten­
sive but also difficult to model.4,5 This is where Machine Learning (ml) 
comes into play. Chapter 2 underscores the potential for ml algorithms 
to develop validated mHealth­based biomarkers that can be deployed in 
clinical trials.6 ml algorithms can efficiently sift through vast and multi­
faceted datasets to identify patterns or correlations that may aid the clin­
ical interpretation of the data. By combining ml algorithms with mHealth 



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials274 275appenDiCes/SUMMarY

can be especially valuable in discerning even the most subtle changes in 
symptom severity, which is fundamental for early identification of the 
efficacy of a treatment. By continuously monitoring changes in the bio­
markers, researchers can gain valuable feedback on whether the drug is 
having its intended effect, which is especially crucial during Phase 2 trials 
where therapeutic effects are under scrutiny. For these biomarkers to be 
regarded as clinically valid, it is imperative that they correlate with recog­
nized clinical endpoints. Whether those endpoints concern disease pro­
gression, symptom relief, or other clinically relevant measures, a strong 
association assures that the biomarker is a trustworthy measure of the 
drug’s impact.

Chapter 4 investigated the performance of multi­task models to simul­
taneously estimate the scores of two clinical assessments, the fshD clin­
ical score and the Timed Up and Go (tug) test.15 Traditional single­task 
models, while they may be effective for predicting a single outcome, may 
fall short when applied to the multi­dimensional symptom profiles that 
often encountered in clinical settings. Therefore, the principal advantage 
of multi­task models over their single­task counterparts is their ability 
to leverage shared representations and insights across multiple clinical 
assessments.16–18 Moreover, the ability of multi­task models to general­
ize from one clinical assessment to another can be critical in evaluating 
disease severity across a spectrum of assessments. For example, if the 
model identifies a deterioration in the fshD clinical score, it might also 
predict a parallel decline in the tug score. Finally, multi­task models can 
offer a more holistic view of patient health, encompassing various facets 
of disease severity in a single, unified framework. By enabling the parallel 
assessment of multiple assessments, these models can provide a fuller, 
more nuanced picture of disease status, thus guiding more targeted and 
effective interventions.

In Chapter 5, the significance of self­reported outcomes, specifically 
the Depression Anxiety Stress Scale (Dass) and the Positive and Nega­
tive Affect Schedule (panas), emerged as decisive features for the depres­
sion models. Their inclusion served as a robust indicator for subjective 

and reliability of clinical trial outcomes, ensuring that potential treat­
ments are assessed both for their immediate impact and their influence 
on the longer­term progression of the disease.

Chapter 3 investigated the feasibility of classifying Facioscapulo­
humeral dystrophy (fshD) patients and healthy controls using the chDr’s 
Trial@Home platform. Key features, such as sleep activity and loca­
tion patterns, were identified that distinguished between fshD patients 
and controls.9 This suggests that significant variances observed in sleep 
and location patterns might serve as potential novel clinical biomarkers 
as they currently are not captured by the gold standard assessments of 
fshD.10 These biomarkers, in turn, can be essential in guiding the process 
of drug development, potentially offering a targeted approach for drug 
interventions in treating or managing the associated conditions. 11

Achieving optimal classification accuracy requires a delicate balance 
between the quantity of features and the duration of monitoring. Intro­
ducing a broader range of features from various sensors, such as those 
from smartwatches and smartphone gps systems, can improve the pre­
cision of the predictions. However, increasing the amount of information 
into a model also adds complexity to the clinical understanding of these 
mHealth biomarkers and increases the patient’s burden of increased data 
collection.12,13

symptom severity estimation

mHealth biomarkers, when utilized for symptom severity estimation, 
offer an innovative approach to assessing the effects of drug interven­
tions in clinical trials. As researchers assess new drugs in Phase 2 trials, 
understanding the relationship between a drug, its dosage, and its resul­
tant effects over time is pivotal.14 mHealth biomarkers can provide a clear 
picture of this relationship, aiding in establishing a safe and effective dos­
age range. mHealth biomarkers also have the potential to serve as imme­
diate indicators of a drug’s efficacy. They can quantify symptom fluc­
tuations over time, offering a more comprehensive view compared to 
labor­intensive methods like clinical interviews. This frequent monitoring 
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Treatment effects

For detecting treatment effects, mHealth biomarkers need to dem­
onstrate their ability to detect changes in disease activity following a 
drug intervention. In essence, this approach to designing and validat­
ing mHealth biomarker can make them valuable tools not just for under­
standing a disease but also for tailoring and evaluating treatment strat­
egies. Here, the focus isn’t solely on the biomarker as a predictive or 
diagnostic tool but also on its sensitivity and efficacy in detecting treat­
ment effects relative to the gold standard. By demonstrating sensitiv­
ity to treatment­induced changes, these biomarkers can serve as more 
dynamic endpoints in trials, which can facilitate more immediate and 
accurate assessments of a treatment’s impact.

Chapter 8 discusses the development of mHealth biomarkers for mon­
itoring the effects of antiparkinsonian drugs and estimating Parkinson’s 
disease symptom severity.19 The alternative index finger tapping (ift) bio­
marker was found to be more predictive and sensitive to treatment effects 
in motor function than the traditional mDs-upDrs iii score, both in terms 
of accuracy and clinical significance. Treatment effects were detected at 
45 minutes for the thumb–index finger tapping (tift) biomarker and at 
60 minutes for the ift composite biomarkers. This coincides well with 
the mean onset of action for the drug L­dopa/carbidopa, which is around 
50 minutes. The findings suggest that ift and tift are sensitive tools for 
assessing motor function in the context of symptomatic treatments for 
conditions like Parkinson’s disease, potentially identifying small and early 
changes missed by traditional measures. The large effect sizes also found 
in this study could reduce the sample size requirements and enhance 
the statistical power for future studies involving tapping tasks. This pilot 
study can advance the understanding of how to accurately detect and 
measure treatment effects on fine motor function, particularly in condi­
tions like Parkinson’s disease. It not only validates the efficacy of new bio­
markers but also provides methodological guidance for validating novel 
biomarkers in future research focus on investigating drug effects.

psychological states, highlighting the irreplaceable value of patient input 
in capturing the nuances of mental health conditions. Interestingly, even 
though passively collected features like walking speed and location were 
not as predictive as Dass and panas, they still made valuable contribu­
tions to the overall effectiveness of the models. This finding also under­
scores the importance of integrating real­world, passively collected data, 
as it appears to reveal patterns and insights that might be overlooked 
in more controlled clinical settings. Additionally, the models’ capac­
ity to accurately represent the full spectrum of depression severity was 
augmented by the inclusion of healthy controls. This inclusion not only 
enhanced the robustness of the models but also extended the represen­
tation of the potential remission states of depression in the models. This 
multidimensional approach, combining both active and passive data col­
lection, thus provides a more comprehensive and nuanced understand­
ing of mental health conditions.

