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Stellingen

behorend bij het proefschrift >Modelling repeated measurements in clinical pharmacology;

from individual to population and back=

1. Onmogelijk is een kwestie van perspectief.
Dit proefschrift

2. Empirical Bayes estimates maken het delen van informatie tussen individuen mogelijk en mixed
effect modelling toegankelijk.

Dit proefschrift

3. Het vertalen van een indocyanine groen concentratie profiel naar het onderliggende
klaringsprofiel is met slechts een beperkt aantal vooronderstellingen mogelijk.

Dit proefschrift

4. Het schatten van de EC50 parameter uit het Emax model moet bij in-vivo PK/PD modelling
vervangen worden door het schatten van de S0 parameter, gegeven door Emax/EC50.

Dit proefschrift

5. Toegepaste statistiek is één deel computatie en negen delen communicatie.

6. Bij de keuze van een statistische methode moet de meest efficiënte overdracht van informatie het
basisprincipe zijn en de bloody obvious test het uitgangspunt.

7. De aanwezigheid van significante autocorrelatie bij analyse van herhaalde metingen duidt op het
onvoldoende modelleren van het structurele model voor het individu; het is daarom een duidelijke
aanwijzing voor verder inhoudelijk onderzoek.

8. Het concept van individual bioequivalence biedt een statistische oplossing voor een niet bestaand
probleem.

9. Gezien de aard en incidentie van sportblessures, moet het suggereren van een causaal verband
tussen sport en gezondheid met de grootst mogelijke argwaan bekeken worden.

10. De vraag aan zorgende mannen of het vandaag jouw beurt is om op te passen, geeft blijk van
een merkwaardige kijk op vaderschap; oppassen doe je op andermans kinderen.

11. Mannen en vrouwen met kinderen die aangeven dat een eerlijke verdeling tussen arbeid en zorg
wenselijk, maar in hun situatie niet mogelijk is, zijn gewoon niet bereid de consequenties te
dragen.

12. Je bedenken is een teken van kracht.
Christopher Lloyd

Rik Schoemaker, Leiden, 4 maart 1999  



Theses

1. Impossible is a matter of perspective.
This thesis

2. Empirical Bayes estimates enable sharing of information between individuals and make mixed
effect modelling accessible.

This thesis

3. Translation of an indocyanine green concentration profile into the underlying clearance profile is
possible with only a limited number of assumptions.

This thesis

4. Estimation of the EC50 parameter in the Emax model should, in the context of in-vivo PK/PD
modelling, be replaced by estimation of the S0 parameter, defined by Emax/EC50.

This thesis

5. Applied statistics is one part computation and nine parts communication.

6 The most efficient transfer of information must be the guiding principle in the choice of a
statistical method and the bloody obvious test must be the point of departure.

7. The presence of significant autocorrelation in the analysis of repeated measurements indicates
insufficient modelling of the structural model for the individual; it is therefore a clear indication for
additional conceptual research.

8. The concept of individual bioequivalence offers a statistical solution to a non-existing problem.

9. The suggestion of a causal link between sports and health must -in view of the nature and
incidence of sports injuries- be viewed with great suspicion.

10. Approaching a man who takes care of his children with the question >is it your turn to baby-sit?=
exposes a curious view of fatherhood; one only baby-sits other people=s children.

11. Men and women with children who indicate that a fair division between work and care is desirable
but  impossible in their situation, are simply not prepared to bear the consequences.

12. Changing your mind is a sign of strength.
Christopher Lloyd

Footnote: It is tradition at most Dutch universities to accompany the PhD thesis by a number of theses

(stellingen). These theses are statements which the candidate considers to be true. A number of them pertain

to the thesis itself, several should be related to the academic field of the candidate and the rest are of a more

personal nature. They are an integral part of the thesis and may therefore be questioned during the defence. As

they are generally posed in Dutch and will therefore elude the foreign reader, I=ve attempted a translation.

Regrettably, some of the finer points may have been lost in the process (notably for number 10 and perhaps

number 11), for which I apologise.

Rik Schoemaker, Leiden, March 4 1999



En wederom is het kwaad als kauwgom onder het tafelblad der gerechtigheid

Superworm Jim

voor mijn moeder

zonder wie ik niet zou zijn

voor mijn vader

zonder wie ik nooit was begonnen

voor Marieke

zonder wie ik al veel eerder klaar zou zijn geweest,

maar dat wat telt, had gemist
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Preface

Clinical pharmacology experiments offer the unique opportunity to carefully investigate

pharmacology in human subjects under strictly controlled experimental conditions. A key

aspect of this process is taking a series of measurements at consecutive time points to

document the effect of a treatment over time on the individual subject. The analysis of these

measurements is the subject of this thesis.

If interest lies in describing and quantifying the outcome of a study, then often model-

independent summary measures suffice. If the results are meant for extrapolation, for

generalisation or for understanding or gaining insights into underlying mechanisms, then

mathematical models must be used that allow the data to be interpreted in the context of a

larger framework of existing or postulated knowledge.

The main body of this thesis is devoted to finding solutions to practical problems in

analysis of repeated measures data encountered during work at the Centre for Human Drug

Research. Several aspects are central to these solutions. First, they aim to extract the

maximum amount of information from the data. Second, they deal with identifiability, i.e.

whether identifying certain aspects of the data or underlying process is possible, like

treatment response profiles, parameter values or competing models. Third, they provide

solutions to the problem of dealing with missing information on part of the individual subjects.

Maximal information extraction, solving identifiability issues and dealing with missing

information generally require the combining of information over all subjects and mathematical

models that capture important aspects of the underlying process. The statistical technique of

mixed effect modelling is well suited for this purpose and is applied in most chapters. Mixed

effect modelling capitalises on the notion that all subjects are different but have much in

common at the same time. Instead of independently estimating parameters for each subject,

average parameters and inter-individual variability estimates are generated. This allows the

sharing of information across subjects where missing information of some is supplemented

by information available from others.

Although simple summary measures may be preferable for presentation of basic trial

outcomes, this thesis shows that models are useful for increasing the understanding of the

data. The techniques to analyse the repeated measurement data properly in these situations

are investigated, explained and made practically accessible.
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Overview of the thesis

Chapter 1 provides an overview of methods for the analysis of continuous repeated

measurement data.

Chapter 2 deals with the analysis of experiments where each subject is both measured

repeatedly over time and on different occasions (associated with different treatments). If data

are missing, the standard repeated measures analysis of variance approach collapses.

Several solutions are examined like filling in estimates for the missing data. Theory and

simulations indicate that the best choice is the use of linear mixed effect models with a simple

'small sample' correction for significance testing.

Chapter 3 provides an introduction into nonlinear mixed effect models and their use in

data-rich situations. A main strength in using these models is the ability for individuals to

borrow information from other subjects. This leads to more stable and coherent parameter

estimates for the individual and for the entire group. Several examples are presented to

illustrate their usefulness in a clinical pharmacology setting.

Chapter 4 deals with the modelling of the pharmacokinetic profile of drugs that are rapidly

and extensively cleared by the liver. By administering a constant rate infusion of marker

compound, a continuous assessment of the hepatic clearance may be obtained which can be

related to changes in liver blood flow. Both semi-parametric models and parametric models

requiring systems of differential equations are presented.

Chapter 5 provides a solution to estimating model parameters for the Emax concentration-

effect model when maximal effects are not attained. Deviations from a linear concentration-

effect relationship are commonly encountered but estimates of EC50 and Emax are very

unreliable if a maximum is not reached. By estimating a different parameter (called S0), the

situation becomes manageable, allowing comparison of the potency of different drugs that

only exhibit partial Emax profiles or comparison of increasing doses of the same drug.

Chapter 6 provides an application of model discrimination to in vitro pharmacology data. It

is shown that competing but unrelated concentration-effect models may be formally compared

through the use of a super-model. This requires nonlinear mixed effect modelling to

adequately estimate the model parameters.

Finally, the summary and conclusions summarises the thesis and shows that maximal

extraction of information, identifiability and dealing with missing information that are the

motivating forces for the presented solutions, may be achieved using appropriate modelling

techniques.
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Chapter 1

Analysis of continuous repeated
measurements in clinical pharmacology

Summary

This chapter provides an overview of analysis methods for studies with repeated

measurements on the same individual. Only analysis of continuous outcomes is discussed. If

the data allow it, simple summary measures are preferable to more complex methods that

analyse the entire profile. In the cases where these simple methods fail, statistical techniques

like mixed effect modelling are available that allow the combining of information of varying

quality and quantity. Experiments with missing measurements or missing information on part

of the subjects may also be successfully analysed using these methods.
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Introduction

Clinical pharmacology experiments often entail the repeated assessment of subjects under

different conditions. The analysis of series of measurements in such subjects on consecutive

time points is the subject of this thesis. Many procedures can be applied to these data and

this chapter aims to provide a global overview.

The emphasis of the techniques discussed is on analysis of continuous (as opposed to

categorical, dichotomous or count) data. Although the effects of drugs are ultimately aimed at

inducing or preventing the occurrence of clinical events, these may fall outside the realm of

clinical pharmacology. Study of these events often requires large scale trials, often with few

measurements per subject. A wealth of statistical methods (e.g. survival analysis, logistic

regression) is available for the analysis of these data [1,2] but they are beyond the scope of

this thesis.

The analysis of repeated measurements can be divided into two main categories: the

reduction of the stream of data into summary measures to be subsequently analysed, and the

analysis of the entire data set as a whole.

The most straightforward way of analysing a sequence of measurements is by reducing the

sequence to a small number of characteristics [3,4]. Reduction of a profile into summary

measures may be done without specific underlying models (model-independent methods) or

by estimating the parameters of mathematical models that can be thought to explain aspects

of the studied process.

Profile-reduction may become problematic if measurements are missing or if individuals

provide varying amounts of information. In these cases it may be preferable to model a

structure to the data and analyse the data set as a whole, without prior reduction. By

combining information over all the individuals and analysing them collectively, sensible

parameter estimates may be obtained, that would otherwise remain unavailable. The

statistical class of mixed effects models is very useful for this purpose and will be described.

Summary measures

The repeated assessment in time of subjects under different conditions or treatments

introduces a complex structure in the data; within-subject measurements for a particular

treatment are often correlated and if subjects receive different treatments an additional level

of dependency is created. If individual time points are compared between treatments (using

Student=s t-tests for instance) then this dependency structure is ignored and test results will

not be independent. Moreover, treatment-induced changes in the measured time profile may

be best described by



5

changes in certain characteristics of this profile rather than by changes at individual time

points.

These problems may be solved by reducing the original sequence into a small number of

summary measures. These summary measures abolish the repeated nature of the data,

solving the problem of the correlated measurements, and allow description of the most

important aspects of the profile. For these reasons, the use of summary measures has been

advocated by for instance Matthews et al [4].

Model-independent summary measures are most useful at summarising the data, and

provide a compact and comprehensible description of study outcomes. Additional

information may be extracted from the measurements if a relevant mathematical model can

be employed. The estimated model-parameters may allow generalisation and extrapolation

of study results under certain conditions. The models can also provide a valuable tool for

increasing the understanding of the underlying process.

Model-independent summary measures

Matthews et al [4] classify treatment responses as either of the peak or growth type. The peak

type shows a clear increase followed by a decrease or vice versa while the growth type is

characterised by a steady decrease or increase.

For treatment profiles with a clearly defined peak or trough, several useful summary

measures may be employed. Maximal effects (Emax or Cmax for concentrations) and the

associated time (Tmax) can be simply read from the data. Average response may be

quantified by a mean or, if the data points are not equidistant, by an area under the curve

(AUC). If this AUC is divided by the time span over which it was calculated, a weighted

average response results.

For data with a clear response, an alternative useful measure may the time of onset of

effect and the duration of effect. Onset of effect must be arbitrarily defined for instance as a

set percentage increase from initial values or a predetermined shift from baseline. The time

point associated with this shift may be obtained either by interpolation or by taking the first

measurement for which it occurs. If the data are variable then additional criteria (for instance

related to a minimal duration of effect) may be imposed to ensure that the onset of effect is

real and not determined by measurement error.
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For data that change in a constant direction over time, an estimate of the rate of change

may be the most useful summary measure. Linear regression may be used to calculate this

rate of change if the increase or decrease is linear over time. If linearity is not assured then

sometimes a data transformation can be used. One could contemplate the use of polynomials

if linearity cannot be achieved, but the resulting polynomial coefficients rarely have intrinsic

meaning and will only be useful for an alternative description of the profile.

Model-dependent summary measures

If a mathematical model can be constructed that is consistent with the data then additional

information may be extracted from the data. Examples are the deterministic models

describing the fate of drugs in the body (compartmental pharmacokinetic models) and the

models describing the relationship between drug concentrations and effects

(pharmacokinetic/pharmacodynamic models).

Based on physiology, biology or more often empirical experience, mathematical models

may be constructed describing concentrations or effect measurements. Pharmacokinetic

models are and have been very successful although the basic ideas behind them like transfer

into, between and out of compartments with immediate mixing, can only be approximations of

actual physiology [5].

The delay in time called hysteresis that is often observed between plasma concentrations

and corresponding effects may be dealt with in various ways. One empirical approach is to

assume that concentrations in a compartment other than the site of sampling are more closely

related to the effects, an Aeffect compartment@ may be implemented to account for the

hysteresis [6]. In practice, such an effect compartment may not actually be related to a

physiological compartment. It is therefore often called a hypothetical compartment and serves

then as a computational tool.

A different class of models called indirect response models may account for a delay in

effect by assuming that the drug influences the rate of formation or elimination of a substance

linked to the effect [7]. Based on knowledge about the mode of action or the physiology of the

system, these indirect response models may in some cases provide a more realistic

description.
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Both the indirect response models and the effect compartment models are simplifications

of reality. If the models are used mainly as descriptors of the data without compelling

arguments to the applicability of either one in a specific setting, their predicted behaviour can

be distinguished in experiments by their response to varying input regimes. The effect

compartment model predicts that the time of maximal concentration (Tmax) is not influenced by

the administered dose, while the indirect response model predicts a different Tmax for different

doses [8].

Both classes of models have greatly increased the potential for describing the relationship

between administered dose, resulting concentration and subsequent effect. It has been

proposed that the use of these PK/PD models in drug development may substantially

increase efficiency and will result in more valuable information in the drug development

process [9].

Parameter estimation in nonlinear regression is an iterative computational procedure [10]

where success may depend on the correct choice of starting values, the adequacy of the

model, and informativeness of the data set. The choice of the mathematical entry of

parameters in the model may also influences the estimation process. The same model

(curve) may be estimated with different parameters; the basic one-compartment model can

be parameterised using clearance and volume, but elimination half-life or elimination rate

constant can also be estimated directly, combined with estimation of either clearance or

volume. Rewriting the model with different parameters may result in much faster convergence

and more stable estimates [11]. Unfortunately, the most computationally desirable parameters

may not be meaningful at all in explaining the physiology, and therefore choice of

parameterisation is rarely dictated by statistical considerations alone. An example of a stable

and meaningful reparameterisation of the classic Emax concentration-effect model is provided

in chapter 5 of this thesis.

In the most common form of nonlinear regression, the dependent measurements like

concentration can be written as a direct (explicit) function of the independent variables like

time. The standard compartmental (sums of exponentials) pharmacokinetic models are

common examples. Alternatively, the rate of change of a variable may be modelled as a

function of this variable itself using differential equations. These differential equations are at

the basis of all pharmacokinetic compartmental models where the rate of concentration

change in a compartment is a function of the concentration itself and the rate of drug entry into

the compartment. For special situations explicit solutions may exist, but if this is not so then

the model-parameters can be estimated using the differential equations.

The physiologic indirect response models illustrate the requirement for parameter

estimation using the differential equations [9]. In these models, the rate of formation or

elimination of a substance (e.g. clotting factors) is influenced by another variable (e.g.

warfarin concentration) and no explicit solutions exist. Chapter 4 of this thesis provides

another example where the rate of elimination of the marker compound sorbitol is modelled

as a function of changes in hepatic blood flow.

After estimating the parameters for each individual, these estimates may be combined and
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compared between treatments. This will produce adequate results if each individual provides

estimates of comparable accuracy. However, if estimates are not based on (roughly) the

same number of measurements for each individual, or if the response for one individual is

much more variable than for another, some form of weighting of the different estimates is

appropriate [12]. This weighting of the relative contribution can also be obtained by the mixed

effect models described in the next section.

Mixed effect models

When individuals provide sufficient information of comparable quality across subjects, it is

often preferable to calculate summary measures of the treatment response and subsequently

analyse these measures between treatments using standard statistical methodology.

However, when crucial measurements are missing, or when individual treatment responses

provide insufficient information to obtain adequate individual parameter estimates, the data

set will need to be analysed as a whole. In this way, information may be shared across

subjects taking the relative contribution of each individual into account.

The statistical class of mixed effect models makes this sharing and combining of

information possible. The models are called 'mixed' because they describe the data using a

mixture of fixed and random effects. Fixed effects are under the control of the investigator like

the time of measurement and the treatment administered, while random effects describe the

variability in the measurements within or between subjects.

The power of the mixed effect models comes from the fact that differences in parameters

between subjects are modelled using distributions for these parameters. The task of

estimating individual parameters for each subject is replaced by estimating a single average

and inter-individual variability estimate for each parameter.

Linear mixed effect models

Data are often presented as curves of average effect over time. These curves will generally

provide a good (initial) description of the data if the shape of the individual profiles is

comparable for all subjects. If comparison of the entire profile between treatments is wanted,

then linear mixed effect models provide the appropriate statistical methodology.
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The models are called linear not because they make use of straight lines but because the

models describe response as a linear combination of the levels of the factors within a design.

