Use of Midazolam Microdosing in an Entry Into Human (EiH) Study Allows Early Determination of **Clinical Drug Interaction Liability Through CYP3A4**

Richard Peck¹

1 – Background and Objectives

- > HAP_R10 is an inhibitor of Hepatitis B virus (HBV) capsid assembly that significantly induced CYP3A4 in vitro.
- > Microgram doses of midazolam can be used in early clinical trials as a safe, sensitive probe of CYP3A4 activity ^[1,2].
 - Micro dose of midazolam is sub-therapeutic and has no particular safety concerns.
 - Microdosing of midazolam can reliably predict Pharmacokinetics (PK) at therapeutic doses to evaluate *in vivo* CYP3A activity.
- \geq 4 β -hydroxycholesterol is a metabolite formed by CYP3A-catalyzed metabolism of cholesterol. 4β-hydroxycholesterol/cholesterol ratio in blood can be measured as an endogenous marker for the activity of hepatic CYP3A4^[3].
- > The objective of the research was to evaluate the effect of multiple oral dosing of HAP_R10 on CYP3A4 activity in an EiH study assessed by the PK of a single oral microdose of midazolam and by blood 4β-hydroxycholesterol/cholesterol ratio.

2 – Clinical Study Design

- \succ Single-ascending dose (SAD, 30 2000 mg, n=39) and multiple-ascending dose (MAD, 60 – 900 mg BID for 14 days, n=18) of HAP_R10 study in healthy volunteers (HVs).
- \succ A single oral dose of 100 µg midazolam was administered prior to and after 13 days of HAP_R10 dosing in all MAD cohorts to evaluate induction potential on CYP3A4 as measured by midazolam systemic exposure.
- \geq 4 β -hydroxycholesterol and cholesterol levels were measured in MAD cohorts prior to and after HAP_R10 dosing as an endogenous marker for hepatic CYP3A4 activity. Figure 1. Multiple-Ascending Dose Part of HAP_R10 EiH Study Design

HAP_R10 Twice a Day for 14 days in Healthy Volunteers: Cohort1: 300 mg; n=6 (active) :2(placebo) Cohort2: 900 mg; n=6 (active) :2(placebo) Cohort3: 60 mg; n=6 (active) :2(placebo)

Day Dosing: 100 µg midazolam **Baseline:** Midazolam intensive PK, 4β-hydroxycholesterol/cholesterol Ratio Dosing: 100 µg midazolam After Treatment: Midazolam intensive PK. 4β-hydroxycholesterol/cholesterol Ratio

Yuyan Jin¹, Annelieke Kruithof², Zhigang Yu³, Hisham Abdallah¹, Jacobus Burggraaf ^{2,4}, Ingrid Kamerling², Jun Shi¹, Ilia Folitar¹, Suchat Wongcharatrawee³,

1] Clin Pharmacol Ther. 2013 Jun;93(6):564-71 [2] Br J Clin Pharmacol. 2014; 79(2): 278-85 [3] Drug Metab Dispos 41:1488–1493

3 – Study Results

3.1 Midazolam Results

Figure 2. Mean (SD) Midazolam Plasma Concentration vs. Time Profiles Before and After Multiple Dose of HAP_R10

Figure 3. Individual Midazolam AUC_{0-inf} Changes Before and After Multiple Dose of HAP_R10 (n=18)

Table Multi

Parame

(Unit)

pa • hr/m na • hr/m

arameters are presented as geometric mean (coefficient of variation) except for t_{max} which is shown as median (range).

3.2 4β-hydroxycholesterol/cholesterol Ratio Results

- Compared with values prior treatment, the ratios of 4- β hydroxycholesterol/cholesterol were increased by 1.9, 2.6 and 4.9 fold after 14 days of 60 mg, 300 mg, and 900 mg BID dosing of HAP_R10, respectively.
- The increases in 4-β hydroxycholesterol/cholesterol ratio across the dose range tested indicate corresponding dose-response in activity of hepatic CYP3A4 following multiple doses of HAP_R10.

1. Hoffmann-La Roche, Pharma Research and Early Development; 2. Centre for Human Drug Research; 3. Former Hoffmann-La Roche Employee; 4. Leiden Academic Center for Drug Research, Netherlands.

e 1. Midazolam PK Parameters Before and After	
ble Dose of HAP_R10	

ters	HAP_R10 +Midazolam 100 µg					
	60 mg		300 mg		900 mg	
	Day-1	Day 14	Day-1	Day 14	Day-1	Day 14
	N=6	N=6	N=6	N=6	N=6	N=6
	409	78.7	424	74.6	301	49.1
	(31.7)	(44.6)	(51.5)	(23.2)	(18.1)	(41.5)
	0.50	0.50	1.50	0.50	0.51	0.50
	(0.5-2.0)	(0.3-0.5)	(0.5-2.0)	(0.3-1.0)	(0.5-2.0)	(0.3-0.5)
nL)	1260	163	1340	143	884	85.0
	(26.4)	(33.8)	(51.6)	(19.5)	(31.9)	(41.0)
nL)	1610	179	1850	158	1110	94.7
	(31.2)	(35.6)	(58.2)	(20.4)	(31.6)	(40.0)
nL)	1650	182	1910	160	1130	96.0
	(33.7)	(35.4)	(59.7)	(20.5)	(31.2)	(39.6)
	4.57	3.02	5.06	3.54	4.20	2.57
	(33.0)	(52.0)	(27.6)	(43.9)	(22.4)	(51.4)
	60.6	550	52.3	624	88.8	1040
	(33.7)	(35.4)	(59.7)	(20.5)	(31.2)	(39.6)

- Midazolam AUC_{0-inf} were substantially reduced by 89%, 91%, and 91%, respectively, when given with 60 mg BID, 300 mg BID, and 900 mg BID HAP_R10.
- The decreases in midazolam exposure confirmed clinical CYP3A4 induction by HAP_R10.
- All HAP_R10 doses resulted in maximal induction and no dose response was characterized.

3.3 Midazolam vs. 4β-hydroxycholesterol/cholesterol Ratio

Figure 6. Correlation Between Increases in Apparent Clearance of Midazolam and Increases *in* 4β-hydroxycholesterol/cholesterol ratio (n=18)

4 – Conclusion

- interaction liability through CYP3A4.

CHDF entre for Human Drug Resea

Roche

Red triangles represent geometric mean at each dose level.

- The increases in 4β -
- hydroxycholesterol/cholesterol ratio, which reflected induction on hepatic CYP3A4, were lower than the increases in apparent clearance of midazolam, where a combined induction effect on both gut and liver CYP3A4 was estimated.
- However, linear regression shows a significant correlation between increases in midazolam clearance and increases in 4β hydroxycholesterol/cholesterol ratio.

 \succ The decreases in midazolam exposure and increases in 4 β -hydroxycholesterol/cholesterol ratio indicated clinically significant CYP3A4 induction by HAP_R10.

> Use of Midazolam microdosing in an EiH study allows early determination of clinical drug

 \succ The corresponding dose-response increases in 4- β hydroxycholesterol/cholesterol ratio suggested its potential use as endogenous marker of hepatic CYP3A4 activity.