Estimating symptom severity using mHealth biomarkers presents spe­
cific challenges, particularly when considering the inherent variability in 
both the devices and the patients themselves. One significant concern 
is the inter­device variability.2 Difference in mHealth devices may pro­
duce slightly varied measurements, leading to inconsistencies in the col­
lected data. This variation can introduce noise into analyses, potentially 
skewing results or diminishing the precision of symptom severity esti­
mations. Additionally, symptom severity and expression itself can vary 
within and between patients, adding another layer of complexity to mod­
elling efforts. External factors that cannot be controlled or accounted for 
can also confound readings. For instance, while an mHealth device might 
detect an increased heart rate as a potential symptom of a health condi­
tion, however this elevation could be attributed to external influences 
such as anxiety, physical exercise, or other non­medical causes. Thus, dis­
tinguishing genuine symptom fluctuations from these external factors 
remains a challenge in leveraging mHealth biomarkers for accurate symp­
tom severity estimation.
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Limitations

Many conditions, like mental health disorders or chronic diseases, are 
multifaceted and may not be fully captured by a single gold standard 
assessment or a single device. In these cases, both the gold standard 
and the mHealth devices may not capture the complexity of the disease, 
leading to discrepancies when comparing the true and predicted clinical 
scores. These discrepancies can be the result of three causes. First, limi­
tations of mHealth devices to capture all clinically relevant behaviors. For 
instance, the mHealth devices failed to capture and therefore failed to 
predict the upper arm functionality of fshD’s patients, as seen in Chapter 
3 and 4.9,15 Second, shortcomings of the gold standards in capturing all 
clinically relevant behaviors. As seen in Chapter 5, we found that walking 
and travel behaviors are predictive of mDD, however, these characteristics 
are not addressed by the sigh-D iDsc. Further, the gold standard’s limita­
tions, such as inter­rater variability or a failure to capture the full complex­
ity of a disease, may introduce biases affecting the biomarker’s reliability. 
In some cases, the gold standard involves human assessment, which can 
vary depending on the rater’s expertise or even day­to­day conditions. For 
instance, in Chapter 8, the finger tapping tasks that tracks multiple tap­
ping­related characteristics could offer insights into motor functionality 
that might be more comprehensive than traditional Parkinson’s Disease 
studies that solely rely on clinical observation.19 Third, there may be dis­
parities between the objective behavioral biomarkers and subjective end­
points. For example, a depressed patient may report feeling more rest­
less when in bed, but the objective sleep data captured by the smartwatch 
shows that the patient slept for 8 hours. As a result, the objective measure 
of sleep may not correlate well with the subjective experience of sleep as 
seen in Chapter 5. Therefore, it’s crucial to consider both objective mea­
surements and subjective experiences when evaluating the effectiveness 
of mHealth devices for monitoring and managing conditions like depres­
sion. The objective measurements may not always be a representative 
endpoint for subjective experiences.

Repeatability of predictions over time and 
settings
In the context of clinical research, the term ‘repeatability’ refers to the 
ability of a test, measurement, or algorithm to yield consistent results 
when it is performed multiple times under the same conditions.20,21 In 
both clinical and home settings, consistent monitoring is vital for track­
ing the progression or alleviation of symptoms. For instance, if a cough 
detection algorithm is used to monitor the effectiveness of a new asthma 
medication in children, inconsistent results would compromise the integ­
rity of the research and could lead to incorrect conclusions. For algo­
rithms designed to monitor biological signals or events—such as coughs 
or cries—repeatability across different data collection settings and across 
patients is a key attribute that underscores the algorithm’s reliability.20 In 
the fields of computer science and ml, repeatability can be interchanged 
with ‘robustness’ and ‘external validity.’ Essentially, these terms—repeat­
ability, robustness, and external validity—point towards an algorithm’s 
consistent performance across varying conditions and datasets. Chap-
ter 6 and Chapter 7 focused on the development of a smartphone­
based algorithm for automated cough and cry detection among infants 
and children.22,23 Both algorithms show strong repeatability, which is 
crucial for consistent monitoring over time. The cry algorithm appears 
robust against different types of physical barriers and can be used at var­
ious distances, making it flexible for real­world applications. While both 
algorithms show some level of inter­device variability, it is within an 
acceptable range that does not severely compromise their utility. Both 
algorithms are affected by background noise, albeit to varying extents. 
This points to an area for potential improvement. These findings suggest 
both algorithms are robust enough for potential use in monitoring cries 
and coughs in a clinical setting or for home­based care, although adjust­
ments may be needed depending on the device or environmental condi­
tions used.
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Conclusion
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ook moeilijk te modelleren.4,5 Dit is waar Machine Learning (ml) voor kan 
zorgen. Dit is waar Machine Learning (ml) om de hoek komt kijken. Hoofd-
stuk 2 onderstreept het potentieel van ml­algoritmen om gevalideerde, 
op mHealth gebaseerde biomarkers te ontwikkelen die kunnen worden 
ingezet in klinische onderzoeken.6 ml­algoritmen kunnen op efficiënte 
wijze enorme en veelzijdige datasets doorzeven om patronen of correla­
ties te identificeren die kunnen helpen bij de klinische interpretatie van 
de gegevens. Door ml­algoritmen te combineren met mHealth­gegevens 
om op afstand gecontroleerde biomarkers te creëren, kunnen we moge­
lijk nieuwe mHealth­biomarkers creëren die kunnen worden gebruikt voor 
diagnoseclassificatie, inschatting van de ernst van symptomen en kwan­
tificering van behandelingseffecten. Deze biomarkers kunnen mogelijk 
nieuwe inzichten genereren die mogelijk gemist worden door de klinische 
gouden standaardbeoordelingen, waardoor het mogelijk wordt om een 
dieper inzicht te krijgen in ziektetoestanden.4 Dit relatief jonge veld ver­
eist echter nog verder onderzoek en standaardisatie om de toepassing van 
deze technologieën in klinische studies te stimuleren.