Average response for a treatment at a particular time point is given by the sum of the average

treatment response (over all time points), the average response at that time point (over all

treatments) and the deviation for that particular treatment-time point combination. The

analysis can answer three questions: 1) are the curves parallel?, 2) is one curve on average

above the others?, and 3) does the average profile (irrespective of treatment) change over

time?

If there are no missing data, then repeated measures analysis of variance (ANOVA)

techniques may be used [3,13]. If there are missing data then several solutions may be

entertained. Missing measurements may be replaced by reasonable estimates or the entire

data set may be modelled. Chapter 2 of this thesis describes the various alternatives and

investigates their applicability. The most viable approach is by using a linear mixed effect

model and estimating the parameters using maximum likelihood.

If maximum likelihood is used then a wide range of missing measurements may be dealt

with. Not only the completely random missing measurement can be incorporated but also

more serious patterns of missing data.  On theoretical grounds, the analysis is valid if the

probability for a measurement of being missing is not determined by the missing

measurement itself. This probability may, however, be influenced by preceding

measurements. This means that if during treatment a subject drops out because of lack of

relief by the treatment, his data can (and should) still be incorporated in the analysis. This

situation could not be adequately dealt with using a summary measure like the AUC because

it is undefined if measurements are missing at the end of the profile. Simply taking the

average of available data will not be adequate either. The remaining subjects are likely to

judge their condition more favourably.  Otherwise, they would have taken escape medication

as well.

Linear mixed effect models are not only flexible regarding missing measurements, but also

in the choice of covariance structures that describe the correlation between the different time

points and treatments. In practice, different covariance structures rarely lead to large

differences in point estimates of the fixed effects, but statistical significance of these effects

may be genuinely affected [3]. Random effects models can be extended into the realm of

generalised linear mixed effect models [3]. These may be used to describe binary data, like

presence or absence of symptoms after various challenge conditions, or counted responses

like the number of events observed in a particular time span.
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The price for the increased flexibility over the repeated measures ANOVA approach is the

loss of exact and explicit solutions. The significance statements for mixed effects models rely

on large sample arguments meaning they assume that an infinite number of subjects were

studied. This can mean poor approximations in practice while the quality of the approximation

cannot be easily established. Chapter 2 of this thesis provides a correction to the large

sample approximations and presents simulation results that show that the correction works

well for the design studied.

Random coefficient linear regression

Random coefficient linear regression models are a useful subclass of the linear mixed effect

models. The essence of these models is that a common linear regression model is applied to

all subjects, but coefficients (slopes and intercepts) are allowed to vary between subjects.

These coefficients are the random effect, and only mean and (inter-individual) variance of the

coefficients are estimated within the model. These population parameters may be used to

test differences between treatments or between groups.

Random coefficient linear regression may be contrasted with the two-stage approach

where derived variables are first estimated for each subject (individual regression

coefficients) that are subsequently analysed using standard techniques. The difference

between random coefficient regression and the two-stage approach is that each subject may

supply a different amount of information because of a variable number of data points or data

points in more or less pivotal positions. Random coefficient linear regression can allow for

this while the two-stage approach generally assumes all estimates to be equally precise.

Nonlinear mixed effect models

Conceptually, it is a small step from random coefficient linear regression to nonlinear mixed

effect models. The same principles apply, only the model for the individual is nonlinear in its

parameters. The main and motivating advantage is the gathering of strength. Small amounts

of information for each subject may be combined to provide a clear picture of model

parameters on a population level.

Nonlinear mixed effect models were initially developed in the field of population analysis

where small amounts of routinely collected kinetic data are gathered for many subjects to

investigate the kinetic behaviour of drugs in the population actually taking the drugs.

Additionally, explanatory covariates are sought to explain part of the inter-individual variability

making dose adjustments possible [14].
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The use of nonlinear mixed effect models is not restricted to these sparse data situations.

In clinical pharmacology research settings, one may encounter data rich situations with many

measurements per subject, but still have insufficient information to obtain adequate

parameter estimates. Combining of information over subjects in these cases will result in

better parameter estimates. Chapter 3 of this thesis deals with these situations.

The transfer of information is not necessarily only from individual to population. The

population information may be used to improve the estimates of individuals with insufficient

information. This can be accomplished by using empirical Bayes estimates. These individual

estimates are called Bayes estimates because they are conditional on the population

information. They are called empirical because the prior information is not obtained from an

external source but from the data itself. The transfer of information is therefore from individual

to population and back.

Nonlinear mixed effect models can be approached through a variety of statistical and

computational techniques [15]. An extensive bibliography of methods and applications is

provided by Yuh et al [16]. The method that has been around longest and has been

implemented in the most flexible software program to date, is NONMEM [17,18].

There are two main analytical methods within the NONMEM program and both use a linear

approximation to the nonlinear model to make computation feasible. As with ordinary

nonlinear regression, computations are iterative, but the two methods differ in the way that the

different subjects are accounted for. For the first-order method, all subjects have the same

estimate for the parameters during a single iterative evaluation step. This numerical

approximation may work if individual subjects supply only limited information but may lead to

serious errors in data-rich situations. This flaw is avoided in the first-order conditional

estimation method. It is based on the ideas presented by Lindstrom and Bates [19] and is

implemented by generating individual empirical Bayes estimates during each iteration. This

method, although of far greater numerical complexity and therefore requiring more extensive

(computer) time, is advocated in data-rich situations and with highly nonlinear models

(NONMEM users guide VII [18]).

Another useful application of nonlinear mixed effects modelling is the ability to discriminate

between alternative models. With single-subject nonlinear regression, a model comparison

would have to be done for each individual fit and the outcome subsequently somehow

combined over subjects to allow a general statement of superiority of one of the models. This

combining of test results is not trivial and may lead to contradictory results; for some subjects

a significant improvement will be found while others may not show this. This problem is solved

by estimating a single set of population parameters for each model using (nonlinear) mixed

effect modelling.
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A prerequisite for model discrimination is that models are nested, meaning that one model

can be seen as a restricted version of another model, obtained for instance by fixing certain

parameters. Classical likelihood ratio tests may be used to investigate whether the more

complex model results in a significant increase in fit [10,20]. This for instance allows the

formal testing of whether a two-compartment model provides a significant improvement over

a one-compartment model, whether an Emax model performs better than a linear model, or if

inclusion of a hypothetical effect compartment is merited. In cases where the two models are

not nested, formal testing is not supported by theory unless a 'super model' can be found for

which either model is a specific case. Chapter 6 of this thesis provides such an example.

Although significance testing is possible using nonlinear mixed effect models, several

uncertain factors remain. Significance tests rely on large sample justifications and this usually

means that test results are only approximate. They may even be far off, and the only way

currently known to examine whether the test results are valid in a specific situation, is to

investigate them using a bootstrapping procedure [21]. Bootstrapping is implemented by

repeatedly sampling and analysing subsets of the original data set. The distribution of the

bootstrapped parameters provides an indication of the underlying parameter distribution.

This, however, requires a large number of computer runs (perhaps more than 1000) which, at

the current state of computing, is often unfeasible as a standard approach.

An additional problem in significance testing is generated by the large number of

parameters that may be required for characterisation of the different treatments. For instance,

testing whether the kinetics of a drug changes under different conditions may require different

parameters for each of these conditions. This means that if several treatments are compared

simultaneously, a prohibitively large number of parameters need to be estimated. This can

pose great numerical difficulties, even if the data would allow adequate estimation of all the

relevant parameters. For these reasons, the main use of nonlinear mixed effect modelling in

data-rich situations may be in parameter estimation and not in significance testing.

Conclusions

If summary measures can adequately capture the aspects of the response that are of interest,

they are preferable to the use of the complex statistical techniques needed to analyse the

entire data set as a whole. Presentation of results is much simplified and will not be clouded

by unease with complex statistical methodology on the part of the reader.
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However, if crucial information is missing for some of the subjects, or subjects provide

information with varying degrees of accuracy, mixed effect modelling may allow adequate

estimation of the relevant response parameters. Naturally, the more complex approach will

require more explanation, but if this allows the extraction of information that would otherwise

remain hidden, it may well be worth the effort.

The choice between model-independent and model-dependent approaches are closely

related to the rationale for the study. If the aim is to describe, or to test simple clearly

specified prior hypotheses, model-independent measures are generally adequate and have

the advantage of ease of interpretation.

If the data can be placed in a larger conceptual framework, mathematical models may be

available or be developed to describe aspects of the underlying process. Estimation of these

model parameters may aid in increasing the knowledge about the process. If the models

prove consistent over different situations, they may be used to generalise and sometimes

extrapolate the results of the study.

Finally, models may increase in complexity during model-development. Nonlinear mixed

effect modelling provides the methodology to compare these different models on a population

level and to test whether the increase in complexity is substantiated by the data.
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Chapter 2

Repeated measures for two
within-subject factors;

analysis and missing data solutions
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Summary

The statistical analysis of the Repeated Measures design with two factors within and no

factors between subjects which is popular in clinical pharmacology, is discussed. Use of

Restricted Maximum Likelihood (REML) methodology is compared to an Imputation

procedure in small sample situations with missing data and is illustrated by simulations. While

Imputation leads to undesirable results which are not easily corrected, REML estimation in

which test statistics are compared to an F-distribution provides an elegant tool for the

analysis of these designs.
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Introduction; design

In pharmacokinetic and pharmacodynamic research and many other fields of applied

science, one is frequently interested in comparing the time course of an outcome variable

related to two or more treatments, as the effects on blood pressure of different drugs or

different dosages of the same drug. This time course can be investigated either by

randomising the patients to one of the possible treatments or by administering all treatments

to the same subject. The adequacy of the crossover design (all treatments in one subject) has

been questioned [1], but most of the criticism may be mainly based on studies involving

patients. Carry-over effects can be prominent when insufficient time is available between

treatments or when the drug under investigation induces relatively long lasting changes (cure

being an extreme example). The fact that the patients' health can vary considerably over time

compounded by seasonal effects may complicate matters by causing complex period effects.

In clinical pharmacology however, short-lasting experiments are often performed in healthy

volunteers. Treatments will be adequately spaced and will induce only transient and often

relatively small effects. Period effects are minimised by keeping subjects under strictly

controlled circumstances. Period effects caused by increasing skill at performing certain tests

are minimised by scheduling training sessions prior to the start of treatment. Any remaining

sources of error are balanced over treatments by randomising treatment order according to

Latin squares balanced for first order carry-over effects. This means that each treatment

precedes every other treatment equally often [2].

If care is taken to remove these sources of error, the design has the advantage of

providing both between and within subject measures of variability and of producing more

powerful tests, as subjects serve as their own controls. An additional advantage is that

maximum information is obtained from volunteers that may be hard to come by. For all these

reasons, the design is popular in clinical pharmacology. For instance, 30 out of the 133

papers (23%) published in the 1991 issues of the British Journal of Clinical Pharmacology

used this design.

Analysis

While the design is used frequently, the statistical analysis is not so standard. Approaches

vary from comparisons per time point (33% of the previously cited papers) to 'fixed-factor'

analyses (17%) and specific Repeated Measures techniques (47%).
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Most statisticians would agree that overall tests of significance are preferable to simple

comparisons per time point. They allow general statements about effects, are more powerful

in absence of interaction and provide a safeguard against too many spurious test results.

Naturally, overall tests can be followed by comparisons per time point when significant

treatment by time effects are present in order to provide an indication for the cause of the

significant interaction. Since both factors are within-subject factors, these comparisons per

time point are within-subject comparisons.

The 'fixed-factor' approach extends the classic Latin-square analysis of variance which has

only one measurement associated with each treatment [2]. The classic Latin-square ANOVA

has a subject effect, a treatment effect and a period effect due to the period in which the

treatment is administered. The 'fixed-factor' approach adds an extra time effect and a

treatment by time interaction in order to incorporate the successive measurements in time for

each treatment. All factors are modelled as fixed factors. The design removes additive period

effects and is a natural extension to the widely accepted analysis of cross-over designs [3].

However, the 'fixed-factor' approach imposes a very strict variance-covariance matrix on the

within-subject measurements. It not only demands that all variances must be equal, but all

covariances both within and between treatments must be equal as well. This means that there

will have to be the same correlation between measurements hours apart (within treatments)

as between measurements weeks apart (between treatments); this may be highly restrictive.

A completely unrestricted covariance matrix on the other hand, may be obtained using the

multivariate approach to Repeated Measures treated by Cole and Grizzle [4]. While this

procedure may seem preferable since it makes fewer assumptions, it has less power in

situations where a more restricted covariance matrix is plausible. When the analysis is

performed for a small number of subjects, Reinsel [5] has shown that the procedure may result

in inaccurate estimates for the fixed effects. Finally, when the number of levels for a

multivariately tested factor exceeds the number of subjects, significance tests are impossible

because of singularity of the error matrix.

The univariate approach to Repeated Measures is based on the mixed model analysis of

variance where the subject factor is assumed random [6]. This is the standard approach to

Repeated Measures incorporated in software like SAS/STAT GLM [7], SPSS MANOVA [8]

and BMDP4V [9] (along with the multivariate alternative) and is obtained by specifying the

measurements as REPEATED, WSFACTORS and WITHIN FACTORS respectively. The

restrictions on the covariance matrix are not as severe as in the 'fixed-factor' approach and

the analysis is not hampered by the 'small sample' difficulties encountered in the multivariate

approach.
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The model can be described by the following equation:

Xijk = µ + αi + βj + αβij + (π)k + (απ)ik + (βπ)jk + (ε)ijk

Where µ = intercept (grand mean), α = treatment factor with i=1..t,

β = time factor with j=1..u and π = subject factor with k=1..s.

The treatment by time by subject interaction (αβπ) is indistinguishable from the residual error

(ε) since there are no replications in the cells.

The factors (π), (απ), (βπ) and (ε) are random and mutually independent with:

(π) ≅ N(0,σ2
π), (απ) ≅ N(0,σ2

απ), (βπ) ≅ N(0,σ2
βπ) and (ε) ≅ N(0,σ2

ε).

The within-subjects variance-covariance matrix associated with this model

can be described in terms of a linear combination of these variance components. For a

specific example with two treatment levels and two different time points this matrix amounts

to:

This covariance matrix allows a different correlation between the same time points in different

treatments than between the different time points in one treatment.

The Expected Mean Squares associated with this model are:

E(MSα)  = σ2
ε + uσ2

απ + uσ2
α

E(MSβ)  = σ2
ε + tσ2

βπ + tσ2
β

E(MSαβ) = σ2
ε + sσ2

αβ

E(MSπ)  = σ2
ε + tσ2

βπ  + uσ2
απ  + tuσ2

π

E(MSαπ) = σ2
ε + uσ2

απ

E(MSβπ) = σ2
ε + tσ2

βπ

E(MSε)  = σ2
ε                                                      

These indicate that the α and β main effects should be tested over their respective

interactions with subjects, and the αβ interaction over residual error. The deviation of the

intercept from zero can be tested over the MSπ.  Corrections to these significance tests can

be applied when the actual covariance matrix deviates from the specified 'doubly compound

structure'. Both the conservative Greenhouse-Geiser epsilon [10] and the more liberal Huynh-

Feldt epsilon [11] can be used to modify the degrees of freedom for the F-tests.

If one is especially concerned about the presence of additive period effects, these can be
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removed by including design variables defining the period effect as covariates. This removes

the variability attributable to the period effect from the 'treatment' error term and produces

exactly the same results for treatment and period effects as a classic Latin-square analysis

carried out on unweighted averages over the different time points in a treatment. Time and

treatment by time effects are independent of the presumed period effect and are therefore

unaffected by inclusion of this period effect in the model.

Missing data

When some of the measurements are missing, standard analyses can not be applied and

alternatives have to be found. Before any attempt at analysis can be made however, the

mechanism causing the missing data must be considered. An excellent introduction into this

matter is given by Laird [12] largely based on notions developed by Rubin [13].

The first distinction to be made is whether or not the missing data mechanism is ignorable

from a likelihood based perspective. If the unobserved outcome itself causes the data to be

missing, the mechanism is non-ignorable. This would be the case for instance, if

measurements are discarded when above or below a specific value. Analysis of non-

ignorable missing data can only be performed if the mechanism causing the missing data is

explicitly modelled. This makes it a situation which is hard to approach with standard

solutions and the rest of the paper will therefore only deal with ignorable missing data.

If the missing data mechanism is ignorable, this means that the likelihood does not have to

be altered to cover the missing measurements.

The strictest demand on ignorable missing data, generally required by non-likelihood

based analyses, is for the data to be 'missing completely at random' (MCAR). In this situation,

the probability of a specific measurement being missing is not allowed to depend on

observed variables. The accidentally spilled test-tube falls into this category.

If data are 'missing at random' (MAR), other variables are allowed to influence the

probability of measurements being missing. It is therefore a weaker demand on ignorable

missing data than MCAR. This may occur when certain treatment-time combinations have

higher drop-outs, or when a treatment is discontinued after the outcome has reached critical

levels. If one is certain that it is not the measurement itself which is behind the missing data

mechanism, these frequently occurring situations can in theory be dealt with by likelihood-

based analyses. However, they will rely heavily on the correct specification of the model.
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Missing data analysis

There is no consensus on how data should be analysed when some of the measurements are

missing. The problem is of course not new, and many solutions have been described.

The most simple but least desirable approach to a missing data situation is eliminating the

entire subject who has missing data. With two factors within subjects this generally means

deleting an unacceptable amount of information, while the data still have to be 'missing

completely at random' (MCAR) for the resulting analysis to be valid.