In de volgende paragrafen zal ik een samenvatting geven van de bevin­
dingen en discussies in mijn vorige hoofdstukken over de verschillende 
toepassingen en uitdagingen van mHealth biomarkers in klinisch onder­
zoek. Ik zal ingaan op hoe deze biomarkers kunnen worden ontwikkeld 
en toegepast voor diagnoseclassificatie, en als gevolg daarvan nieuwe 
inzichten bieden in ziektegerelateerde gedragsprofielen die moeilijk te 
vinden zijn in conventionele klinische settings. Daarnaast zal de rol van 
mHealth biomarkers bij het inschatten van de ernst van symptomen wor­
den besproken, en ik zal het belang onderzoeken van het ontwikkelen van 
mHealth biomarkers die betrouwbaar zijn bij verschillende aandoenin­
gen en populaties. Ik zal het ook hebben over hoe deze biomarkers kun­
nen worden ontworpen voor de detectie van behandelingen, waarmee de 
weg wordt vrijgemaakt voor longitudinale monitoring van de werkzaam­
heid van behandelingen. Tot slot zal ik ingaan op de beperkingen van 
mHealth biomarkers en gebieden identificeren die verder onderzoek en 
standaardisatie vereisen.

Inleiding

De traditionele methoden voor het monitoren van aandoeningen van 
het centrale zenuwstelsel (cZs) zijn vaak afhankelijk van sporadische kli­
nische beoordelingen in een klinische omgeving, die een onvolledige 
of vertekende weergave van de toestand van een patiënt kunnen bie­
den.1,2 Deze episodische en persoonlijke aanpak kan schommelingen 
in de toestand van een patiënt missen en geeft geen volledig beeld van 
zijn of haar dagelijkse leven. Deze episodische en persoonlijke benade­
ring kan schommelingen in de toestand van een patiënt missen en geeft 
geen volledig beeld van het dagelijks leven van de patiënt. De vooruit­
gang in mobiele gezondheid (mHealth) technologieën, waaronder smart­
phones, wearables en tablets, bieden echter een potentiële oplossing 
om deze beperkingen aan te pakken door continue, real­time gegevens­
verzameling over het dagelijks leven van een patiënt mogelijk te maken.3 
Deze mHealth­technologieën kunnen een verscheidenheid aan gezond­
heidsgegevens monitoren, zoals hartslag, slaappatronen en dagelijkse 
fysieke activiteit, dag en nacht, ongeacht de locatie van de patiënt. Door 
mHealth­technologieën te gebruiken om onopvallend gegevens op 
afstand te verzamelen, kan een arts een completer overzicht krijgen van 
de klinische status van een patiënt. De integratie van mHealth en ml in kli­
nische studies moet worden gezien als een aanvulling op, en niet als een 
vervanging van, de traditionele klinische methodologie. De klinische 
expertise van mensen, waaronder klinische ervaring en menselijke rap­
portages, blijft onvervangbaar. Naarmate zowel mHealth­technologieën, 
ml en klinische praktijken zich blijven ontwikkelen, maakt deze geïnte­
greerde aanpak een meer dynamische en datagestuurde aanpak moge­
lijk, die ervoor kan zorgen dat het ontwerp van klinische proeven in de 
voorhoede blijft van zowel technologische als medische vooruitgang.

Alleen al het volume en de complexiteit van de gegevens die worden 
gegenereerd door mHealth­apparaten kunnen nieuwe uitdagingen met 
zich meebrengen. Niet alleen de omvang, maar ook de heterogeniteit van 
de gegevens maakt handmatige analyse niet alleen arbeidsintensief, maar 



Development of machine learning – DeriveD mhealth composite Biomarkers for trial@home clinical trials286 287appenDiCes/NeDerLaNDSe SaMeNvattING

Het vergroten van de hoeveelheid informatie in een model maakt het 
klinisch begrip van deze mHealth­biomarkers echter ook complexer 
en vergroot de last voor de patiënt als gevolg van de toegenomen 
gegevensverzameling.12,13

Inschatting van symptoomernst

mHealth biomarkers, indien gebruikt voor het schatten van de ernst van 
de symptomen, bieden een innovatieve aanpak voor het beoordelen van 
de effecten van medicijninterventies in klinische studies. Als onderzoe­
kers nieuwe medicijnen beoordelen in fase 2 studies, is het begrijpen van 
de relatie tussen een medicijn, de dosering en de resulterende effecten in 
de tijd cruciaal.14 mHealth biomarkers kunnen een duidelijk beeld geven 
van deze relatie, en helpen bij het vaststellen van een veilige en effectieve 
dosering. mHealth biomarkers hebben ook het potentieel om te dienen 
als directe indicatoren van de werkzaamheid van een medicijn. Ze kun­
nen symptoomschommelingen in de loop van de tijd kwantificeren, wat 
een uitgebreider beeld geeft dan arbeidsintensieve methoden zoals klini­
sche interviews. Deze frequente monitoring kan vooral waardevol zijn bij 
het onderscheiden van zelfs de meest subtiele veranderingen in de ernst 
van de symptomen, wat fundamenteel is voor een vroegtijdige identifi­
catie van de werkzaamheid van een behandeling. Door veranderingen in 
de biomarkers continu te monitoren, kunnen onderzoekers waardevolle 
feedback krijgen over de vraag of het medicijn het beoogde effect heeft, 
wat vooral cruciaal is tijdens fase 2­onderzoeken waar de therapeuti­
sche effecten onder de loep worden genomen. Om deze biomarkers als 
klinisch valide te beschouwen, is het noodzakelijk dat ze correleren met 
erkende klinische eindpunten. Of deze eindpunten nu ziekteprogressie, 
symptoomverlichting of andere klinisch relevante maatregelen betreffen, 
een sterke associatie verzekert dat de biomarker een betrouwbare maat­
staf is voor het effect van het geneesmiddel.

Hoofdstuk 4 onderzocht de prestaties van multi­taak modellen om 
gelijktijdig de scores van twee klinische beoordelingen te schatten, de 

Classificatie van ziekten

In de context van klinische studies bieden biomarkers voor de classifica­
tie van de ernst van de ziekte niet alleen een kwantificeerbare maatstaf 
om de uitgangswaarde van de ernst van een ziekte bij deelnemers aan de 
studie te bepalen, maar ze kunnen ook dienen als referentie om de evolu­
tie van de ziekte in de tijd te volgen. Bij het evalueren van de effectiviteit 
van onderzoeksgeneesmiddelen zijn deze biomarkers van onschatbare 
waarde. Als het geneesmiddel tot doel heeft het ziekteverloop te beïn­
vloeden, kan een verandering in het verloop van de biomarker na verloop 
van tijd een indicatie zijn van het effect van het geneesmiddel. Als gevolg 
hiervan kan het gebruik van biomarkers voor de classificatie van de ernst 
van de ziekte de precisie en betrouwbaarheid van de resultaten van kli­
nische onderzoeken verbeteren, door ervoor te zorgen dat potentiële 
behandelingen worden beoordeeld op zowel hun onmiddellijke effect als 
hun invloed op de progressie van de ziekte op de langere termijn.

Hoofdstuk 3 onderzocht de haalbaarheid van het classificeren van 
fshD­patiënten (Facioscapulohumerale dystrofie) en gezonde contro­
les met behulp van het Trial@Home­platform van het chDr. Belangrijke 
kenmerken, zoals slaapactiviteit en locatiepatronen, werden geïdentifi­
ceerd die onderscheid maakten tussen fshD­patiënten en controles 9. Dit 
suggereert dat significante variaties in slaap­ en locatiepatronen kunnen 
dienen als potentiële nieuwe klinische biomarkers omdat deze momen­
teel niet worden vastgelegd door de gouden standaard beoordelingen 
van fshD.10 Deze biomarkers, op hun beurt, kunnen essentieel zijn in het 
begeleiden van het proces van geneesmiddelenontwikkeling, mogelijk 
bieden ze een gerichte aanpak voor geneesmiddelen interventies in de 
behandeling of het beheer van de bijbehorende aandoeningen. 11

Het bereiken van een optimale classificatienauwkeurigheid vereist een 
delicaat evenwicht tussen de hoeveelheid kenmerken en de duur van de 
monitoring. Het introduceren van een breder scala aan kenmerken van 
verschillende sensoren, zoals die van smartwatches en smartphone gps­
systemen, kan de nauwkeurigheid van de voorspellingen verbeteren. 
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onderstreept ook het belang van het integreren van passief verzamelde 
gegevens uit de echte wereld, omdat deze patronen en inzichten lijken te 
onthullen die mogelijk over het hoofd worden gezien in meer gecontro­
leerde klinische settings. Bovendien werd het vermogen van de model­
len om het volledige spectrum van depressiezwaarte nauwkeurig weer te 
geven vergroot door gezonde controles op te nemen. Deze inclusie verbe­
terde niet alleen de robuustheid van de modellen, maar breidde ook de 
representatie van de potentiële remissietoestanden van depressie in de 
modellen uit. Deze multidimensionale aanpak, die zowel actieve als pas­
sieve gegevensverzameling combineert, zorgt dus voor een uitgebreider 
en genuanceerder begrip van psychische aandoeningen.

Het schatten van de ernst van de symptomen met behulp van mHealth 
biomarkers brengt specifieke uitdagingen met zich mee, vooral wan­
neer rekening wordt gehouden met de inherente variabiliteit van zowel 
de apparaten als de patiënten zelf. Een belangrijk punt van zorg is de 
inter­device variabiliteit.2 Verschillen in mHealth­apparaten kunnen licht 
verschillende metingen produceren, wat leidt tot inconsistenties in de 
verzamelde gegevens. Deze variatie kan ruis introduceren in de analyses, 
wat de resultaten kan vertekenen of de precisie van de schatting van de 
ernst van de symptomen kan verminderen. Bovendien kunnen de ernst en 
de expressie van de symptomen zelf variëren binnen en tussen patiënten, 
wat nog een laag complexiteit toevoegt aan de modellering. Externe fac­
toren die niet kunnen worden gecontroleerd of waar geen rekening mee 
kan worden gehouden, kunnen ook metingen in de war sturen. Bijvoor­
beeld, terwijl een mHealth apparaat een verhoogde hartslag zou kunnen 
detecteren als een potentieel symptoom van een gezondheidstoestand, 
zou deze verhoging echter kunnen worden toegeschreven aan externe 
invloeden zoals angst, lichaamsbeweging, of andere niet­medische oor­
zaken. Het onderscheid maken tussen echte symptoomschommelin­
gen en deze externe factoren blijft dus een uitdaging bij het gebruik van 
mHealth biomarkers voor een nauwkeurige inschatting van de ernst van 
de symptomen.

fshD klinische score en de Timed Up and Go (tug) test.15 Traditionele 
enkelvoudige taakmodellen zijn weliswaar betrouwbaar, maar niet altijd. 
Traditionele single­task modellen kunnen effectief zijn voor het voorspel­
len van één uitkomst, maar schieten tekort als ze worden toegepast op 
de multidimensionale symptoomprofielen die vaak voorkomen in klini­
sche settings. Daarom is het belangrijkste voordeel van multi­taak model­
len ten opzichte van hun single­taak tegenhangers hun vermogen om 
gebruik te maken van gedeelde representaties en inzichten over meer­
dere klinische beoordelingen.16-18 Bovendien is het vermogen van mul­
ti­taak modellen om gedeelde representaties en inzichten over meerdere 
klinische beoordelingen 16-18 te gebruiken. Bovendien kan het vermogen 
van multi­taak modellen om te generaliseren van de ene klinische beoor­
deling naar de andere cruciaal zijn bij het evalueren van de ernst van de 
ziekte over een spectrum van beoordelingen. Als het model bijvoorbeeld 
een verslechtering in de fshD klinische score vaststelt, kan het ook een 
parallelle afname in de tug score voorspellen. Tot slot kunnen multi­taak­
modellen een meer holistisch beeld geven van de gezondheid van de pati­
ent, door verschillende facetten van de ernst van de ziekte in één enkel 
kader te vatten. Door de parallelle beoordeling van meerdere beoorde­
lingen mogelijk te maken, kunnen deze modellen een vollediger, genuan­
ceerder beeld geven van de ziektestatus, waardoor gerichtere en effectie­
vere interventies mogelijk worden.