Another solution is obtained by replacing the missing measurements by reasonable values

and subsequently performing a complete data analysis. The classic choice for replacements,

due in general to Yates [14], is the least squares estimate of the missing values. Little & Rubin

[15] provide a comprehensive discussion. When there is only one error term, estimates can

be found by using special formulas [16] or by iteratively estimating and imputing (filling in)

values until the residual Sum of Squares is minimised [17]. If the number of missing values is

subtracted from the degrees of freedom for the residual Sum of Squares, the correct Mean

Square is obtained. Non-iterative solutions that give correct degrees of freedom can be

obtained by Bartlett's ANCOVA method [18] expanded by Rubin [19] or by direct calculation

of the least squares solution to the model using for instance SAS/STAT GLM [4] or SPSS

MANOVA [5]. Even though the Hypothesis Mean Squares are overestimated [20] these

methods are usually adequate provided the data are MCAR.

When there are multiple error terms as in the univariate Repeated Measures analysis, the

'least-squares' solution is problematic because it is unclear which error term or what

combination of error terms should be minimised. An approximate solution could be conceived

by initially taking all effects as fixed (including interactions with subjects), and subsequently

using the Expected Mean Squares (obtained with for instance the SAS/STAT GLM RANDOM

option [4]) for constructing synthetic F-values. However, the question remains which effect

should incorporate the missing degrees of freedom in this approach. SPSS MANOVA [5] for

instance randomly distributes these missing degrees of freedom over the various error terms

(beginning with MSπ) while SAS/STAT GLM [4] removes them from the highest interaction

term (MSαβπ = MSε).

The most viable approach is probably through the use of Maximum Likelihood. Jennrich

and Schluchter [21] have described a method for analysing Repeated Measures data by

explicitly modelling the within-subject covariance matrix. Their methodology is implemented in

the 5V module of BMDP [6]. A variety of covariance structures are pre-programmed including

compound structure, first order autoregressive and general autoregressive structures for one

within-subject factor. An unstructured matrix is available providing the multivariate Repeated

Measures analysis. The 'doubly compound structure' required for two within-subject factors

can be defined by the user with the general linear option as a linear combination of the four

matrices associated with the four different variance parameters. A syntax description is

provided in the Appendix.

A choice out of five minimising algorithms can be made, two of which provide Restricted
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Maximum Likelihood (REML) estimates. REML estimates account for the loss in degrees of

freedom from estimating the fixed effects and provide the same variance estimates as the

corresponding ANOVA when data are complete [22]. Significance testing is performed using

Wald statistics which are asymptotically distributed according to a chi-square distribution. A

chi-square distributed variable with p degrees of freedom, when divided by p, follows an F-

distribution with p and ∞ degrees of freedom. In all cases we have examined with complete

data these Wald statistics (under REML estimation), when divided by their degrees of

freedom, are identical to the F-statistics from the corresponding Repeated Measures

ANOVA. Since Wald statistics are asymptotically distributed as a chi-square while many

clinical pharmacology experiments are usually based on no more than 12 subjects, the

discrepancy between for instance 11 and ∞ denominator degrees of freedom may lead to

very liberal test results. In small sample situations, Berk [23] suggests comparing the divided

Wald statistics to an F-distribution with degrees of freedom equal to the complete data

Repeated Measures ANOVA situation, which may still be liberal but is certainly preferable to

the 'infinite' number of subjects assumed for the asymptotic chi-square approach.

The new SAS/STAT procedure MIXED also provides ML and REML estimation in mixed

effects models with structured covariance matrices [24,25] similar to BMDP5V. It provides 'F'

values, suggests denominator degrees of freedom and allows the user to specify their own.

However, the general linear covariance structure has not yet been implemented in the current

version (Release 6.07) and therefore the procedure MIXED is not yet suitable for the

univariate Repeated Measures approach with two factors within subjects.

Simulation studies

A simulation study was performed to investigate the performance of the REML methodology

and the adequacy of the proposed small sample adjustments. This was contrasted with the

performance of an Imputation scheme (filling in for the missing values) followed by complete

data analysis to examine whether this may be an acceptable alternative in practice.

The simulated data arise from a cross-over design in which six subjects receive two

treatments and are measured on seven consecutive time points; 84 measurements in all. Two

data sets with 500 replications each were generated differing in their covariance structure.

For set I all covariances were set at zero. Set II used the scaled rounded average parameters

obtained from the analysis of 20 real data sets: σ2
π=25, σ2

απ =5, σ2
βπ =1, σ2

ε =10. From these

data 0, 4, 8 and 16 measurements were randomly deleted corresponding to approximately

0% 5% 10% and 20% missing data. No fixed effects were incorporated so the simulation

results give the distribution of the test-statistics for the three null-hypothesis of treatment, time

and treatment by time effect.

For REML analysis BMDP5V was used with the 'REML' algorithm and with the user-

defined covariance matrix for the univariate Repeated Measures approach (syntax in the

Appendix). P-values were calculated by comparing the Wald statistics to the relevant chi-
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square and F-distributions.

For imputation, missing values were replaced by the predicted values from the single-error

term model obtained by performing ordinary least squares regression on the 'design matrix'

with a subject, treatment, time and treatment by time effect only (see for instance Rawlings

[26] or any other handbook treating ANOVA from a regression point of view). The resulting

data sets were subsequently analysed using univariate Repeated Measures ANOVA.

The simulation results are summarised in Table I which gives the type I errors actually

obtained while aiming at a level of 5%. The columns marked I and II designate the two data

sets which differ in their covariance matrix. No systematic differences between these two

situations can be detected.

Type I errors for the REML approach are clearly overestimated when the chi-square is

used as a reference distribution. Dividing the Wald statistic by its degrees of freedom and

comparing the result to an F-distribution with degrees of freedom equal to the complete data

Repeated Measures ANOVA situation, results in type I errors much closer to the desired

level.

Type I errors obtained with the Imputation approach rise substantially with increasing

missing data fractions. Expected Mean Squares can be computed for this Imputation method

and a derivation is provided in the Appendix. Unfortunately, these expectations not only

depend on the missing data fraction (in which case a simple correction factor might be

constructed) but also on the missing data pattern. The Mean Squares are contaminated with

variance components which are absent in the complete data situation. Moreover, the

numerator Mean Squares are too large while denominator Mean Squares are too small.

The data sets in the simulation have their missing data randomly scattered but a distinct

missing data pattern may lead to even greater deviations of the Expected Mean Squares.

Assume for instance that four subjects have their last four measurements missing for

treatment 1.
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Table I. Type I errors (500 samples) obtained for a nominal level of 5%

I=no covariances modelled; II='realistic' covariances

REML χ2 REML F Imputation

Treatment I II I II I II

(df = 1,5)

0% missing 12.6 13.8 5.6 5.8 5.6 5.8

5% missing 14.2 13.8 7.8 6.4 9.2 7.8

10% missing 15.4 12.8 8.4 6.4 10.0 8.2

20% missing 15.2 11.0 8.2 6.6 12.4 11.8

Time I II I II I II

(df = 6,30)

0% missing 8.8 9.4 4.8 5.0 4.8 5.0

5% missing 8.8 10.2 4.8 5.6 8.2 9.6

10% missing 8.0 10.0 5.4 6.2 10.8 12.6

20% missing 10.6 8.6 6.2 6.0 25.8 27.4

Treatment X Time I II I II I II

(df = 6,30)

0% missing 6.8 6.6 4.0 3.4 4.0 3.4

5% missing 7.4 7.2 4.4 3.8 7.2 7.2

10% missing 8.8 7.4 5.6 4.2 11.6 10.8

20% missing 9.4 10.4 6.0 6.2 25.6 26.2

Table II. Type I errors (500 samples) for the simulation with the distinct missing data pattern

(20% missing data)

REML χ2 REML F Imputation

Treatment 13.8 7.0 18.6

Time 11.4 6.6 38.6

Treatment X Time 11.2 7.0 35.6

The Expected Mean Squares (calculated using the method described in the Appendix)

under the null hypotheses after imputation are then:
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E(MSα)  = 1.80 σ2
ε + 9.24 σ2

απ + 0.48 σ2
βπ

E(MSβ)  = 1.60 σ2
ε + 0.28 σ2

απ + 2.56 σ2
βπ

E(MSαβ) =1.60 σ2
ε + 0.28 σ2

απ + 0.56 σ2
βπ

E(MSαπ) =0.68 σ2
ε + 3.42 σ2

απ + 0.19 σ2
βπ

E(MSβπ) =0.76 σ2
ε + 0.11 σ2

απ + 1.26 σ2
βπ

E(MSε)  =0.76 σ2
ε + 0.11 σ2

απ + 0.22 σ2
βπ

These expectations may be compared to the complete data Expected Mean Squares given

previously with u=7 and t=2. This data pattern was subjected to a simulation as well and the

resulting type I errors are presented in Table II. While the REML approach is unaffected,

Imputation leads to clearly unacceptable results. In a situation with a missing data pattern like

this, one would obviously be extremely careful in drawing conclusions. Nevertheless, the

example demonstrates the inadequacy of the imputation method in general.

Example

In a study performed at our Centre [27] the effects of different infusion rates of Felodipine (a

drug used in the treatment of high blood pressure) on the circulatory system were

investigated. Previous publications suggested that the speed at which a drug like this enters

the body may influence its effects. Slowly increasing concentrations would give regulatory

mechanisms time to adjust, while an abrupt change might cause an exaggerated response.

Four different treatments were investigated: 1. a fast infusion of Felodipine reaching a

plateau in 20 min and remaining there for 8 hours, 2. a slow infusion of Felodipine taking 8

hours to reach the same plateau, 3. an infusion with only the vehicle used for dissolving the

Felodipine which was suspected of having haemodynamic effects, and 4. an infusion with

saline acting as Placebo. These four treatments were assigned to 8 healthy male volunteers

according to two different 4X4 Latin squares balanced for first order carry-over effects. A

wash-out period between treatments of one week was incorporated.

Regulation of blood pressure is in part performed by the baroreceptor-reflex which induces

changes in heart rate to counteract changes in blood pressure. Changes in baroreceptor

sensitivity that could account for a change in response, were assessed using the Valsalva

manoeuvre. During this manoeuvre subjects are required to forcefully expire into a tube

connected to a manometer during 20 seconds, which will induce a change in blood pressure.

Heart rate and blood pressure are measured continuously.
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Table III. Results for the analysis of the example (Valsalva data). For REML results ÷5 values are divided by

their Df for comparative purposes.

REML Imputation Df

'F' p-val χ2 p-val (F) F p-val

Treatment (Overall) 1.20 0.307 0.333 1.25 0.315 3,21

slow vs fast 0.64 0.425 0.450 0.75 0.415 1,7

vehicle vs saline 0.14 0.706 0.719 0.15 0.706 1,7

felo vs no_drug 2.84 0.092 0.136 3.22 0.116 1,7

Time (Overall) 0.40 0.880 0.875 0.31 0.929 6,42

Treatment X Time (Overall) 1.67 0.037 0.053 2.01 0.014 18,126

slow vs fast X Time 0.39 0.884 0.879 0.57 0.755 6,42

vehicle vs saline X Time 1.79 0.097 0.124 2.17 0.065 6,42

felo vs no_drug X Time 2.72 0.012 0.026 3.03 0.015 6,42

Figure 1. Time course of Valsalva ratio for the felo (solid line) and no_drug (dashed line) contrasts; All

infusions start at 0 min. open dot=REML estimates, triangle=estimates using Imputed values, closed

dot=available case averages
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The 'Valsalva ratio' resulting from this procedure is defined as the maximum increase in Heart

period divided by the maximum increase in Mean Arterial Pressure. However, this procedure

does not always produce interpretable measurements and therefore a relatively large number

of data (7.1% in the first two hours) were missing. At the time no method was available for the

handling of missing data, so we decided to analyse the average of available cases in the first

two hours after start of the infusion (5 time points) thereby losing information on the time-

profile, which was regrettable since change in baroreceptor sensitivity over time was a main

subject of study. The averages were analysed using orthogonal contrasts; fast versus slow,

vehicle versus saline, and felo (average of fast and slow) versus no_drug (average of vehicle

and saline). No significant differences in sensitivity were seen between the slow and fast

treatments or between saline and vehicle; only the felo versus no_drug contrast was

significant (p=0.047).

The data, this time including the two pre-treatment values, are re-examined using the

techniques described in this paper and results are presented in Table III. REML estimation

demonstrates a marginally significant overall treatment by time interaction attributable to the

felo versus no_drug contrast (p=0.026 compared to F [6,42]). None of the other contrasts are

significant. Imputation leads to comparable results, only p-values are smaller (since F-values

are larger). Subsequent examination of comparisons per time-point can be performed in at

least 3 different ways; using paired t-tests on available cases, using REML estimation per

time-point or using paired t-tests with the missing values imputed. The estimates for the felo

versus no_drug contrasts using these 3 methods are given in Figure 1 and seem to indicate

that REML and Imputation estimates are rather similar while available case t-tests (having at

least 5 complete cases per time-point) produce different estimates. The contrast at 40 min.

post infusion was significant for all 3 methods while the 20 min. contrast was significant for the

Imputation t-test only; in view of the described liberal nature of Imputation methods this

'significance' should be regarded with caution.

Discussion and concluding remarks

Imputation in the form presented in this paper is unacceptable as a general method. Its only

use is perhaps for very small fractions of missing data (less than 5%) in which case any ad-

hoc method will probably perform equally well. Imputation might be improved by calculating

the Expected Mean Squares and using these to compute synthetic F-values with more

acceptable properties [9]. However, without special software this may be a cumbersome

procedure and acceptability would still be an issue. Imputation may also be improved by

adding random noise to the values to be filled in. This may alleviate some of the problems

with the inflated F-values. Further improvement could be obtained by repeating this stochastic

imputation process several times and combining the results into a single probability

statement [28]. However, all of these enhancements will take Imputation further away from its

original appeal of simplicity. Its use should therefore be restricted to those fields where
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likelihood based analyses have not yet been implemented or where its implementation is

unfeasible.

On the basis of both theory and simulation results, REML methodology is the choice of

preference. Data are only required to be 'missing at random' while employment of F-

distributions for assessing significance of the Wald statistics in small sample situations leads

to adequate results. The methodology can even be seriously considered for routine analysis

of complete data, since it provides a powerful tool for the handling of situations in which the

standard assumptions about the covariance matrix are either unrealistic or unwanted.
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Appendix

The variance-covariance matrix for the univariate Repeated Measures design in BMDP5V

has to be specified by the user as the linear combination of the four matrices defining the four

variance parameters σ2
π, σ2

βπ, σ2
απ, σ2

ε. A specific example for 2 treatment and 3 time levels

is:

/input var = 6.
file = 'test_rm.asc'.
format = free.
/var names = A1B1 A1B2 A1B3 A2B1 A2B2 A2B3. missing = 6 * -99.
/design dpname = Y.
dpvar = A1B1 A1B2 A1B3 A2B1 A2B2 A2B3.
repeated = A, B.
levels = 2, 3.
/model Y = 'A*B'.
/structure type = linear.
 nparm = 4.
 matrix(1)=
1,
1,1,
1,1,1,
1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,1.
 matrix(2) =
1,
1,1,
1,1,1,
0,0,0,1,
0,0,0,1,1,
0,0,0,1,1,1.
 matrix(3) =
1,
0,1,
0,0,1,
1,0,0,1,
0,1,0,0,1,
0,0,1,0,0,1.
 matrix(4) =
1,
0,1,
0,0,1,
0,0,0,1,
0,0,0,0,1,
0,0,0,0,0,1.
 initial = 25, 5, 1, 10.
/compute algor = reml.
/end

Initial estimates for the variance parameters have to be given but do not seem very critical.
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Calculation of Expected Mean Squares for RM-ANOVA after Regression Imputation

The first part of this derivation can also be found in Kshirsagar and Deo [20]. Consider the

situation where Y is the data vector and X the design matrix. Y and X are partitioned into a

part with the data present (Yp and Xp) and a part with the data missing (Ym and Xm). The

values for imputation minimising the Residual Sum of Squares (Y*) are found by:

where

Next we construct the matrix B which calculates the values used for the RM-ANOVA (ì) from

the data present (Yp) :

The Sums of Squares are calculated by ìAiì = Yp
TBTAiBYp where Ai is the quadratic form

defining the contrast (e.g. Rawlings [26]). The expectation of the quadratic form YAY where Y

≅ N(0,Σ) is given by tr(AΣ). The Expected Mean Squares after imputation are therefore given

by :
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Chapter 3

Estimating impossible curves using
NONMEM

Rik C. Schoemaker & Adam F. Cohen

British Journal of Clinical Pharmacology 1996; 42:283-290

Summary

On fitting model equations to experimental data, the situation may arise that individual

subjects provide insufficient information to obtain adequate parameter estimates due to the

fact that not all aspects are exhibited by all subjects or that the models are simply too

complex. This may be solved by applying nonlinear mixed effect modelling to the data, which

integrates the information provided by different subjects.

We aim to provide insight into the methodology and its use in these situations, illustrated

by three examples: determination of pharmacokinetics in a rising dose design, where the

lower doses provide insufficient information (due to assay limitations) to estimate terminal

half-life; determination of the kinetics of the low molecular weight heparin enoxaparine

(Clexane7) using anti-Xa activity, effectively dealing with lingering low/basal activity;

simultaneous estimation of the pharmacokinetics and pharmacodynamics of the low

molecular weight heparin dalteparine (Fragmin7) after subcutaneous and intravenous

administration.
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Introduction

Models describing the time-course of a treatment or drug are an integral part of the clinical

pharmacologist's toolbox; compartmental models are well established in pharmacokinetics,

and pharmacodynamic models find increasing use [1]. In the course of new drug

development, increasing emphasis is placed on using and integrating pharmacokinetic and

pharmacodynamic information resulting in a more rational drug development strategy [2, 3].