In hoofdstuk 5 kwam het belang van zelfgerapporteerde uitkom­
sten, met name de Depression Anxiety Stress Scale (Dass) en de Positive 
and Negative Affect Schedule (panas), naar voren als doorslaggevende 
kenmerken voor de depressiemodellen. Hun opname diende als een 
robuuste indicator voor subjectieve psychologische toestanden en bena­
drukte de onvervangbare waarde van patiënteninput bij het vastleggen 
van de nuances van psychische aandoeningen. Interessant is dat, hoe­
wel passief verzamelde kenmerken zoals loopsnelheid en locatie niet zo 
voorspellend waren als Dass en panas, ze toch een waardevolle bijdrage 
leverden aan de algehele effectiviteit van de modellen. Deze bevinding 
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en gemeten, met name bij aandoeningen zoals de ziekte van Parkinson. 
Het valideert niet alleen de werkzaamheid van nieuwe biomarkers, maar 
biedt ook methodologische richtlijnen voor het valideren van nieuwe bio­
markers in toekomstig onderzoek dat zich richt op het onderzoeken van 
medicijneffecten.

Herhaalbaarheid van voorspellingen over tijd  
en instellingen

In de context van klinisch onderzoek verwijst de term ‘herhaalbaarheid’ 
naar het vermogen van een test, meting of algoritme om consistente 
resultaten op te leveren wanneer deze meerdere keren onder dezelfde 
omstandigheden wordt uitgevoerd.20,21 In zowel klinische als thuissitua­
ties moet de herhaalbaarheid van voorspellingen consistent zijn. In zowel 
klinische als thuissituaties is consistente monitoring van vitaal belang 
voor het volgen van de progressie of verlichting van symptomen. Als bij­
voorbeeld een algoritme voor hoestdetectie wordt gebruikt om de effec­
tiviteit van een nieuw astmamedicijn bij kinderen te controleren, zouden 
inconsistente resultaten de integriteit van het onderzoek in gevaar bren­
gen en tot onjuiste conclusies kunnen leiden. Voor algoritmen die zijn ont­
worpen om biologische signalen of gebeurtenissen te monitoren, zoals 
hoesten of schreeuwen, is herhaalbaarheid in verschillende instellingen 
voor gegevensverzameling en bij verschillende patiënten een belangrijk 
kenmerk dat de betrouwbaarheid van het algoritme onderstreept. Op het 
gebied van informatica en ml kan herhaalbaarheid worden verwisseld 
met ‘robuustheid’ en ‘externe validiteit’. In wezen verwijzen deze termen 
­ herhaalbaarheid, robuustheid en externe geldigheid ­ naar de consis­
tente prestaties van een algoritme onder verschillende omstandigheden 
en datasets. Hoofdstuk 6 en 7 richtten zich op de ontwikkeling van een 
smartphonegebaseerd algoritme voor geautomatiseerde hoest­ en huil­
detectie bij baby’s en kinderen.22,23 Beide algoritmen vertonen een sterke 
herhaalbaarheid. Beide algoritmen vertonen een sterke herhaalbaarheid, 
wat cruciaal is voor consistente monitoring in de tijd. Het huilalgoritme 

Behandelingseffecten

Om behandelingseffecten te detecteren, moeten mHealth biomarkers 
aantonen dat ze veranderingen in ziekteactiviteit kunnen detecteren na 
een medicamenteuze interventie. In essentie kan deze benadering van 
het ontwerpen en valideren van mHealth biomarkers hen waardevolle 
hulpmiddelen maken, niet alleen voor het begrijpen van een ziekte, maar 
ook voor het aanpassen en evalueren van behandelingsstrategieën. Hier 
ligt de focus niet alleen op de biomarker als voorspellend of diagnostisch 
hulpmiddel, maar ook op zijn gevoeligheid en doeltreffendheid bij het 
detecteren van behandelingseffecten ten opzichte van de gouden stan­
daard. Door hun gevoeligheid voor door behandeling veroorzaakte veran­
deringen kunnen deze biomarkers dienen als meer dynamische eindpun­
ten in onderzoeken, waardoor het effect van een behandeling directer en 
nauwkeuriger kan worden beoordeeld.

Hoofdstuk 8 bespreekt de ontwikkeling van mHealth biomarkers voor 
het monitoren van de effecten van antiparkinsonmedicijnen en het schat­
ten van de ernst van Parkinson symptomen.19 De alternatieve index vinger 
tapping (ift) biomarker bleek voorspellender en gevoeliger voor behan­
delingseffecten in de motoriek dan de traditionele mDs-upDrs iii score, 
zowel wat betreft nauwkeurigheid als klinische significantie. Behande­
leffecten werden gedetecteerd na 45 minuten voor de tift­biomarker 
(thumb­index finger tapping) en na 60 minuten voor de samengestelde 
ift­biomarkers. Dit komt goed overeen met het gemiddelde begin van de 
werking van het geneesmiddel L­dopa/carbidopa, dat ongeveer 50 minu­
ten duurt. De bevindingen suggereren dat ift en tift gevoelige instru­
menten zijn voor het beoordelen van de motorische functie in de context 
van symptomatische behandelingen voor aandoeningen zoals de ziekte 
van Parkinson. De grote effectgroottes die in deze studie werden gevon­
den, zouden de vereiste steekproefgrootte kunnen verkleinen en de sta­
tistische power voor toekomstige studies met taptaken kunnen vergroten. 
Deze pilotstudie kan bijdragen aan een beter begrip van hoe behande­
leffecten op de fijne motoriek nauwkeurig kunnen worden gedetecteerd 
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een menselijke beoordeling, die kan variëren afhankelijk van de deskun­
digheid van de beoordelaar of zelfs de dagelijkse omstandigheden. Bij­
voorbeeld, in Hoofdstuk 8, zouden de vingertaptaken waarbij meerdere 
tikgerelateerde kenmerken worden gevolgd, inzichten kunnen bieden in 
motorische functionaliteit die uitgebreider zouden kunnen zijn dan tra­
ditionele onderzoeken naar de ziekte van Parkinson die uitsluitend geba­
seerd zijn op klinische observatie.19 Ten derde kunnen er verschillen zijn 
tussen de objectieve gedragsbiomarkers en subjectieve eindpunten. Een 
depressieve patiënt kan bijvoorbeeld melden dat hij zich rustelozer voelt 
als hij in bed ligt, maar de objectieve slaapgegevens die zijn vastgelegd 
door de smartwatch laten zien dat de patiënt 8 uur heeft geslapen. Het 
resultaat is dat de objectieve meting van de slaap mogelijk niet goed cor­
releert met de subjectieve ervaring van de slaap, zoals we in hoofdstuk 5 
hebben gezien. Daarom is het cruciaal om zowel objectieve metingen als 
subjectieve ervaringen in overweging te nemen bij het evalueren van de 
effectiviteit van mHealth­apparaten voor het monitoren en beheren van 
aandoeningen zoals depressie. Objectieve metingen zijn niet altijd een 
representatief eindpunt voor subjectieve ervaringen.