Intensive sampling in a controlled research setting will often enable accurate estimation of the

relevant model parameters. However, the information needed for adequate parameter

determination may be present in only some of the subjects, or models may have too many

parameters and become too complex to allow accurate parameter estimation in individual

subjects. This paper presents a solution to this problem by using nonlinear mixed effect

modelling as a means for combining information from different individuals while preserving

individuality. After a gradual development of the theoretical background, three examples will

be used to illustrate uses and usefulness of the methodology.

Nonlinear mixed effect modelling

Theory

At the basis of nonlinear mixed effect modelling lies a nonlinear mathematical model

describing the response of an individual. Take as an example the one-compartment kinetic

model describing the concentration-time profile of a drug after an intravenous injection:

The equation predicts concentrations (Cj) as a function of time (tj), dose (D) and the two

parameters V (Volume of distribution) and k (elimination rate constant). It can be written in a

general form using the following expression:

(2)                 ˆ ),x( f=Y jj θ

(1)                     e
V
D

=C kt-
j

j
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where the response Y is predicted by ì using the unspecified function f. f is a function of the

known quantities x (dose D and time tj in (1)), and the unknown parameters θ  (k and V in (1))

which are to be estimated. The predicted response ì will usually deviate from the actual

observations. The link between the structural model (2) and the observations is provided by

the intra-individual error model which quantifies the deviations of model predictions from

actual observations. The two most common intra-individual error models are the additive

normal error model and the multiplicative log-normal error model. For the additive normal

error model, the observed response Y is given by:

where the individual deviations from the predicted response εj are assumed to follow a

normal distribution with mean 0 and variance σ2. This model is a natural choice if each

measurement is assumed to be equally precise for all values of Yj. This is usually the case in

concentration-effect modelling.

For the multiplicative log-normal error model the observed response Y is given by:

where e jε  is assumed to follow a log-normal distribution with median 1 and constant

coefficient of variation CV. The log-normal error model is often appropriate if measurements

can only be positive and if they become less precise when the measured value increases; the

variance of the deviations is proportional to the square of the predicted response. This is

often the case with pharmacokinetic models. Other error models may be used in practice

such as a combination of the additive and log-normal error model to improve prediction at the

lower limit of assay precision where variance may be assumed constant, and the power

function model where the variance of the deviations is assumed proportional to some power

(which is to be estimated) of the predicted response.

Models (3) and (4) which describe the response of a single subject, can be estimated

using ordinary nonlinear regression, resulting in intra-individual variability estimates (σε or

CVε), estimates for the parameters θ  (such as terminal half-life or EC50) and approximate

standard errors (SEMs) indicating the precision of the estimated θs.

Nonlinear mixed effects modelling expands the single-subject model by simultaneously

estimating the curves for all subjects. The multiple subjects extension of (4) becomes:

(5)               e ),x( f=Y ij
iijij

εθ •

(3)              εθ jjj  + ),x( f=Y

(4)              e ),x( f=Y j
jj

εθ •
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where Yij indicates the response from subject i at time j, and theθi  are the individual

parameters belonging to subject i. However, it is not the individual parameters that are

estimated but rather their mean and variance. These correspond to the population average

parameters and the inter-individual variability in these parameters. The individual parameters

θi  can be modelled as:

where θ  represents the population average parameters, and the ηis quantify individual

deviations from these population averages. Linearisation of (6) (a computational necessity)

results in a statistical model for which the square root of the estimated variances of the ηis

provides coefficients of variation (CVs) for inter-individual variability in the θs.

The term 'mixed-effect modelling' is the statistical term used in the situation where a

combination of fixed and random effects is studied. The random effects (the ηis from equation

(6)) quantify the inter-individual variabilities in the kinetic/dynamic parameters. The fixed

effects (the x ijs from equation (5)) are part of the experimental design and under control of the

investigator such as the time of measurement or the treatment applied. Nonlinear mixed effect

modelling allows the simultaneous estimation of the same nonlinear structural model in all

subjects. This does not mean that all subjects are forced to be the same, because their

parameter values are allowed to vary. The power of the technique lies in the ability to combine

the information from all subjects while preserving the individuality. If part of the curve is

missing for one subject, then the information that is available for that subject may be

combined with information obtained from the other subjects to provide a reasonable estimate

for the missing part of the curve.

Estimation

Because of the nonlinear nature of nonlinear mixed effect modelling, exact and analytic results

are unavailable, and the problem must be approached through approximations and by the use

of iterative techniques. The most extensively developed and widely used is a first-order Taylor

approximation which results in a linearisation of equation (5) while successive iterations are

evaluated at the mean value of the çis. This means that during a step in the search for the best

parameter combination, all subjects have the same parameter values. This approximation

works well if subjects provide only little information. This so called 'first-order method', was

first implemented in the NONMEM software program [4]. A more accurate approximation to

equation (5) is obtained if parameter values are calculated for each individual during each

step of the parameter search. This method was investigated by Lindstrom and Bates [5] and

also implemented in NONMEM as 'conditional' estimation. Other extensions and alternatives

have been proposed, investigated and implemented. Sheiner and Ludden [6] provide a good

(6)                e = i
i

ηθθ •
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introduction to population methods. Applications are numerous, some of which can be found

in the British Journal of Clinical Pharmacology [7, 8]. An exhaustive bibliography with

methodological references and references to applications is provided by Yuh et al [9].

The core of the NONMEM program is a set of subroutines written in the FORTRAN

programming language, which are linked with the model-defining subroutine to produce the

NONMEM executable file. Because of this architecture, NONMEM can run on any platform

supporting a FORTRAN compiler. It is equipped with a module for model and data definition

called NMTRAN and comes with an extensive library of model-defining subroutines for

pharmacokinetic applications called PREDPP. Models may be modified, and models not

included in the library can be defined by the user.

From population to individual; empirical Bayes estimates

In order to assess adequacy of parameter estimates resulting from a NONMEM analysis, it is

essential to be able to go back from the population estimates to the individual. Although

nonlinear mixed effect modelling itself does not provide individual θi s, the NONMEM

program has the capability for calculating empirical Bayes estimates. Bayes estimates are

calculated conditional on prior specified information e.g. individual clearance is estimated in

accordance with the mean and variability of population clearance. The estimates are

empirical in this case because the prior information is not obtained from some external

source but is derived from the data to be analysed. In this context, empirical Bayes estimates

are parameter estimates for the individual subject that take the previously obtained population

information into account. The result is a weighted combination of individual and population

information where the weighting depends on how much information the individual itself

supplies and how large the inter-individual variability was estimated to be. If a subject in a

group has a large number of accurate data points the empirical Bayes estimates for that

subject will largely be determined by that subject alone. Conversely, empirical Bayes

estimates for a subject with only a few data points will largely be determined by the

information obtained from the other subjects (the population estimates). Therefore, empirical

Bayes estimates allow information to be borrowed from other subjects if necessary.

NONMEM can calculate individual predicted concentration or effect time-profiles based on

these estimates.

The empirical Bayes estimates are extremely valuable in assessing model-fit and

adequacy of convergence, and greatly increase the confidence in the final NONMEM results.

Nonlinear mixed effect modelling is a numerically complex technique which is highly

dependent on good initial estimates and may converge to unsatisfactory parameter

estimates. The calculation of the empirical Bayes estimates is far less fraught with numerical

difficulties. Therefore, if average empirical Bayes estimates are very different from the

NONMEM population estimates, this is an indication that something is wrong: NONMEM may

have inadequately converged or the structural or error model may have been misspecified.
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Alternatively, the mathematical complexity of the model may require a more accurate

approximation, e.g. by undertaking 'conditional' estimation instead of the 'first order method'.

Conversely, if empirical Bayes estimates correspond well with the NONMEM results, and the

individual time profiles look adequate, NONMEM estimates may be presented with

confidence.

The empirical Bayes estimates should not be used for subsequent statistical analyses;

they are no longer independent estimates because they borrow information from each other.

Their variability is generally somewhat lower than the NONMEM CVs indicate because they

are too much alike, and if NONMEM cannot estimate inter-individual variability the calculated

empirical Bayes estimates are identical for all subjects.

A global measure for the goodness of fit is provided by the minimum value for the objective

function. Competing models may be compared on the basis of these values; the model with

the lowest minimum value provides the best fit to the data.

Methods

All calculations for this paper were performed on a 486DXII 66 MHZ IBM compatible personal

computer running under MS-DOS using the Microsoft FORTRAN PowerStation 1.0 compiler

with NONMEM Version IV, NMTRAN Version II and PREDPP Version III. NONMEM control

files used to analyse the examples can be found in the appendix. All examples were initially

analysed using the 'first order method', with a final run using the 'conditional method'. Inter-

individual variability in parameters was always modelled using the constant coefficient of

variation model (6).
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Example 1; A rising dose design

Problem

In a study to determine kinetics and dynamics of a novel anti-hypertensive drug, 18 patients

were investigated in a rising dose design (unpublished data). The patients were taken off

their own medication until diastolic blood pressure was between 100-115 mmHg. Each

patient was seen on three occasions in which active drug (twice) or matching placebo (once)

was given as an IV bolus. The three panels of subjects contained doses of 1 and 3mg, 3 and

10mg, and 10 and 30mg of active drug. The higher dose was always given after the lower

dose (if well tolerated), with the placebo on a random occasion.

Serious problems were encountered when individual parameters at lower doses were

estimated with conventional nonlinear regression because the terminal part of these curves is

missing due to assay limitations. These lower-dose curves already have a tendency to level

off without providing sufficient information to adequately estimate the terminal part of the

curve.

Solution

NONMEM enables fitting a two compartment open model to all data simultaneously. By

assuming constant pharmacokinetic parameters in a subject for the two different doses, the

amount of information per subject effectively doubles resulting in more stable parameter

estimates. The two-compartment open model after an IV bolus is usually represented using

the equation:

Parameters A and B themselves are essentially meaningless but can be re-expressed using

administered dose (D), clearance (Cl) and volume of the central compartment (Vc) resulting in

the following equation:

Initial and terminal half-life are calculated as t1/2α= ln2/α and t1/2β= ln2/β.

A log-normal intra-individual error distribution was assumed as is usual for pharmacokinetic

data, which due to NONMEM's linearisation is approximated with a constant coefficient of

variation model. NONMEM results are presented in table I and concentration-time profiles for

(8)       ] e ) Cl -V( - e ) Cl -V( [ 
Cl )-(V
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subjects 1 (1 and 3mg) and 13 (10 and 30mg) using their empirical Bayes estimates are

presented in figure 1.

Table I. NONMEM estimates for the anti-hypertensive drug

 Mean SEM CV   

t1/2α (min) 90.7 8.37 13.4%

t1/2β (min) 362 155 52.6%

Vc (l) 4.80 0.232 13.9%

Cl (ml•min-1) 32.7 1.47 16.8%

CV residual error 23.1%

 Mean=population average, SEM=approximate standard error of the population average,

CV=inter-individual coefficient of variation, t1/2α=initial half-life, t1/2β =terminal half-life,

Vc=volume of distribution of the central compartment, Cl = clearance

Figure 1. Predicted and observed individual concentration profiles of the anti-hypertensive drug using NONMEM

estimation and empirical Bayes estimates. The horizontal line (----) indicates the assay detection limit.

G 1mg, subject 1; M 3mg, subject 1; F 10mg, subject 13; O 30mg, subject 13.
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The graph illustrates that parameter estimates can be obtained that provide an acceptable

description of the time-profile with extrapolation to beyond the point were measurements

could be obtained. All data can be described using the same model and, by borrowing

elimination half-life information from higher doses, sensible parameter estimates can be

obtained for the lower doses. The low doses may not provide all the information but may

nevertheless serve to examine the presence of dose-dependent kinetics. The estimates and

individual graphs provide no indication of dose-dependency. By introducing an extra slope

parameter, clearance can be written as a linear function of administered dose. This slope

was estimated at 0.011 with an approximate 95% confidence interval of (-0.024 / 0.046)

which translates into a non-significant 10% increase in clearance from the 1mg to the 30mg

dose.

Although no indications can be found for dose-dependency, these results should be viewed

with caution. The large SEM for the terminal half-life estimate indicates that there is very little

information to accurately determine this parameter, which is of course essential if a definitive

statement about dose-dependency is to be made. Nonlinear mixed effect modelling is not a

panacea for generating information that is simply not present.

Example 2; Low molecular weight heparin kinetics

Problem

In a study comparing the anti-clotting effects of four heparin-like substances [10] (dalteparine

(Fragmin7), nadroparine (Fraxiparine7), enoxaparine (Clexane7) and danaparoï d (Orgaran7)),

12 subjects received IV administrations of all four drugs on separate occasions in an open

randomised cross-over design. These drugs are actually a mixture of substances and this

complicates kinetic assessment because a simple concentration cannot be obtained. The

effect these drugs have on the coagulatory system, measured for instance by the activity of

clotting factor Xa, is generally used as a surrogate concentration measure.

With standard nonlinear regression of the Clexane7 results, five subjects could be

adequately described by a mono-exponential function, four required a bi-exponential function

and three provided no adequate fits at all. The data points and dotted lines in figure 2

illustrate a 'one-compartment subject' and a 'two-compartment subject' with their ordinary

nonlinear regression fits.



40

Solution 1

This situation could be viewed as analogous to example 1, in which information on the second

compartment is missing for some of the subjects. The two-compartment open model as

defined by equation (8) was applied to these data. Table II provides the results which are

illustrated in figure 2 by the continuous lines. These indicate that subjects which were formerly

described by a one-compartment model can be described by a two-compartment model if

information on the second compartment is borrowed from the other subjects. This enables a

more cohesive presentation and interpretation of results. The coefficient of variation of zero

for the clearance estimate indicates that insufficient information is present to correctly

estimate the inter-individual variability in all the parameters. Clearance and terminal half-life

are tightly linked; the constant clearance is compensated in individual subjects by a large

variability in terminal half-life. Forcing a coefficient of variation of zero on terminal half-lives

resulted in an equally good fit (as indicated by similar minimum values for the objective

functions) with a variability estimate for clearance of 34%.

Objections

The original data had to be modified to allow analysis. Activities of clotting factors are used

as a concentration surrogate, but low activity may also be endogenous. Non-zero pre-values

were therefore subtracted from the activity measurements and a limit of quantitation was

imposed below which measurements were considered absent. It could be argued that the

lingering low activity necessitating a second compartment was actually the prevailing basal

activity of the system.

Solution 2

Another approach to these data is to implement the constant presence of basal activity by

adding a constant (to be estimated) to the original kinetic model:

This way, the data may be analysed without pre-value subtraction or limits of quantitation, and

a one-compartment model might suffice.

(9)              e
V
D

 +base =C kt-
j
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Table II. NONMEM estimates for Clexane7 anti-Xa activity using a two-compartment model

 Mean SEM CV  

 t2α (min) 120 5.43 11.7%

t2β (min) 4780 722 63.5%

Vc (l) 6.01 0.254 11.3%

Cl (ml/min) 9.44 0.418 0.0%

CV residual error 11.8%

 Mean=population average, SEM=approximate standard error of the population average,

CV=inter-individual coefficient of variation, t2α=initial half-life, t2β=terminal half-life,

Vc=volume of distribution of the central compartment, Cl=clearance

Figure 2. Predicted and observed anti-Xa activities after Clexane7 IV using ordinary nonlinear regression

(dashed line) with a one-compartment (subject 4) or two-compartment (subject 5) model and using NONMEM

empirical Bayes estimates (solid line) with a two-compartment model. G subject 4; M subject 5.
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Table III. NONMEM estimates for Clexane7 anti-Xa activity using a one-compartment model with basal activity

 Mean SEM CV  

 t2 (min) 130 4.49 8.6%

Cl (ml/min) 32.9 1.69 15.1%

base (IU/ml) 0.0254 0.00333 37.7%

SD residual error .0274

Mean=population average, SEM=approximate standard error of the population average,

CV=inter-individual coefficient of variation, t2=half-life, Cl=clearance, base=basal activity

Figure 3. Predicted and observed anti-Xa activities after Clexane7 IV using empirical Bayes estimates and a

one-compartment model with basal activity. G subject 4; M subject 5.

The anti-Xa axis is not on a log-scale because an additive error model was assumed (see text).
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Examination of residual plots (deviations of actual data from model predictions using

empirical Bayes estimates, plotted against actual observations) indicate that with these data

the additive normal error model (equation (3)) is more appropriate than the multiplicative log-

normal error model (equation (4)). This is caused by the fact that the anti-Xa assay is not very

accurate in the lower concentration range and therefore model deviations do not decrease at

lower concentrations as is usually the case with kinetic data.