De discrepanties tussen mHealth­sensoren en de gouden standaard kun­
nen van invloed zijn op hoe betrouwbaar clinici en onderzoekers deze 
sensoren vinden. Om een nieuwe technologie te integreren in klinische 
studies, moet deze ofwel dicht in de buurt komen van de gouden stan­
daard of duidelijk zijn superioriteit aantonen. Het is de moeite waard om 
op te merken dat een lagere correlatie tussen mHealth biomarkers en de 
gouden standaard misschien niet duidt op een slechte klinische validi­
teit van de nieuwe biomarker; in plaats daarvan kan het mHealth systeem 
aspecten vastleggen die door traditionele methoden over het hoofd wor­
den gezien. Daarom is het begrijpen van de beperkingen en vertekenin­
gen die inherent zijn aan zowel de mHealth biomarker als de gouden stan­
daard cruciaal voor het maken van nauwkeurige klinische beslissingen. 
Als clinici zich bewust zijn van deze factoren, kunnen ze de gegevens genu­
anceerder interpreteren.

lijkt robuust tegen verschillende soorten fysieke barrières en kan op ver­
schillende afstanden worden gebruikt, waardoor het flexibel is voor toe­
passingen in de echte wereld. Hoewel beide algoritmen een zekere mate 
van inter­device variabiliteit vertonen, ligt deze binnen een acceptabel 
bereik dat hun bruikbaarheid niet ernstig in gevaar brengt. Beide algo­
ritmen worden beïnvloed door achtergrondruis, zij het in verschillende 
mate. Dit wijst op een gebied dat voor verbetering vatbaar is. Deze bevin­
dingen suggereren dat beide algoritmen robuust genoeg zijn voor poten­
tieel gebruik bij het monitoren van huilen en hoesten in een klinische 
setting of voor thuiszorg, hoewel aanpassingen nodig kunnen zijn afhan­
kelijk van het gebruikte apparaat of de omgevingscondities.

Beperkingen

Veel aandoeningen, zoals psychische stoornissen of chronische ziekten, 
hebben vele facetten en kunnen mogelijk niet volledig worden vastgelegd 
door een enkele gouden standaard beoordeling of een enkel apparaat. In 
deze gevallen kan het zijn dat zowel de gouden standaard als de mHealth 
apparaten de complexiteit van de ziekte niet vastleggen, wat leidt tot dis­
crepanties bij het vergelijken van de werkelijke en voorspelde klinische 
scores. Deze discrepanties kunnen het gevolg zijn van drie oorzaken. Ten 
eerste, beperkingen van de mHealth apparaten om al het klinisch rele­
vante gedrag vast te leggen. Bijvoorbeeld, de mHealth apparaten slaag­
den er niet in om de bovenarm functionaliteit van fshD patiënten vast 
te leggen en dus ook niet te voorspellen, zoals te zien is in Hoofdstuk 3 
en 4.9,15 Ten tweede, tekortkomingen van de gouden standaarden in het 
vastleggen van alle klinisch relevante gedragingen. Zoals te zien in Hoofd­
stuk 5, vonden we dat loop­ en reisgedrag voorspellend zijn voor mDD, 
maar deze kenmerken worden niet behandeld door de sigh-D iDsc. Ver­
der kunnen de beperkingen van de gouden standaard, zoals interbeoor­
delaarsvariabiliteit of het niet vastleggen van de volledige complexiteit 
van een ziekte, vooroordelen introduceren die de betrouwbaarheid van 
de biomarker beïnvloeden. In sommige gevallen is de gouden standaard 
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方面的作用，并探讨开发可靠的移动医疗生物标记在不同疾病和人群中的重
要性。我还将讨论如何将这些生物标记设计用于治疗检测，为纵向监测治疗
效果创造条件。最后，我将深入探讨移动医疗生物标记的局限性，确定需要进
一步研究和标准化的领域。

疾病分类

在临床试验中，疾病严重程度分类生物标志物不仅能提供一种可量化的测量
方法来评估试验参与者的基线疾病严重程度，还能作为跟踪疾病随时间进展
的参考。在评估研究药物的有效性时，这些生物标记物就变得非常宝贵。如果
药物旨在影响疾病的发展轨迹，那么生物标志物随时间推移而发生的变化就
能说明药物的效果。因此，利用疾病严重程度分类生物标志物可以提高临床
试验结果的准确性和可靠性，确保对潜在治疗方法进行评估时，既能考虑其
直接影响，也能考虑其对疾病长期发展的影响。

第3章研究了利用chDr的trIaL@hOMe平台对面阔肌营养不良症（FShD）
患者和健康对照组进行分类的可行性。研究发现，睡眠活动和位置模式
等关键特征可以区分面岬­肱骨营养不良症患者和对照组。9这表明，在
睡眠和位置模式中观察到的重大差异可作为潜在的新型临床生物标志
物，因为目前FShD的金标准评估并未捕捉到它们。10反过来，这些生物
标志物对指导药物开发过程也至关重要，有可能为治疗或控制相关疾
病的药物干预提供有针对性的方法。11

要达到最佳的分类准确性，需要在特征数量和监测持续时间之间取得
微妙的平衡。从智能手表和智能手机 GpS 系统等各种传感器中引入更
广泛的特征，可以提高预测的准确性。但是，增加模型的信息量也会增
加临床理解这些移动医疗生物标记的复杂性，并增加患者因数据收集
增加而产生的负担 。12,13