The NONMEM results are presented in table III and are illustrated by figure 3 with graphs of

subjects 4 and 5. These indicate that a one-compartment model with the basal activity

parameter may provide an adequate description of the anti-Xa activity time course. The

estimated half-life agrees with the initial half-life estimate obtained with the two-compartment

model. The clearance however is about three times as high (two-compartments: 9.44 ml/min

vs one-compartment: 32.7 ml/min). This is caused by the fact that with the two-compartment

model, a substantial part of the area under the curve is attributed to the second compartment

which is assumed absent in the one-compartment case. In the original article [10], the authors

present a clearance value of 26.7 ml/min obtained by dividing the dose by the calculated AUC

up till the last available measurement (at 24 hours). The fact that this intuitively plausible

clearance estimate matches the one-compartment result, combined with the accepted

practice of subtracting non-zero pre-values which is largely analogous to estimating a basal

activity, favours the one-compartment basal activity model. The two different approaches

cannot be compared using objective function values (as one would usually do with competing

models) because they are not applied to the same data set; the pre-value subtraction needed

for solution 1 generates an essentially different set of data. It is not possible on the basis of

the data alone to come to an objective conclusion about which model and which clearance

estimate is the 'right' one. The true test as to which clearance estimate is most appropriate

lies in multiple dosing/continuous infusion pharmacokinetics experiments; the predicted

average steady state concentration varies three-fold between the two competing models.

Example 3; Intravenous and subcutaneous pharmacokinetics and

pharmacodynamics

Problem

In a study performed to compare the kinetics and dynamics of four different drugs with anti-

coagulatory effects [11] (dalteparine (Fragmin7), nadroparine (Fraxiparine7), danaparoï d

(Orgaran7) and heparin) 12 subjects were randomised to eight different occasions each, on

which one of the drugs was administered either by subcutaneous (SC) or by intravenous (IV)

route. Anti-Xa activity was measured as was the Activated Partial Thromboplastin Time

(APTT), a more global measure of anti-coagulatory effect.

One of the challenges in these data lies in combining information from intravenous and

subcutaneous administration to obtain estimates of bio-availability and absorption. If only
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subcutaneous data were available no estimate could be obtained for bio-availability,

clearance or volume of distribution. Absorption and elimination half-lives could not be

estimated accurately unless they were very different because the processes of absorption

and elimination cannot be separated very well without independent information. The same

curves can be produced with a wide range of elimination and absorption values because an

increase in absorption can be compensated by an increase in elimination resulting in the

same curve.

The APTT data could be analysed using the one-compartment model with basal activity, in

analogy with the anti-Xa data from example 2. This would provide an effect profile description

using the kinetic idiom. On the other hand, if anti-Xa activity is viewed as a concentration

measure and APTT as a dynamic response, then these data lend themselves to a

simultaneous pharmacokinetic/pharmacodynamic (PK/PD) analysis providing additional

information on the concentration-effect relationship between anti-Xa activity and APTT

response.

Solution-kinetics

The anti-Xa data were analysed using the basal activity model with one-compartment and (for

Orgaran7) two-compartment kinetic models. The kinetics/dynamics of one of the low

molecular weight heparins (Fragmin7) is presented as an illustration.

Far more accurate rate of absorption estimates can be obtained by pinning down

elimination half-life using IV information. Because the same subject received both IV and SC

treatments, the two routes could be simultaneously estimated. Common parameters

(elimination half-life, clearance, basal activity) were assumed the same for both routes in

individual subjects.

This complex situation was advanced in steps to ensure successful convergence. First the

IV data alone were analysed. Then all data were analysed together but the parameter

estimates obtained from the IV fits were fixed to obtain good estimates of bio-availability and

absorption. A final analysis was run in which no parameters were restricted.
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Solution-dynamics

A first attempt at investigating the concentration-effect relationship is made using the

previously obtained empirical Bayes estimates to describe the anti-Xa profile. By plotting

predicted anti-Xa measurements against APTT data for each individual, an appropriate

concentration-effect model may be selected. Initially, a linear model seemed appropriate for

these data.

The empirical Bayes estimates can be presented to the NONMEM program as data, along

with the dynamic measurements (see NONMEM Manual V p 129-130). This keeps the kinetic

part of the analysis fixed and allows a first estimation of the concentration-effect relationship

parameters. The obtained precision estimates for these parameters (the SEMs) are too

optimistic however because variability in the kinetic profile is not accounted for. A final

analysis is therefore performed in which the kinetic and the dynamic part are no longer

restricted.

Close examination of the estimated individual concentration-effect relationships revealed

that a slightly curvilinear relationship would be more appropriate. Because there was no

indication of a maximum effect, a somewhat unconventional exponential model was

implemented which estimates the parameter I10. This is the anti-Xa activity increase needed

to obtain a 10% increase in APTT:

The measured APTT at time j (APTTj) is a function of the anti-Xa activity at time j (Xaj), the

basal APTT level (APTT0), the I10 parameter, and the additive residual ε2j . The "2" indicates

that this residual error is different from the intra-individual anti-Xa kinetics residual, requiring a

separate variance parameter. Table IV provides the obtained parameter estimates and figure

4 illustrates the result for subject 3. In a situation as complex as this you need all the

information you can get. The use of nonlinear mixed effect modelling allows you to obtain the

best possible information on both kinetics and dynamics of the drug under the two modes of

administration.

(10)            
ln

ε2j
Xa

I

(1.1)

0j  + e APTT =APTT j
10
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Table IV. NONMEM estimates for Fragmin7 anti-Xa activity after intravenous and subcutaneous administration

using a one-compartment model with basal activity, and the anti-Xa - APTT relationship estimates using an

exponential concentration-effect model.

Mean SEM CV  

t2E (min) 92.7 6.07 8.3%

t2A (min) 76.6 5.19 0.0%

Cl (ml/min) 46.1 3.37 14.1%

F (%) 70.5 7.81 34.8%

base (IU/ml) 0.0192 0.00271 16.6%

APTT0 (sec) 30.2 0.910 10.6%

I10 (IU/ml) 0.0665 0.00439 19.6%

SD residual error anti-Xa vs time 0.0207

SD residual error APTT vs anti-XA 1.70

Mean=population average, SEM=approximate standard error of the population average,

CV=inter-individual coefficient of variation, t2E=elimination half-life, t2A=absorption half-life, Cl=clearance,

F=bioavailability, base=basal activity, APTT0 = basal APTT level,

I10 = anti-Xa increase required to induce a 10% increase in APTT

Figure 4. Predicted and observed anti-Xa and APTT values and the concentration-effect relationship for subject

3 after Fragmin7 administration using empirical Bayes estimates, a one-compartment model with basal activity,

and an exponential concentration-effect relationship.

G intravenous administration; M subcutaneous administration.
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Discussion and conclusions

The original field of application of the NONMEM program is in determining population

pharmacokinetics in sparse data situations. Using only a few samples per subject the kinetics

of a drug and its variability can be studied in the population of patients actually receiving the

drug. Inter-individual variability may be explained by including easily measurable predictors.

However, by restricting NONMEM use to this limited area, a potentially powerful statistical

technique is only partially exploited.

The statistical reasons for applying mixed effects model methodology to nonlinear

regression situations extend beyond the ability to combine information which may not be

available in all subjects. The amount of information each individual supplies determines the

weight that is given to its influence in the final population estimate. Missing measurements are

not a problem in this context; they are naturally absorbed in the process. The alternative 'two-

stage-method' which consists of first estimating the model parameters for each individual and

subsequently combining them to obtain population information may have serious drawbacks

even if adequate parameter estimates can be obtained. It assumes all individual estimates to

be equally precise while they may be based on data sets with unequal numbers of

measurements or missing measurements at crucial time points.

Even though further fundamental research into these analysis techniques is necessary and

ongoing, this should not stop data analysts from applying what is already well developed. For

some of the examples described in this paper, the alternatives do not span beyond simple

averages, maximal effects or areas under the curve. This paper demonstrates the benefits

that may be obtained by applying readily available software and techniques to problems that

were formerly impossible to solve.

Note

For information regarding the acquisition, installation and use of NONMEM, please contact

GloboMax LLC, 7250 Parkway Drive, Suite 430, Hanover, Maryland  21076 USA;

www.globomaxnm.com
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Appendix

Reparameterising A/B in terms of clearance (Cl):

from Gibaldi and Perrier (Pharmacokinetics; second edition. Marcel Dekker Inc., New York,

1982):

A = D•(k21-α)/(Vc•(β-α)) equation 2.102 page 85

B = D•(k21-β)/(Vc•(α-β)) equation 2.102 page 85

k21 = α•βk10 equation 2.100 page 85

Cl = Vc•k10 equation 2.215 page 106

By filling in and rearanging we get:

A/B = (α•β•Vc - α•Cl)/(β•Cl - α•β•Vc)

NMTRAN Code for generating the analysis resulting in Table I:

$PROB   2 compartment kinetics; paired
$INPUT  ID TRT AMT RATE TIME DV MDV EVID
$DATA   DATA.DAT
$SUBR   ADVAN3, TRANS5
$PK
  CL=THETA(1)*EXP(ETA(1))       ;clearance (l/min)
  TALFA=THETA(2)*EXP(ETA(2))    ;initial half-life (min)
  ALPHA=0.693/TALFA
  V=THETA(4)*EXP(ETA(4))        ;central volume of distribution (l)
  S1=V/1000                     ;corrects for different dose(mg) and conc(ng/ml) units
  TBETA = THETA(3)*EXP(ETA(3))  ;terminal half-life (min)
  BETA = 0.693/TBETA
  AOB=(V*ALPHA*BETA-CL*ALPHA)/(CL*BETA-V*ALPHA*BETA)
$ERROR
   PRDI = F                     ;Individual predicted concentrations
   Y=F*EXP(EPS(1))              ;log-normal error model
$THETA .032 94  350 4.85
$OMEGA .1 .1 .1 .1
$SIGMA .1
$EST   MAXEVAL=9999 SIGDIGITS=4 PRINT=1 NOABORT POSTHOC METHOD=1
$COV
$TABLE ID TRT TIME CL TALFA TBETA V PRDI FILE= DATA.ASC NOHEADER NOPRINT
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The data file data.dat:

      1       1   1  .0500       0        .     1    4
      1       1   .  .          20     205.00   0    0
      1       1   .  .          35     157.00   0    0

...several lines removed...
      1       1   .  .        1438        .     1    2
      2       1   1  .0500       0        .     1    4
      2       1   .  .          20     222.00   0    0
      2       1   .  .          35     202.00   0    0
      2       1   .  .          83     125.00   0    0

...etc...

NMTRAN Code for generating the analysis resulting in table II:

$PROB   Clexane antiXa; Stiekema (modified) data; 2 compartments; CV Beta fixed; CLEX3
$INPUT  ID AMT TIME XA=DV MDV  EVID
$DATA   CLEXMOD.DAT
$SUBR   ADVAN3,TRANS5
$PK
  THALA = THETA(1)*EXP(ETA(1))   ;Distribution Half-life (min)
  ALPHA = 0.693/THALA
  THALB = THETA(2)*EXP(ETA(2))   ;Elimination Half-life (min)
  BETA  = 0.693/THALB
  CL    = THETA(3)*EXP(ETA(3))   ;Clearance (ml/min)
  S1    = THETA(4)*EXP(ETA(4))   ;Vc (ml) (Central volume of distribution)
  AOB   = (S1*ALPHA*BETA - CL*ALPHA)/(CL*BETA - S1*ALPHA*BETA)
                                 ;Code to allow estimation of Cl instead of AOB
$ERROR
  PRDI  = F                      ;Individual antiXa predictions
  Y     = F*EXP(EPS(1))          ;Log-normal error model
$THETA 180  2400  1.6  5000
$OMEGA .5 .1 .5 .5
$SIGMA .2
$EST   SIGDIGITS=3 PRINT=1 MAXEVAL 5000 NOABORT POSTHOC METHOD=1
$COV
$TABLE ID TIME THALA THALB AOB CL S1 PRDI FILE=CLEX3.ASC NOHEADER NOPRINT

The data file clexmod.dat:

      1  4887.00       0     .        1    1
      1      .        14     .70000   0    0
      1      .        30     .63000   0    0

...several lines removed...
      2      .      4352     .        1    2
      3  4887.00       0     .        1    1
      3      .        15     .94300   0    0
      3      .        30     .83300   0    0
      3      .        59     .66300   0    0
      3      .       120     .58300   0    0

...etc...
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NMTRAN Code for generating the analysis resulting in table III:

$PROB   Clexane antiXa; additive error; unmodified data; 1 compartment; CLEX_XA1
$INPUT  ID AMT TIME XA=DV MDV  EVID
$DATA   CLEXANE.DAT
$SUBR   ADVAN1
$PK
   THAL = THETA(1)*EXP(ETA(1))      ;Elimination half-life (min)
   K    = 0.693/THAL
   CL   = THETA(2)*EXP(ETA(2))      ;Clearance (ml/min)
   S1   = CL/K
   INT  = THETA(3)*EXP(ETA(3))      ;Basal activity (IU/ml)
$ERROR
   E    = F+INT                     ;Individual antiXa predictions (with basal act.)
   Y    = E+EPS(1)                  ;Normal (additive) error model
$THETA  150  11  0.01
$OMEGA  0.1  .1  .2
$SIGMA .02
$EST   SIGDIGITS=3 PRINT=1 MAXEVAL 5000 NOABORT POSTHOC METHOD=1
$COV
$TABLE ID TIME THAL CL K S1 INT E FILE=CLEX_XA1.ASC NOHEADER NOPRINT

The data file clexane.dat:

      1  4887.00       0     .        1    1
      1      .        14     .70000   0    0
      1      .        30     .63000   0    0

...several lines removed...
      2      .      4352     .01000   0    0
      3      .         0     .01000   0    0
      3  4887.00       0     .        1    1
      3      .        15     .95000   0    0
      3      .        30     .84000   0    0
      3      .        59     .67000   0    0
      3      .       120     .59000   0    0

...etc...
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NMTRAN Code for generating the analysis resulting in table IV:

$PROB   Fragmin XA/APTT PK/PD; Free PK, exponential CE, conditional estimation; XAAPTT8
$INPUT  ID TRT DOSE=AMT TIME DV TYPE MDV EVID CMT
$DATA   XA&APTT.DAT
$SUBR   ADVAN2
$PK
  THAL  = THETA(1)*EXP(ETA(1))     ;Elimination half-life
  K     = 0.693/THAL
  CL    = THETA(2)*EXP(ETA(2))     ;Clearance
  S2    = CL/K
  TABS  = THETA(3)*EXP(ETA(3))     ;Absorption half-life
  KA    = 0.693/TABS
  F1    = THETA(4)*EXP(ETA(4))     ;Bio-availability
  INT   = THETA(5)*EXP(ETA(5))     ;Basal anti-Xa activity
$ERROR
  FXA   = F+INT                    ;Individual antiXa predictions (with basal act.)
  E0    = THETA(6)*EXP(ETA(6))     ;Basal APTT level
  I10   = THETA(&)*EXP(ETA(7))     ;antiXa increase corresponding to 10% APTT increase
  E     = E0*EXP(.09531*FXA/I10)   ;The exponential concentration-effect relationship
                                   ;providing individual APTT predictions
  Y1    = FXA+EPS(1)               ;Normal (additive) error model for antiXa measurements
  Y2    = E+EPS(2)                 ;Normal (additive) error model for APTT measurements
  Y     = (2-TYPE)*Y1+(TYPE-1)*Y2  ;If TYPE=1 then this is an antiXa measurement
                                   ;If TYPE=2 then this is an APTT measurement
$THETA  95  46  85 .78 .017  31 .07
$OMEGA .05 .05 .05  .2  .04 .02  .1
$SIGMA .0003 3
$EST   SIGDIGITS=3 PRINT=1 MAXEVAL 5000 NOABORT POSTHOC METHOD=1
$COV
$TABLE ID TRT TIME FXA E TYPE EVID THAL CL TABS F1 INT EO I10 FILE=XAAPTT8.ASC NOHEADER NOPRINT

The data file xa&aptt.dat:
      1   1    0    0     .00500    1   0    0   2
      1   1    0    0   37.20000    2   0    0   2
      1   1  2500   0     .         1   1    1   2 
      1   1    0   15     .31000    1   0    0   2
      1   1    0   15   63.20000    2   0    0   2
      1   1    0   30     .25000    1   0    0   2
      1   1    0   30   58.20000    2   0    0   2
...several lines removed...
      1   1    0 2160     .         1   1    2   2 
      1   1    0 2160   35.40000    2   0    0   2
      1   2    0    0     .         1   1    3   2   
      1   2    0    0     .         1   1    2   2   
      1   2    0    0   36.30000    2   0    0   2
      1   2  2500   0     .         1   1    1   1 
      1   2    0   60     .11000    1   0    0   2
      1   2    0   60   40.20000    2   0    0   2
      1   2    0  120     .18000    1   0    0   2
      1   2    0  120   41.40000    2   0    0   2
...several lines removed...
      1   2    0 2951     .02000    1   0    0   2
      1   2    0 2951   36.20000    2   0    0   2
      2   1    0    0     .         1   1    2   2   
      2   1    0    0   33.55000    2   0    0   2
      2   1  2500   0     .         1   1    1   2 
...etc...
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Chapter 4

Assessment of hepatic blood flow
using continuous infusion of

high clearance drugs

Rik C. Schoemaker,  Koos Burggraaf & Adam F. Cohen

British Journal of Clinical Pharmacology 1998; 45:463-469

Summary

Aims To provide methods for the translation of the concentration-time profile of highly cleared

marker compounds into the underlying clearance and hepatic blood flow profile.

Methods Continuous infusion of indocyanine green or sorbitol was used to assess the effect

of the hepatic blood flow modifiers exercise, somatostatin and octreotide. Three distinct

methods are described for the translation of concentration into flow:

1. assuming successive phases of constant clearance

2. point to point estimation of clearance using estimates of concentration change

3. using a parametric description of the flow profile in combination with the differential

equations describing the change in marker concentrations

Results The marker compound concentration profiles are adequately described using the

different methods. Exercise results in a decrease in hepatic blood flow of about 80%.