症状严重程度估计

移动医疗生物标记用于症状严重程度评估时，为评估临床试验中药物干预的
效果提供了一种创新方法。研究人员在第二阶段试验中对新药进行评估时，了
解药物、药物剂量及其随时间产生的效果之间的关系至关重要。与临床访谈
等劳动密集型方法相比，它们可以量化症状随时间的变化，提供更全面的视

导言

监测中枢神经系统（cNS）疾病的传统方法通常依赖于在临床环境下进
行的零星现场临床评估，这可能无法全面或歪曲地反映患者的病情。1,2
这种偶发的当面评估方法可能会错过患者病情的波动，也无法全面了
解患者的日常生活。然而，移动医疗（MheaLth）技术（包括智能手机、可
穿戴设备和平板电脑）的发展为解决这些局限性提供了一个潜在的解
决方案，它可以对患者的日常生活进行连续、实时的数据收集。3这些移
动医疗技术可以监测各种健康指标，如心率、睡眠模式和全天候的身体
活动，而不受患者所在位置的限制。利用移动医疗技术以不显眼的方式
远程收集数据，可以让临床医生更全面地了解病人的临床状况。移动
医疗和 ML 与临床试验的结合应被视为传统临床方法的补充，而不是替
代。人类的临床专业知识，包括临床经验和人际关系，仍然是不可替代
的。随着移动医疗技术、人工智能和临床实践的不断发展，这种综合方
法允许采用更加动态和数据驱动的方法，从而确保临床试验的设计始
终走在技术和医学进步的前沿。

移动医疗设备所产生的数据量之大、复杂程度之高可能会带来新的挑
战。不仅是数据量大，数据的异质性也使得人工分析不仅耗费大量人
力，而且难以建模。4,5这正是机器学习 (ML) 发挥作用的地方。第 2 章强调
了 ML 算法在开发可用于临床试验的基于移动医疗的有效生物标记物
方面的潜力。6 ML 算法可以有效地筛选大量多方面的数据集，找出有助
于临床解读数据的模式或相关性。通过将 ML 算法与移动医疗数据相结
合来创建远程监测的生物标记，我们有可能创建新型移动医疗生物标
记，用于诊断分类、症状严重程度估计和治疗效果量化。这些生物标记
物有可能产生临床金标准评估可能遗漏的新见解，从而加深对疾病状
态的了解。4 然而，这个相对年轻的领域仍需要进一步的研究和标准化，
以鼓励将这些技术应用于临床试验。

在下面的章节中，我将总结前几篇论文中的发现和讨论，探讨移动医疗生物标
记在临床试验中的各种应用和挑战。我将讨论如何开发这些生物标记物并将
其应用于诊断分类，从而为传统临床环境中可能难以捉摸的疾病相关行为特
征提供新的见解。此外，我还将讨论移动医疗生物标记在估计症状严重程度
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使用移动医疗生物标记物估计症状严重程度面临着特殊的挑战，特别
是考虑到设备和患者本身固有的变异性。一个重要的问题是设备间的
可变性。2 移动健康设备之间的差异可能会产生略微不同的测量结果，
从而导致所收集的数据不一致。这种差异会在分析中引入噪音，可能会
使结果出现偏差或降低症状严重程度估计的精确度。此外，症状严重程
度和表现本身在患者内部和患者之间也可能存在差异，这就给建模工
作增加了另一层复杂性。无法控制或考虑的外部因素也会干扰读数。例
如，移动医疗设备可能会检测到心率增快作为健康状况的潜在症状，但
这种增快可能是由于焦虑、体育锻炼或其他非医疗原因等外部影响造
成的。因此，将真正的症状波动与这些外部因素区分开来仍然是利用移
动医疗生物标记准确估计症状严重程度的一个挑战。

治疗效果

为了检测治疗效果，移动健康生物标记需要证明其有能力检测药物干预后疾
病活动的变化。从本质上讲，这种设计和验证移动健康生物标志物的方法不
仅能使它们成为了解疾病的重要工具，还能使它们成为定制和评估治疗策略
的重要工具。在这里，重点不仅在于生物标记物作为预测或诊断工具，还在于
其相对于金标准检测治疗效果的灵敏度和有效性。通过展示对治疗引起的变
化的敏感性，这些生物标志物可以作为试验中更动态的终点，从而有助于对治
疗效果进行更即时、更准确的评估。

第 8 章讨论了用于监测抗帕金森病药物效果和估计帕金森病症状严重
程度的移动医疗生物标记物的开发。19 研究发现，与传统的 MDS-UpDrS 
III 评分相比，替代性食指敲击（IFt）生物标记在准确性和临床意义方面
对运动功能的治疗效果更有预测性和敏感性。拇指­食指敲击（tIFt）生
物标志物在45分钟时检测到治疗效果，IFt复合生物标志物在60分钟时
检测到治疗效果。这与左旋多巴/卡比多巴药物的平均起效时间（约 50 
分钟）非常吻合。研究结果表明，IFt 和 tIFt 是评估帕金森病等疾病症状
治疗过程中运动功能的灵敏工具，有可能识别出传统方法所遗漏的早
期微小变化。本研究中还发现了较大的效应大小，这可以降低样本量要
求，提高未来涉及敲击任务研究的统计能力。这项试验性研究可以加深

图。这种频繁的监测对于辨别症状严重程度最细微的变化尤为重要，而这正
是早期识别疗效的基础。通过持续监测生物标记物的变化，研究人员可以获
得关于药物是否达到预期效果的宝贵反馈，这在治疗效果受到严格审查的第
二阶段试验中尤为重要。要使这些生物标志物在临床上有效，它们必须与公认
的临床终点相关联。无论这些终点是涉及疾病进展、症状缓解还是其他临床
相关指标，强相关性都能确保生物标记物是衡量药物影响的可靠指标。

第 4 章研究了多任务模型在同时估算 FShD 临床评分和定时起立行走 
(tUG) 测试这两项临床评估得分时的性能。15传统的单任务模型虽然可
以有效地预测单一结果，但在应用于临床环境中经常遇到的多维症状
特征时，可能会出现不足。因此，与单任务模型相比，多任务模型的主要
优势在于能够利用多个临床评估的共享表征和洞察力。16-18 此外，多任
务模型能够从一种临床评估推广到另一种临床评估，这对于评估各种
评估的疾病严重程度至关重要。例如，如果模型能识别 FShD 临床评分
的恶化，那么它也能预测 tUG 评分的平行下降。最后，多任务模型可以
提供更全面的患者健康视图，在单一、统一的框架内涵盖疾病严重程度
的各个方面。通过对多项评估进行并行评估，这些模型可以更全面、更
细致地反映疾病状况，从而指导采取更有针对性和更有效的干预措施。