Somatostatin and octreotide elicit an indistinguishable hepatic blood flow decrease from 1.49

to 1.07 l min-1. Return to baseline takes much longer for octreotide (half-life 126±104 min.)

than for somatostatin (half-life 4.29±3.55 min.).

Conclusions Translation of concentration profiles into clearance profiles is possible making

continuous assessment of hepatic blood flow feasible.
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Introduction

Drugs with high hepatic clearance depend on the rate of blood flow through the liver for their

elimination from the system. As many of these drugs are on the market and many more are

under development, knowledge of the rate of hepatic blood flow may be essential in the

assessment or prediction of drug action. Additionally, assessment of changes in hepatic

blood flow may be the focus of  research on the (patho)physiology of the liver.

A number of techniques have been successfully employed to assess hepatic blood flow.

This paper will focus on a kinetic approach that uses the fact that the concentration-time

profile of drugs with predominant hepatic clearance provides information on hepatic blood

flow [1].

Traditional kinetic analysis techniques using intravenous bolus administration must

assume that the physiologic conditions and the associated pharmacokinetic model remain

stationary. Therefore, bolus injections will only provide average flow estimates over the period

that concentrations are measured, and timing of injections is critical when investigating short

lasting changes in hepatic blood flow. On the other hand, continuous assessment of the

effects of changing hepatic blood flow on plasma concentration is possible, by frequent

monitoring of plasma concentrations during a zero-order infusion of a marker compound [2].

The resulting concentration profile must however still be translated into a flow profile; an

abrupt change in flow for example will result in a more gradual change in concentration,

governed by the half-life of the marker compound. This paper describes three closely related

ways of extracting information on hepatic blood flow from concentration profiles. This is

illustrated using two examples with the marker compounds indocyanine green and sorbitol, 

displaying different kinetic behaviour and requiring different solutions. The emphasis of this

paper is on methodology and the presented examples serve as illustration only;  clinical

results may be reported elsewhere.

Kinetics during infusion

The plasma concentration-time profile (Ct) for drugs that can be described by a one-

compartment open model during a constant rate infusion (with rate Rinf) is given by the usual

formula:

(1a)                   )e - (1 
Cl
R = C  t 

Vd
Cl-inf

t
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where t is the time after the start of the infusion, Cl is plasma clearance and Vd the volume of

distribution. After the infusion stops (after T minutes), the decline in concentration is

described by:

Clearance and volume are assumed constant.

The relationship between hepatic plasma clearance and hepatic blood flow (Q) is given by:

where E is the extraction ratio and Ht is the haematocrit needed to translate blood volume to

plasma volume. There are a number of models describing the relationship between hepatic

blood flow and extraction ratio. The two oldest, most simple and best known are the parallel-

tube or undistributed sinusoidal model and the well-stirred or venous equilibration model [3,4].

More advanced models (like the dispersion, series-compartment and distributed sinusoidal

models) provide predictions intermediate to the two basic models. Therefore, the predictions

of the two basic models represent the two opposite extremes of the predictions of all the

available models [4]. The two basic models differ significantly in their predictions for drug

behaviour after oral administration and provide very different estimates for intrinsic clearance

(related to enzymatic capacity in the liver) at the same extraction ratio. Nevertheless, the

shape of the predicted nonlinear relationship between hepatic blood flow and extraction ratio

is similar (see Figure 1) and in practice it is difficult to determine which of the models

provides the most adequate description [3]. The data presented in this paper do not in any

way allow discrimination between the different extraction models; this would require direct

assessment of extraction ratios and actual hepatic flow.  For the well-stirred model the form of

this relationship is:

and for the parallel tube model it is:

(1b)          e )e - (1 
Cl
R = C ) -T( t 

Vd
Cl- T 

Vd
Cl-inf

t

(2)                          EQ Ht)-(1 = Cl •

(3a)                           
Q +Clf

Clf
 = E

int
u
B

int
u
B
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Clf int

u
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Figure 1. Theoretical relationship between total hepatic blood flow and plasma clearance for ICG (é/F) and

sorbitol (ê/G); filled markers: well-stirred model; open markers: parallel tube model

where fB
u is the fraction of unbound drug, and Clint  is the intrinsic clearance of the liver, related

to the metabolic capacity of the liver enzymes for the cleared drug.

If the haematocrit and extraction ratio at a particular flow are known, clearance can be

translated into flow. The two marker compounds that figure in this paper have different

extraction ratios. The first is indocyanine green (ICG), an inert green dye used for decades in

the context of hepatic blood flow estimation, with an extraction ratio of about 0.7 for healthy

volunteers with a liver blood flow of around 1.5 l.min-1 [1,5]. The second is sorbitol that has a

much higher extraction ratio of around 0.96 [5].  The difference in extraction ratios results in a

more linear relationship between hepatic blood flow and plasma clearance for sorbitol than

for ICG (figure 1). This figure also illustrates that for flows below normal values, the

relationships are virtually indistinguishable between the models.

Hepatic blood flow is seldom constant. Changes can be induced by posture, exercise,

food intake, vasoactive compounds and many other circumstances [6]. This means that for a

drug with a high extraction ratio, equations (1a) and (1b) are rarely applicable. The kinetics of

a drug with one-compartment properties can however also be characterised using a

differential equation that describes changes in concentration (dCt /dt) as a function of infusion

rate, drug concentration itself and the relevant kinetic parameters:
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For drugs with two-compartment pharmacokinetic properties, a system of two differential

equations is required. Clearance is no longer required to be constant in these equations but

may change over time (Clt). The solution to this differential equation is given by the predicted

concentration-time profile. For constant clearance, this solution is provided by equations 1a

and b. For clearance that changes over time, an explicit solution cannot be obtained in

general and parameters have to be estimated using iterative computational techniques.

However, for a limited number of clearance-time patterns an explicit solution can be obtained,

as is demonstrated in the first example.

Example 1: Hepatic blood flow during exercise

The first example is obtained from a study in which the effect of physical exercise on hepatic

blood flow was investigated during a 200 min. infusion of indocyanine green (ICG). A constant

rate infusion (0.75 mg/min) of ICG was administered to eight healthy volunteers. Seventy

minutes after the start of the infusion, after supposedly obtaining ICG steady state, twenty

minutes of moderate physical exercise was applied. A calibrated bicycle ergometer was

used, aimed at reaching a heart rate of 150 beats per minute after 5 minutes of exercise and

180 beats per minute at the end of the 20 minute exercise period. Subjects remained seated

from at least 30 min prior to the start of ICG infusion until the last blood sample was taken.

ICG was measured using HPLC as previously described [2] in order to avoid problems with

accumulation of impurities.

Two different approaches for the translation of ICG concentration-time profiles into ICG

clearance-time profiles will be described. The first approach assumes a succession of three

phases with constant clearance during each phase and an instantaneous change in clearance

from one phase to the next: prior to exercise, during exercise and after exercise. This is one

of the rare cases where an explicit solution to differential equation (4) is possible. Equation

(1a) may be generalised to the situation where a certain concentration level (Ct0) is already

present when starting the infusion at t0:

(4)                         C 
Vd
Cl - 

Vd
R = 

dt
dC

t
tinft
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After the infusion has stopped at time T, the decline is given by:

This equation allows the description of the concentration profile associated with the three

successive clearance values. Each phase has its own equation, linked to the next phase by

the final calculated concentration just before the change from one clearance situation to

another.  This value is the starting concentration (the Ct0) for the next phase. Any nonlinear

regression program that allows user-defined models may be used to obtain parameter

estimates. The curves from this experiment were analysed using the NLR procedure from

SPSS/PC+ V4.0.1 (SPSS, Inc., Chicago, IL). Observations were iteratively reweighted by

1/(predicted concentration)2 corresponding to the assumption of a constant coefficient of

variation for residual error.

The second approach allows an expression for the clearance at each time point by

rewriting differential equation (4):

If the volume of distribution (Vd) is known and constant, then clearance estimates for each

time point can be obtained by filling in the corresponding estimate of the rate of concentration

change (dCt /dt) and the measured concentration (Ct) for that time point. Rate of concentration

change is given by the first derivative of the concentration-time curve. For this example, the

least squares straight line through three adjacent concentration-time points was used to

approximate the curve. The slope of this straight line was used as an estimate of dCt /dt for

the middle time point. Volume of distribution was set at the Vd estimate obtained with the first

approach (with the three distinct clearance phases).

(5b)                              e C = C -T)( t 
Vd
Cl

-
Tt
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Results

Seven subjects completed the treatment; one subject was withdrawn from the study because

of signs of phlebitis at the site of ICG infusion. Average ICG concentrations (±SD) are

presented in Figure 2, with the average predicted ICG plasma profile using the >three

clearance phases= model superimposed. Plasma clearance and volume of distribution

estimates for this model are presented in Table I. Hepatic blood flow estimates were

calculated for both the well-stirred and the parallel tube models, assuming an extraction ratio

of 0.7 at a hepatic blood flow of 1.5 l/min (meaning fB
u • Clint is 3.5 for the well-stirred model

and 1.8 for the parallel tube model) and a haematocrit of 0.42 (Table I). The resulting flow

estimates are different for the two models but if the results are presented as a change in flow

during exercise (from prior to exercise) comparable estimates result. These estimates

indicate that hepatic blood flow drops by 81%±21% (well-stirred) or 84%±20% (parallel tube).

Average (" SD) point to point estimates for ICG plasma clearance calculated using the

second approach are presented in Figure 3, with the average >three clearance phases=

estimates superimposed.

Figure 2. Observed (mean"SD) plasma ICG profile (é) and predicted (mean) plasma ICG profile
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Table I. Parameters for example 1: ICG during exercise assuming three clearances phases

 Mean SD Min Max

 Plasma clearance (l min-1)

Prior to exercise 0.632 0.125 0.455 0.843

During exercise 0.145 0.123 0.000 0.299

After exercise 0.632 0.158 0.438 0.890

Volume of distribution (l) 5.61 2.01 2.10 8.19

 Predicted hepatic blood flow using well-stirred model (l min-1) (assuming E=0.7 at Q=1.5 l.min-1)

Prior to exercise 1.62 0.48 1.01 2.49

During exercise 0.28 0.25 0.00 0.60

After exercise 1.64 0.61 0.96 2.73

Decrease due to exercise 81% 21% 41% 100%

 Predicted hepatic blood flow using parallel tube model (l min-1) (assuming E=0.7 at Q=1.5 l.min-1)

Prior to exercise 1.87 1.02 0.91 4.00

During exercise 0.25 0.22 0.00 0.53

After exercise 2.08 1.57 0.86 5.39

Decrease due to exercise 84% 20% 42% 100%

Discussion

There are several indications that the assumption of three constant clearances may not be

correct. Figure 3 indicates that although the initial drop in clearance is rather abrupt, the return

to normal values is more gradual. Also, zero clearance is estimated for two subjects during

exercise, and it is unlikely that flow through the liver stops entirely during exercise, although

actual extraction could drop to very low levels. Nevertheless, the constant-clearances method

is appealing if interest lies in estimating average clearance during the three phases. The

second approach is less restrictive because it makes no assumptions on the shape of the

clearance-time profile and lends itself to the analysis of situations in which no external

information is present on the time-profile of the flow-modifier. For instance, the effect of

vasoactive drugs or food intake on hepatic blood flow may result in a transient change in flow,

but the exact profile or the relationship between drug concentration and effect may be

unknown. By translating concentrations into clearances, a point to point assessment of flow

may be obtained which can be used to describe the effect profile of the intervention.
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Figure 3. Calculated ICG plasma clearance. Predictions (mean) assuming constant clearance for the three

phases (solid line) and estimates ( mean±SD) per time point (é).

Different interpolation strategies may be used to estimate the rate of concentration

change. If more than three data points are used in the derivative estimation, the computed

clearance profile will be smoother, but consequently abrupt changes will be blunted. Whether

or not this is desirable, depends on the anticipated effect profile; an abrupt change may be

unphysiological and due to measurement error. Although a simple straight line may seem like

a crude approximation to the concentration-time curve, use of smoother functions like

parabolas did not result in any improvement. The use of equations other than the straight line

will only prove useful if the signal (true change in flow) is much larger than the noise

(measurement error in marker concentration), which was not the case in this experiment.

Although ICG is reported to possess multi-compartment properties, no systematic

deviations between the predictions using a one-compartment model and measured

concentrations after cessation of the infusion were found. We have found no indications that

more than single exponential kinetics are required to describe the concentration profile.

The choice of model determines the ultimate hepatic blood flow estimate to a sizeable

extent, as does the assumed value for intrinsic clearance. If the ultimate goal is to determine

the actual hepatic blood flow, then ICG may not be the best choice for a marker compound. If

on the other hand, interest lies mainly in the shape of the flow profile and the fractional
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changes induced, then the dependency on assumptions is minimised and ICGs more

favourable properties (one-compartment kinetics, short half-life) may tip the balance.

External information on the volume of distribution is required to complete calculation of the

clearance profile using the second procedure. For the data presented here, the previously

obtained Vd estimate from the first approach was used. In other cases data obtained from

literature may provide an approximation. The best procedure however, is probably to precede

the continuous infusion by a bolus dose, accompanied by frequent sampling over a limited

time span of 10 to 15 minutes. This allows accurate estimation of the volume of distribution

and, as a bonus, steady state concentrations are reached sooner. For ICG infused at 0.75

mg/min, a bolus dose of 7.5 mg should suffice, provided a sufficiently sensitive assay

technique is used.

Example 2: Hepatic blood flow, somatostatin and octreotide

The second example is from a study investigating the effect on hepatic blood flow of the drugs

somatostatin and octreotide. The aim was to see if this effect could be equally  measured

using a continuous infusion of sorbitol as marker-compound and using echo-Doppler flow

measurement in an intra-hepatic portal vein. Somatostatin is reported to induce a transient

decrease in hepatic blood flow [7,8]. Octreotide is a somatostatin analogue with a much

longer elimination half-life (60 versus 3 min) and has been shown to induce a much longer

change in hepatic blood flow [9].

Treatments were administered to six healthy volunteers according to a double-blind

randomised crossover design, with treatment order determined using Latin-squares balanced

for first-order carry-over effects. Drugs were administered using a stepwise increasing

intravenous infusion over 30 minutes to facilitate the assessment of a concentration

dependant change in hepatic blood flow. The first 15 minutes, 0.6µg min-1 of octreotide or

4µg min-1 of somatostatin was infused, and in the remaining 15 minutes the dosing rate was

doubled to 1.2µg min-1 of octreotide or 8µg min-1 of somatostatin. A third placebo treatment

was included consisting of a 30 minute stepwise infusion with saline.

Because of the reported two-compartment pharmacokinetic properties of sorbitol, the

constant rate infusion of sorbitol (0.05g per min. over 170 min.) used during hepatic blood

flow assessment was preceded by a 2g loading bolus dose. A surrogate for total hepatic

blood flow was determined by measuring flow in the right portal vein using echo-Doppler as

described previously [10]. The right portal vein receives only a part of total hepatic flow and

although strong indications exist that right portal vein flow can be used to assess relative

changes in flow, absolute hepatic flow cannot be accurately determined.

Sorbitol requires a two-compartment open model to describe its kinetics. This may be

implemented using the following set of differential equations:
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C1t and C2t are the concentrations in the central and peripheral compartments, V1 is the

volume of the central compartment and k12 and k21 are the micro rate constants associated

with transport between the two compartments.

Solving the differential equations requires an expression for the clearance and therefore for

the flow for all possible time points, and not only for the points that were actually measured.

Because sorbitol requires a set of two differential equations, an essentially non-parametric

expression for clearance at each time point similar to equation (6) for ICG cannot be

obtained.  Unfortunately, somatostatin and octreotide concentrations could not be accurately

determined thereby ruling out direct (somatostatin/octreotide)concentration-(hepatic blood

flow)effect modelling. Initially a model was entertained where sorbitol clearance was assumed

to be a linear function of somatostatin or octreotide concentration. Since these concentrations

were unavailable, a simple one-compartment pharmacokinetic model was assumed where

the associated half-life was yet another parameter to be estimated. With this model, no half-

life estimates for somatostatin or octreotide could be obtained leading to adequate prediction

of the sorbitol profile. Inspection of the echo-Doppler results provided a clue to the

explanation for this discrepance. With the previous assumptions, the decrease must be the

same for each step. The Doppler data indicate however a rapid decrease in flow during the

first step of the intervention and only a minor additional decrease for the second step.

Additionally, the decrease in flow is similar for somatostatin and octreotide, but return to basal

conditions is much slower for octreotide than for somatostatin. These two findings are in

contradiction with the assumption of a linear concentration-effect relationship or the

assumption of linear and one-compartment pharmacokinetics for somatostatin and

octreotide, or both.

A pragmatic alternative to describe the flow-profile was required. Inspired by the shape of

the Doppler flow profile, the shape of the initial drop in flow was modelled using a 30 min.

constant rate infusion of substance I (i.e. not the two-step graded infusion of the actual

intervention) to a maximum of 1 with a half-life of t2drop:

To account for the distinct difference in onset and subsequent disappearance of effect, was
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allowed to disappear after the end of the infusion with a different half-life (t2rise):

The entire sorbitol clearance profile with I equal to zero prior to the intervention was

described using:

All sorbitol profiles for the somatostatin and octreotide occasions were analysed using the set

of equations resulting from combining (7a), (7b), (8a), (8b) and (8c), resulting in estimates for

parameters V1, k12, k21, t2drop, t2rise, Clbasal and Clmax . Individual curves were analysed using the

NONMEM software program (NONMEM Version IV, NONMEM Project Group, University of

California, San Francisco, CA) which, although intended for population pharmacokinetics,

can be configured to provide individual ordinary least squares estimates. An additive

(constant variance) residual error model was used; syntax is presented in the appendix.