在第 5 章中，自我报告结果的重要性，特别是抑郁焦虑压力量表（DaSS）
和积极与消极情绪表（paNaS），成为抑郁模型的决定性特征。纳入这两
项量表可作为主观心理状态的可靠指标，凸显了患者意见在捕捉心理
健康状况细微差别方面不可替代的价值。有趣的是，尽管步行速度和位
置等被动收集的特征不像 DaSS 和 paNaS 那样具有预测性，但它们仍然
对模型的整体有效性做出了宝贵的贡献。这一发现也强调了整合现实
世界中被动收集的数据的重要性，因为这些数据似乎揭示了在更受控
的临床环境中可能被忽视的模式和见解。此外，纳入健康对照组也增强
了模型准确表现抑郁症严重程度的能力。健康对照组的加入不仅增强
了模型的稳健性，还扩展了模型对抑郁症潜在缓解状态的表征。因此，
这种结合主动和被动数据收集的多维方法可以更全面、更细致地了解
心理健康状况。
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面存在缺陷。如第 5 章所述，我们发现步行和旅行行为可预测 MDD，但 
SIGh-D IDSc 并未涉及这些特征。此外，金标准的局限性，如评定者之间
的差异或无法捕捉疾病的全部复杂性，可能会带来影响生物标志物可
靠性的偏差。在某些情况下，金标准涉及人工评估，而人工评估可能因
评估者的专业知识甚至日常条件而异。例如，在第 8 章中，手指敲击任
务可追踪多种敲击相关特征，与仅依赖临床观察的传统帕金森病研究
相比，可提供更全面的运动功能洞察。19  第三，客观行为生物标志物与
主观终点之间可能存在差异。例如，抑郁症患者可能会报告说躺在床上
时感觉更加烦躁不安，但智能手表捕获的客观睡眠数据却显示患者睡
了 8 小时。因此，睡眠的客观测量结果可能与睡眠的主观体验并不十分
相关，如第 5 章所述。因此，在评估移动医疗设备监测和管理抑郁症等
疾病的有效性时，必须同时考虑客观测量结果和主观体验。客观测量结
果并不总是主观体验的代表终点。

移动医疗传感器与黄金标准之间的差异会影响临床医生和研究人员对这些
传感器可靠性的看法。新技术要想被纳入临床试验，就必须与黄金标准密切
匹配，或者明确显示出其优越性。值得注意的是，移动医疗生物标志物与黄金
标准之间的相关性较低可能并不表明新型生物标志物的临床有效性较差；
相反，移动医疗系统可能捕捉到了传统方法所忽略的方面。因此，了解移动医
疗生物标志物和金标准固有的局限性和偏差对于做出准确的临床决策至关重
要。如果临床医生了解这些因素，他们就能对数据做出更细致的解释。

结论

总之，移动医疗生物标志物和 ML 可望引起中枢神经系统疾病监测和管理模
式的转变。在智能手机、可穿戴设备和平板电脑的推动下，这些先进技术可以
提供更加即时、连续和准确的疾病评估。因此，这些移动医疗生物标记可将
传统的偶发性评估转变为细致入微的纵向数据驱动分析。研究结果表明，这
些开发的生物标记物具有强大的预测能力、准确性、可靠性和临床相关性。
然而，重要的是要认识到需要进一步研究、开发和标准化，以充分实现这些创
新的益处。最终，这些进步不仅能让人们更全面地了解疾病的严重程度和进
展，还能提供更好的工具来确定药物干预的潜在疗效。

人们对如何准确检测和测量精细运动功能治疗效果的理解，尤其是在
帕金森病等疾病中。它不仅验证了新生物标记物的有效性，还为今后重
点调查药物效果的研究中验证新生物标记物提供了方法指导。

预测结果在不同时间和环境下的重复性

在临床研究中，‘可重复性’一词指的是测试、测量或算法在相同条件下
多次执行时产生一致结果的能力20,21。在临床和家庭环境中，持续监测
对于跟踪症状的发展或缓解至关重要。例如，如果使用咳嗽检测算法来
监测儿童哮喘新药的疗效，不一致的结果会损害研究的完整性，并可能
导致错误的结论。对于旨在监测生物信号或事件（如咳嗽或哭声）的算
法来说，在不同的数据收集环境和患者中的可重复性是强调算法可靠
性的关键属性20。在计算机科学和人工智能领域，可重复性可以与 ‘鲁
棒性’ ‘和’ ‘外部有效性’ ‘互换’。从本质上讲，这些术语­­可重复性、稳健
性和外部有效性­­指向算法在不同条件和数据集下的一致表现。第 6 章
和第 7 章的重点是开发基于智能手机的婴幼儿咳嗽和哭声自动检测算
法22-23。这两种算法都显示出很强的可重复性，这对长期持续监测至关
重要。哭声算法对不同类型的物理障碍具有很强的抵御能力，并可在不
同距离内使用，因此在实际应用中非常灵活。虽然两种算法都显示出一
定程度的设备间变异性，但都在可接受的范围内，不会严重影响其实用
性。两种算法都受到背景噪声的影响，只是程度不同而已。这就指出了
一个潜在的改进领域。这些研究结果表明，这两种算法都足够强大，可
用于监测临床环境或家庭护理中的哭声和咳嗽声，但可能需要根据所
使用的设备或环境条件进行调整。

局限性

许多疾病，如精神障碍或慢性疾病，都是多方面的，单一的金标准评估
或单一的设备可能无法完全捕捉。在这种情况下，金标准和移动医疗设
备可能都无法捕捉到疾病的复杂性，从而导致在比较真实和预测的临
床评分时出现差异。造成这些差异的原因有三个。首先，移动医疗设备
在捕捉所有临床相关行为方面存在局限性。例如，如第 3 章和第 4 章所
述，移动医疗设备未能捕捉 FShD 患者的上臂功能，因此也就无法预测 
FShD 患者的上臂功能。9,15 其次，黄金标准在捕捉所有临床相关行为方
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