Additionally, the curves were analysed collectively using nonlinear mixed effect modelling

implemented in the NONMEM software program (using first order conditional estimation). The

NONMEM methodology provides estimates of mean and inter-individual variability of the

population parameters, which may then be used to obtain empirical Bayes estimates for each

individual and treatment. These estimates are a weighted combination of the information from

the individual and the overall population information. Parameter estimates for individual

curves calculated using ordinary individual least squares estimation, may depend on only one

or two points and if these are ill placed (>outliers=), ridiculous estimates can result. By

combining all available information from all subjects, the influence of these points is reduced,

resulting in more reproducible individual estimates [11]. The method also allows formal

comparison using the likelihood-ratio test of different (nested) models providing inference

statements for possible differences in parameter values between treatments.

Hepatic blood flow was calculated using the predicted sorbitol clearance profile in

combination with equation (2), assuming that hepatic clearance of sorbitol is 90% of total

clearance [4], the extraction ratio is 0.96 (at a flow of 1.5 l.min-1) and the haematocrit is 0.42.

The well-stirred model and the parallel tube model give essentially the same translation of

clearance into flow. If flow had been increased from basal values instead of decreased, this

might not have been the case. The relationship between calculated hepatic blood flow and

echo-Doppler measured flow in the right portal vein was investigated using conventional

linear regression.

(8b)                    2/1
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Results

Parameters for individual ordinary least squares descriptions of the sorbitol profile for either

treatment are presented in Table IIa and IIb. These same tables present the results from the

NONMEM analysis and the resulting individual empirical Bayes estimates. Using these

empirical Bayes estimates, predicted profiles were generated. Sorbitol concentration

measurements (mean±SD) and predictions (mean) against time are presented in figure 4.

Sorbitol clearance predictions (mean±SD) and echo-Doppler flow measurements

(mean±SD) against time are presented in Figure 5. Note that although the global shape of the

clearance profile was inspired by the echo-Doppler data, the ultimate shape and parameter

estimates are determined by the sorbitol profile alone. Parameters for the regression of

predicted hepatic blood flow on echo-Doppler measured right portal vein flow are presented

in Table III.

The sorbitol profile for the placebo treatment could not be described using a one-

compartment model but was adequately described by a two-compartment model (Figure 4).

Several of the estimates obtained using individual ordinary least squares are clearly

deviant and mean parameter values cannot generally be used due to severe outliers. This

instability is greatly reduced for the empirical Bayes estimates resulting from the NONMEM

analysis. The final NONMEM model presented here, estimates identical population

parameters for the two treatments except for the t2rise estimate. This choice is the result of

comparing different models where parameters are allowed to differ between treatments.

None of the alternative model resulted in a significant improvement in fit as judged by the

associated likelihood-ratio tests. This means that somatostatin and octreotide both reach the

maximal effect almost immediately with a comparable decrease in clearance of 0.26±0.06 l

min-1 from 0.92±0.15 l min-1. This translates into a lowering of hepatic blood flow from 1.48 l

min-1 to 1.07 l min-1. Return to baseline however, is much slower for octreotide than for

somatostatin. Estimated half-lives are 126±104 min and 4.29±3.55 min respectively.
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Table IIa. Parameters for example 2: Sorbitol during infusion of octreotide

Mean SD Min Max

 Individual least squares estimates

t2drop (min) 0.62 0.83 0.13 2.28

t2rise (min) 195 217 29 624

Clbasal (l min-1) 0.930 0.232 0.696 1.240

Clmax (l min-1) 0.283 0.098 0.130 0.418

NONMEM estimates

t2drop (min) 0.19 0.00

t2rise (min) 126 104

Clbasal (l min-1) 0.920 0.148

Clmax (l min-1) 0.256 0.063

Empirical Bayes estimates

t2drop (min) 0.19 0.00 0.19 0.19

t2rise (min) 137  85 64 295

Clbasal (l min-1) 0.964 0.184 0.763 1.225

Clmax (l min-1) 0.276 0.065 0.175 0.358

Table IIb. Parameters for example 2: Sorbitol during infusion of somatostatin

 Mean SD Min Max

 Individual least squares estimates

t2drop (min) 31.3 76.0 0.08 186.5

t2rise (min) 24.7 36.8 0.11 78.4

Clbasal (l min-1) 0.926 0.174 0.738 1.213

Clmax (l min-1) 0.819 1.302 0.268 3.476

NONMEM estimates

t2drop (min) 0.19 0.00

t2rise (min) 4.29 3.55

Clbasal (l min-1) 0.920 0.148

Clmax (l min-1) 0.256 0.063

Empirical Bayes estimates

t2drop (min) 0.19 0.00 0.19 0.19

t2rise (min) 6.37 6.78 2.24 20.02

Clbasal (l min-1) 0.906 0.139 0.742 1.096

Clmax (l min-1) 0.259 0.047 0.192 0.328

 t2drop : half-life for flow decrease during intervention; t2rise : half-life for return to basal situation;

Clbasal : basal plasma clearance; Clmax : maximal drop in plasma clearance
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Figure 4. Observed (mean±SD) and predicted (mean) profiles of sorbitol plasma concentration for the

octreotide (é) somatostatin (F) and placebo (G) treatment

The data provided insufficient information for the NONMEM methodology to estimate inter-

individual variability in the half-life for flow-drop during the intervention (t2drop). This causes the

empirical Bayes estimates for all subjects to be identical. Although this seems unlikely, it

simply means that the predicted profile does not improve if different values are estimated for

the different individuals.

The predicted sorbitol clearance profile shows some correspondence to the measured

echo-Doppler flows. Regression of predicted hepatic blood flow onto measured right portal

vein flow indicates that the intercept is non-zero (0.56 ± 0.15 l min-1). This may indicate that

there is a constant amount of flow unaffected by the interventions which could be attributed to

hepatic arterial flow. Slope-estimates have approximate three-fold inter-individual variability

corroborating the impression that echo-Doppler measurements cannot be used to obtain a

reliable estimate of absolute total hepatic blood flow. Changes in flow however, seem to be

adequately reflected.
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Table III. Parameters for example 2: Predicted hepatic blood flow versus measured echo-Doppler right portal

vein flow

 Mean SD Min Max

 Octreotide

slope 2.06 0.89 0.89 3.34

intercept (l min-1) 0.538 0.202 0.296 0.884

Somatostatin

slope 2.03 0.85 0.92 2.98

intercept (l min-1) 0.585 0.091 0.486 0.735

Figure 5. Top panel: predicted (mean±SD) profiles of sorbitol plasma clearance for the octreotide (é) and

somatostatin (F) treatment. Bottom panel: observed (mean±SD) echo-Doppler measured flow in the right portal

vein for the octreotide (é) and somatostatin (F) treatment
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Discussion

The most complex part in this analysis is obtaining a continuous description of the

clearance/flow profile that will result in satisfactory prediction of sorbitol concentration.

Relatively simple approaches would be measuring the intervening drug and estimating the

concentration effect relationship, or linear interpolation in the echo-Doppler flow profile

assuming this to be a constant fraction of total hepatic flow. However, somatostatin and

octreotide concentrations could not be adequately determined eliminating PK/PD modelling

as an option. The first Doppler measurement during the intervention is at the end of the first

step and therefore contains no information on the actual flow profile during that first step.

Linear interpolation in the Doppler profile, resulted in flow-predictions changing too slowly to

predict the acute rise in sorbitol concentrations immediately following the intervention. We

therefore had to resort to a somewhat artificial representation, which nevertheless seems to

capture the essence of the experimental results. In order to obtain an adequate sorbitol

concentration profile, an immediate drop in clearance is required with gradual recovery to the

basal situation. This is substantiated by the echo-Doppler measurements. The fact that the

onset of effect has a much shorter half-life than the return to basal conditions is an indication

of nonlinearity in either the kinetics of the intervening drugs or of the concentration-effect

relationship (or both).

All modelling exercises so far have assumed that intrinsic clearance of the marker

compound is unaffected by the interventions and that changes in marker concentration are

attributable to changes in flow only. Echo-Doppler profiles indicate that changes in flow are

actually present and for the ICG/exercise example, we may assume on the basis of

physiology that flow changes do actually occur. Nevertheless, if intrinsic clearance is affected,

this will influence the adequacy of the predictions for hepatic blood flow. Given the high

intrinsic clearance for sorbitol, even large modifications would probably not result in major

changes in extraction ratio, although this does depend on which model is considered most

accurate. Halving the intrinsic clearance results in a change in extraction ratio from 0.96 to

0.92 for the well-stirred model but for the parallel tube model the extraction ratio drops to 0.80.

The range of possible extraction ratios for ICG is much wider and the choice of model has

greater consequences. This means that ICG cannot be used to provide reliable point

estimates of hepatic blood flow without direct measurement of the extraction ratio.

Description of changes in flow and their relative magnitude are far less affected though, and if

interest lies here, ICG should not be dismissed as a useful marker compound.
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Conclusions

The concentration profiles that result from infusion of a high clearance drug can be translated

into corresponding clearance and flow profiles. This is much easier for a drug with one-

compartment kinetics like ICG than for sorbitol that requires a two-compartment model;

postulation of a parametric model for the flow profile is required in this case.

The high extraction ratio for sorbitol allows easier translation from clearance to flow than for

ICG, and is probably less subject to inter-individual variability. This may favour the use of

sorbitol in steady state conditions for the accurate determination of hepatic blood flow.

Dynamic situations, where interest lies mostly in the profile and relative magnitude of flow-

changes, may favour the use of ICG.
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Appendix

SPSS/PC+ syntax for example 1; icg during exercise

get file = 'exercise.sys'.
title 'three clearance phases'.
select if (subject = 1).
compute wt=1.
weight by wt.
compute t1=0.
if (time LE 70) t1 = 1.
compute t2=0.
if ((time > 70) and (time LE 90)) t2 = 1.
compute t3=0.
if ((time > 90) and (time LE 203)) t3 = 1.
compute t4=0.
if (time GT 203)t4 = 1.
model program cl1 = 0.5 cl2 = 0.3 cl3=0.5 .
compute A  = t1*((0.75/cl1)*(1-exp(-(cl1/3.5)*time))).
compute l1 = (0.75/cl1)*(1-exp(-70*cl1/3.5)).
compute B1 = l1*exp(-(cl2/3.5)*(time-70)).
compute B2 = (0.75/cl2)*(1-exp(-(cl2/3.5)*(time-70))).
compute B  = t2*(B1 + B2).
compute l2 = l1*exp(-20*cl2/3.5) + (0.75/cl2)*(1-exp(-20*cl2/3.5)).
compute C1 = l2*exp(-(cl3/3.5)*(time-90)).
compute C2 = (0.75/cl3)*(1-exp(-(cl3/3.5)*(time-90))).
compute C  = t3*(C1+C2).
compute l3 = l2*exp(-113*cl3/3.5) + (0.75/cl3)*(1-exp(-113*cl3/3.5)).
compute D  = t4*l3*(exp(-(cl3/3.5)*(time-203))).
compute pred = A+B+C+D.
compute wt = 1/(pred*pred).
nlr icg with time t1 t2 t3 t4/save pred.
list time icg pred.
title "Instantaneous estimates".
select if (not missing(icg)).
compute x3 = time.
compute x2 = lag(time).
compute x1 = lag(x2).
compute y3 = ICG.
compute y2 = lag(ICG).
compute y1 = lag(y2).
compute sx = (x1+x2+x3).
compute sx2 = (x1*x1 + x2*x2 + x3*x3).
compute sy = (y1+y2+y3).
compute sxy = (x1*y1 + x2*y2 + x3*y3).
compute b = (sxy - (sx*sy/3))/(sx2 - (sx*sx/3)).
compute cl = (0.75 - b*3.5)/y2.
format b (F7.5) Y2 (F5.3) X2 (F3.0).
compute midtime = x2.
compute icg_ = y2.
list subject midtime icg_ b cl.
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Nonmem syntax for example 2; sorbitol, somatostatin and octreotide

Individual ordinary least squares estimates

$PROB   93103 s alone ;rise and drop diff;one inf;2stage;2comp;S1_4
$INPUT  ID TRT AMT RATE TIME EXPT DV TYPE MDV EVID CMT PCMT
$DATA   SORBONLY.NM

$SUBROUTINES ADVAN6 TRANS1 TOL=4
$MODEL COMP=(CENTRAL,DEFDOSE,DEFOBS) COMP=(PERIPH) COMP=(FLOW)

$PK
S1  = THETA(1)*EXP(ETA(1))
K12 = THETA(2)*EXP(ETA(2))
K21 = THETA(3)*EXP(ETA(3))
CL0 = THETA(4)*EXP(ETA(4))
RISE = THETA(5)*EXP(ETA(5))
DROP = THETA(6)*EXP(ETA(6))
CLS = THETA(7)*EXP(ETA(7))
IF (TIME.LE.80) THEN
  DUM2 = 1
ELSE
  DUM2 = 0
ENDIF
HALF = DUM2*RISE + (1-DUM2)*DROP
K30 = 0.693/HALF

$ERROR
  SORI = F
  Y = SORI+EXP(ETA(8))*ERR(1)
 
$DES
  DADT(3)=-K30*A(3)
  DIV3 = 0.666/(0.693/RISE)
  C3 = A(3)/DIV3
  CL = CL0 - CLS*C3
  K=CL/S1
  DADT(1)=K21*A(2) - (K12+K)*A(1)
  DADT(2)=K12*A(1) - K21*A(2)

$THETA  (1,11,20) (0.0001,.071,1) (0.0001,.066,1) 0.9  (0.01,1)
        (0.1,8) (0.0001,0.3)
$OMEGA   100 100 100 100 100 100 100 100
$SIGMA   1 FIXED
$EST  SIGDIG=2 MAXEVAL=0 NOABORT POSTHOC METHOD=1 INTERACTION
$TABLE ID TRT TIME EXPT S1 K12 K21 CL0 RISE DROP CLS CL SORI
DV TYPE FILE=S1_4.ASC NOHEADER NOPRINT 
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NONMEM syntax for example 2; first order conditional estimation

$PROB   93103 s alone ;rise and drop diff;one inf;CE;2comp;S1_6
$INPUT  ID TRT AMT RATE TIME EXPT DV TYPE MDV EVID CMT PCMT
$DATA   SORBONLY.NM

$SUBROUTINES ADVAN6 TRANS1 TOL=3
$MODEL COMP=(CENTRAL,DEFDOSE,DEFOBS) COMP=(PERIPH) COMP=(FLOW)

$PK
S1  = THETA(1)*EXP(ETA(1))
K12 = THETA(2)*EXP(ETA(2))
K21 = THETA(3)*EXP(ETA(3))
CL0 = THETA(4)*EXP(ETA(4))
RISE = THETA(5)*EXP(ETA(5))
DROP1 = THETA(6)
DROP2 = THETA(8)
DRP = (2-TRT)*DROP1+(TRT-1)*DROP2
DROP = DRP*EXP(ETA(6))
CLS = THETA(7)*EXP(ETA(7))
IF (TIME.LE.80) THEN
  DUM2 = 1
ELSE
  DUM2 = 0
ENDIF
HALF = DUM2*RISE + (1-DUM2)*DROP
K30 = 0.693/HALF

$ERROR
  SORI = F
  Y = SORI+ERR(1)
 
$DES
  DADT(3)=-K30*A(3)
  DIV3 = 0.666/(0.693/RISE)
  C3 = A(3)/DIV3
  CL = CL0 - CLS*C3
  K=CL/S1
  DADT(1)=K21*A(2) - (K12+K)*A(1)
  DADT(2)=K12*A(1) - K21*A(2)

$THETA  (1,11,20) (0.0001,.09,1) (0.0001,.12,1) 0.9  (0.01,.2)
        (0.1,30) (0.0001,0.3) (1,200,1000)
$OMEGA   .01 .01 .05 .05 .1 1 .1
$SIGMA   .0005
$EST  SIGDIG=3 PRINT=1 MAXEVAL=9999 NOABORT POSTHOC METHOD=1
$COV
$TABLE ID TRT TIME EXPT S1 K12 K21 CL0 RISE DROP CLS CL SORI
DV TYPE FILE=S1_6.ASC NOHEADER NOPRINT 

sorbonly.nm:

      1       1 10.9800 10.9800       0       0 .        2   1    4   1    1
      1       1 46.6650   .2745       1       1 .        2   1    1   1    1
      1       1   .       .           2       2 .        2   1    2   1    1
      1       1   .       .           7       7 .        2   1    2   1    1
      1       1   .       .          10      10 .5000    2   0    0   1    1
      1       1   .       .          15      15 .        2   1    2   1    1
      1       1   .       .          20      20 .        2   1    2   1    1
      1       1   .       .          25      25 .4000    2   0    0   1    1
      1       1   .       .          35      35 .3900    2   0    0   1    1
      1       1   .       .          40      40 .3700    2   0    0   1    1
      1       1   .       .          45      45 .3600    2   0    0   1    1
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      1       1 10.0000   .6666      50      50 .        1   1    1   3    3
      1       1   .       .          51      51 .        2   1    2   1    1
      1       1   .       .          51      51 .        1   1    2   3    3
      1       1   .       .          52      52 .        2   1    2   1    1
      1       1   .       .          52      52 .        1   1    2   3    3
      1       1   .       .          53      53 .        2   1    2   1    1
      1       1   .       .          53      53 .        1   1    2   3    3
      1       1   .       .          55      55 .4000    2   0    0   1    1
      1       1   .       .          55      55 .        1   1    2   3    3
      1       1   .       .          60      60 .4100    2   0    0   1    1
      1       1   .       .          60      60 .        1   1    2   3    3
      1       1   .       .          65      65 .1685    1   1    2   3    3
      1       1   .       .          65      65 .4300    2   0    0   1    1
      1       1 10.0000   .6666      65      65 .        1   1    1   3    3
      1       1   .       .          66      66 .        2   1    2   1    1
      1       1   .       .          66      66 .        1   1    2   3    3
      1       1   .       .          67      67 .        2   1    2   1    1
      1       1   .       .          67      67 .        1   1    2   3    3
      1       1   .       .          68      68 .        2   1    2   1    1
      1       1   .       .          68      68 .        1   1    2   3    3
      1       1   .       .          70      70 .4600    2   0    0   1    1
      1       1   .       .          73      73 .1380    1   1    2   3    3
      1       1   .       .          75      75 .4800    2   0    0   1    1
      1       1   .       .          80      80 .1315    1   1    2   3    3
      1       1   .       .          80      80 .4700    2   0    0   1    1
      1       1   .       .          82      82 .        1   1    2   3    3
      1       1   .       .          85      85 .4800    2   0    0   1    1
      1       1   .       .          85      85 .        1   1    2   3    3
      1       1   .       .          90      90 .4900    2   0    0   1    1
      1       1   .       .          90      90 .        1   1    2   3    3
      1       1   .       .          95      95 .2155    1   1    2   3    3
      1       1   .       .          95      95 .4600    2   0    0   1    1
      1       1   .       .         102     102 .4700    2   0    0   1    1
      1       1   .       .         110     110 .2238    1   1    2   3    3
      1       1   .       .         110     110 .4600    2   0    0   1    1
      1       1   .       .         125     125 .4600    2   0    0   1    1
      1       1   .       .         132     130 .2075    1   1    2   3    3
      1       1   .       .         140     140 .4700    2   0    0   1    1
      1       1   .       .         150     150 .1970    1   1    2   3    3
      1       1   .       .         155     155 .4700    2   0    0   1    1
      1       1   .       .         170     170 .2543    1   1    2   3    3
      1       1   .       .         170     170 .4600    2   0    0   1    1
      1       1   .       .         175     175 .4100    2   0    0   1    1
      1       1   .       .         180     180 .3100    2   0    0   1    1
      1       1   .       .         185     185 .2800    2   0    0   1    1
      1       1   .       .         195     195 .1800    2   0    0   1    1
      1       1   .       .         208     205 .1400    2   0    0   1    1
      1       1   .       .         215     215 .1200    2   0    0   1    1
      1       1   .       .         220     225 .1000    2   0    0   1    1
      2       1 10.9800 10.9800       0       0 .        2   1    4   1    1
      2       1 46.6650   .2745       1       1 .        2   1    1   1    1
      2       1   .       .           2       2 .        2   1    2   1    1
      2       1   .       .           2       2 .        1   1    2   3    3
      2       1   .       .           7       7 .        2   1    2   1    1

...etc..
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Chapter 5

Estimating potency for the Emax-model without
attaining maximal effects

Rik C. Schoemaker, Joop M.A. van Gerven & Adam F. Cohen

Journal of Pharmacokinetics and Biopharmaceutics 1998; 26 (5)

Summary

The most widely applied model relating drug-concentrations to effects is the Emax model. In

practice, concentration-effect relationships often deviate from a simple linear relationship but

without reaching a clear maximum because a further increase in concentration might be

associated with unacceptable or distorting side-effects. The parameters for the Emax model

can only be estimated with reasonable precision if the curve shows sign of reaching a

maximum, otherwise both EC50 and Emax estimates may be extremely imprecise.

This paper provides a solution by introducing a new parameter (S0) equal to Emax/EC50 that

can be used to characterise potency adequately even if there are no signs of a clear

maximum. Simulations are presented to investigate the nature of the new parameter and

published examples are used as illustration.
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Introduction

The relationship between concentration and effect for a drug can often be characterised using

relatively simple forms. In practice almost all applications make use of one of three models

which, with increasing complexity, are the linear, the Emax and the sigmoid Emax model. It could

be argued that the Emax model is central, with the sigmoid Emax model as an empirical

extension allowing extra flexibility, and the linear model as an approximation to a part of the

Emax model. A particular Emax model equation where the drug leads to a decrease in

response from the basal situation is given by:

where Ei, the effect at concentration C i, is given as the effect in absence of drug (E0) with a

maximum change (Emax) and a concentration at which half the maximum effect occurs (EC50).

Naturally, by changing the minus sign in equation 1 into a plus sign, the curve will describe an

increase in response with increasing drug concentrations. The left panel of Figure 1 provides

an illustration of the Emax model where E0 is the intercept with the y-axis, the vertical dashed

line indicates the EC50 and the horizontal dashed line indicates the minimal obtainable effect

given by E0 - Emax.

The Emax model also known as the Michaelis-Menten model (where Emax is replaced by

Vmax and EC50 by Km) originates in classical receptor theory as the model that describes

binding of drug to a receptor based on the law of mass action [1]. Much of the popularity of the

Emax model stems from the analogy in form with this drug-receptor model, and from its

empirical usefulness [2]. While in-vitro pharmacology often allows characterisation of

maximum effects, this may not be obtainable in in-vivo experiments. In-vivo

pharmacodynamics is often far more complex than the result of a simple interaction between

the drug and a receptor. Several receptor types may be involved, there may be intermediary

steps between receptor and final effect, and regulatory and counter-regulatory mechanisms

may interfere. One of the results may be that the high drug levels associated with maximal

effects also incur unacceptable side effects making it impossible to reach these

concentrations. If, for instance, sedation due to a benzodiazepine is measured using

saccadic eye movements, the subjects will generally fall asleep -making further effect

measurement impossible- far before a maximum is reached on the concentration-effect curve

[3,4].

Sensible parameter estimates for the Emax model can only be obtained if the

concentration-effect relationship has clear indications of levelling off and reaching a

maximum. If this is not the case then both Emax and EC50 are highly correlated and an extreme

range of values may be used to describe the same empirical relationship. This has been

previously discussed in the context of pharmacokinetic models where the elimination rate is

not constant, but is assumed to follow a Michaelis-Menten type relationship [5,6,7]. It is

(1)                        max

C+EC
C E-E=E

i50

i
0i
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argued that if concentrations remain well below Km, a linear approximation is adequate and

only the ratio of Vmax over Km (equal to the slope of this linear approximation) can be

identified.

When estimating concentration-effect relationships, sometimes straight lines may suffice to

describe the concentration-effect relationship, but often there are indications of deviation from

linearity. If a straight line were forced through these data, the slope of the line would depend

on the amount of curvature present. This is illustrated in the middle panel of Figure 1.

Figure 1. For explanation see text. Left panel: an example of an Emax concentration-effect relationship.

Middle panel: ordinary least squares straight lines for the Emax curve truncated at the open circles.

Right panel: tangent to the Emax curve at zero concentration.

The circles on the curve correspond to the effect at concentrations equal to 25%, 50%, 100%,

200% and 400% of EC50. If the curve were to stop at these points and straight lines would be

fitted to these sections, the five increasingly more horizontal lines would result. These lines

indicate that a linear approximation cannot be used unless all subjects reach the same

fraction of Emax, which is unlikely in practice.

The initial part of the Emax curve does not change with increasing concentrations and the

tangent to the concentration-effect curve at zero concentration does not depend on the rest of

the curve. This tangent is illustrated in the right panel of Figure 1 and is mathematically given

by [7,8]:

When the Emax model is used to estimate a curve without a clear maximum, the curious

situation arises that Emax and EC50 estimates are extremely variable while their ratio is far

less so. This is because while Emax and EC50 are badly defined, the initial tangent is not and

the ratio defines the slope of this tangent. If instead of estimating EC50, a new parameter

equal to the ratio of Emax over EC50 is estimated, then a more stable parameter is obtained

that can be interpreted as the initial sensitivity to the drug at low concentrations. This new
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parameter which we propose to call S0 (the slope of the tangent at concentration zero) may

be compared between drugs and between different doses of the same drug without the

necessity of reaching a clear maximum. It is implemented by replacing EC50 in equation 1 by

Emax/S0 resulting in:

The usefulness of this alternate parameterisation is demonstrated by a number of simulations

and practical examples from first-entry into man studies of two new benzodiazepines.

Simulations

The simulations were performed to examine the behaviour of parameters of the Emax model.

The structure of the data, the kinetic and dynamic parts, and the parameters, are derived from

the practical application discussed in the second part of this paper.

Time points were assumed with both concentration and effect measurements at 0, 3, 8, 13,

18, 24, 28, 33, 43, 58, 73, 88, 103, 118, 148, 178, 238 and 298 minutes after starting drug

administration. For the Emax model, parameters were used describing the peak velocity of

saccadic eye movements, an effect measure for sedation [9]. The saccadic peak velocity is

the maximal rate at which the eyes are capable of following a random stimulus jumping from

one side of the visual field to the other. The typical response to a sedative is a decrease in

saccadic peak velocity [10]. E0 was set at 450 E/sec, Emax at 250 E/sec and EC50 at 25 ng/ml.

By varying the administered dose, 5 different maximum concentrations were reached

corresponding to 25%, 50%, 100%, 200% and 400% of the EC50, which in turn correspond to

20%, 33%, 50%, 66% and 80% of Emax. For the simulations, the kinetic and dynamic

parameters were kept constant, and effect measurements were simulated. The simulated

data sets consisted of 100 replications (occasions) for each Cmax-level.

(3)                     
CS +E

CE S-E=E
i0max

imax0
0i
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Table I. Conditions for the different simulations

 Set code Simulation conditions

Residual variability Infusion/bolus Effect compartment

 HR0 high  (σ2=750) infusion (20min) no effect compartment

HB0 high  (σ2=750) bolus injection no effect compartment

HR4 high  (σ2=750) infusion (20min) effect compartment (t2Keo=4min)

HB4 high  (σ2=750) bolus injection effect compartment (t2Keo=4min)

LR0 low  (σ2=75) infusion (20min) no effect compartment

LB0 low  (σ2=75) bolus injection no effect compartment

LR4 low  (σ2=75) infusion (20min) effect compartment (t2Keo=4min)

LB4 low  (σ2=75) bolus injection effect compartment (t2Keo=4min)

From these data sets, the dynamic parameters were estimated while the concentration

profile was assumed known. Three factors with two levels each were examined yielding the

eight combinations summarised in Table I; presence versus absence of a hypothetical effect

compartment [2], high versus low residual variability, and an intravenous (IV) bolus versus a

constant rate infusion. The effect compartment -introduced to account for hysteresis- was

simulated with an equilibration half-life (t2Keo) of 4 minutes while equilibration half-life was a

parameter to be estimated. Two different levels of intra-individual, additive normal residual

variability were investigated; a variance of 750 corresponding roughly to actual saccadic

peak velocity measurements (as found in the examples described later) and a ten-fold lower

variance of 75. Two different infusion regimes were investigated, an IV bolus and a constant

rate infusion over 20 minutes.

Data were simulated and subsequently analysed using NONMEM version IV software

(NONMEM Project Group, UCSF, CA). Although NONMEM is generally used for population

analyses, it can also be configured to provide ordinary individual nonlinear regression

analyses [11]. Coefficients of variation of the 100 estimates obtained under the various

conditions are calculated using the formula CV = %(10s5ln10 - 1) where s5 is the variance of the
10log-transformed estimates [12]. Bias (systematic deviation in the mean of the estimates) is

calculated by back-transforming the difference between the mean of the log-transformed

estimates and the simulated value. Distribution of estimates is presented using box-whisker

graphs; the boxes encompass 50 % of the estimates, the horizontal line in the middle of each

box is the median and the whiskers indicate the 5th and 95th percentile of the estimates. Both

untransformed and log-transformed estimates are shown. The scale of the y-axes for the log-

data has the same increase from low to high (a factor 104) for all parameters and therefore

the size of the boxes can be compared between parameters and is proportional to the

coefficient of variation.
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Table II. Coefficients of variation and bias for estimated parameters; data are reported as coefficient of
variation(%)/bias (% deviation of log mean from simulated values). Set codes indicating the different conditions
for the simulations are explained in Table I. Cmax is given in percentage of EC50.

 Set code Cmax S0 EC50 Emax t2Keo

 HR0 25% 302 / 82 1997 / -39 339 / 12

50% 96 / 54 707 / -10 236 / 39

100% 72 / 13 309 / 26 134 / 43

200% 57 / 4 129 / 18 59 / 22

400% 47 / -1 65 / 5 25 / 4

HB0 25% 316 / 104 1876 / -46 317 / 10

50% 116 / 45 815 / 7 230 / 55

100% 73 / 5 372 / 64 162 / 72

200% 73 / 20 156 / -1 63 / 19

400% 68 / -1 84 / 9 20 / 8

HR4 25% 270 / 103 1734 / -32 295 / 39 517 / -4

50% 76 / 41 733 / 66 297 / 134 156 / -23

100% 76 / 4 434 / 103 170 / 111 93 /   -9

200% 55 / -5 157 / 46 79 / 38 62 /   -1

400% 57 / 1 80 / 10 26 / 10 55 /   -3

 

HB4 25% 423 / 223 2013 / -45 342 / 79 789 / 75

50% 184 / 71 1336 / 6 285 / 81 198 / -20

100% 86 / 15 593 / 160 223 / 199 120 / -10

200% 73 / 12 453 / 77 197 / 98 114 / -20

400% 61 / -7 245 / 84 120 / 71 97 / -16

LR0 25% 41 / 10 382 / 43 232 / 58

50% 30 / 3 215 / 36 146 / 40

100% 22 / -2 52 / 13 31 / 11

200% 18 / 2 24 / 0 8 / 2

400% 15 / -1 17 / 2 4 / 0

 

LB0 25% 49 / 19 444 / 10 235 / 30

50% 35 / 8 268 / 25 173 / 35

100% 28 / -5 95 / 26 62 / 21

200% 17 / -1 24 / 2 10 / 1

400% 20 / -3 21 / 3 4 / 0

LR4 25% 42 / 11 489 / 107 289 / 130 73 / -12

50% 31 / -2 340 / 112 227 / 108 29 / -2

100% 22 / -4 62 / 18 39 / 13 20 / -1

200% 18 / -1 26 / 3 10 / 2 14 / -1

400% 16 / -1 18 / 2 5 / 1 15 / 2

LB4 25% 116 / 54 1401 / -33 401 / 4 114 / -21

50% 44 / 15 481 / 65 280 / 89 48 / -10

100% 29 / -2 320 / 101 219 / 96 24 / -5

200% 23 / 1 63 / 7 29 / 8 18 / -1

400% 19 / -1 31 / 4 13 / 3 20 / 2
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Figure 2. Box-whisker plots for the different parameters estimated for one of the simulations

(LR4; S0=10 °.sec -1.ng-1.ml, Emax=250 °.sec -1, EC50=25 ng.ml-1, t2Keo=4 min., σ2=75).

Values depicted are the 5th, 25th, 50th, 75th and 95th percentiles of the estimates.

Top panels: untransformed estimates, bottom panels: log-transformed estimates.

Simulations: results

Table II lists the coefficients of variation and the bias-estimates for the eight simulations.

Figure 2 gives box-whisker graphs for the estimates obtained after analysing the data set with

an effect compartment, residual variability of 75 and a 20 min. infusion (LR4). The other seven

simulations displayed comparable qualitative behaviour.

The graphs indicate that all untransformed parameters are extremely skewed while log-

transformation makes the distributions much more symmetric. Graphs and Table II also

indicate clearly that the variability of the estimate is much lower for the S0 parameter than for

the EC50, especially at the lower concentration range for which it was designed. Regarding

variability, Emax takes in a position between S0 and EC50. The variability of the Emax

parameter decreases clearly with further development of the Emax curve because more

information becomes available. CVs for S0 decrease in a far more gradual manner. A

positive bias (systematic departure from the simulated values) in the S0 and Emax estimates is

apparent from Table II. For S0, the size of the bias is clearly associated with the size of the

CVs and is virtually absent if Cmax is larger than the EC50. Bias is generally less for S0 than for

EC50 and Emax, except perhaps for the low (25%) Cmax conditions. Data for E0 are not
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presented but are characterised by symmetric distributions without the need for (log)

transformation, absence of bias and constant variability over the range of Cmax-values.

Application

In recent studies two new benzodiazepines (Ro 48-6791 and Ro 48-8684) were compared to

midazolam with respect to sedative effects measured using saccadic eye movements [3,4].

Both studies were first-administration-to-man, placebo-controlled rising-dose studies with two

panels of five subjects each. The subjects received five treatments; placebo, midazolam and

three intended doses of the new drug: panel A1 Ro 48-8684 0.1mg, 0.3mg and 1.0mg; panel

A2 Ro 48-8684 1mg, 3mg and 10mg; panel B1 Ro 48-6791 0.1mg, 0.3mg and 1.0mg; panel

B2 Ro 48-6791 1mg, 2mg and 3mg. The drugs were infused slowly over 20 minutes or until

the subjects became too sedated to perform the saccadic eye movement test.

PK/PD information was obtained for all doses with the aim of answering two questions: 1.

is the sensitivity to the new drug different from midazolam and 2. does the sensitivity change

with increasing doses of the same drug. Saccadic eye movement tests cannot be done

beyond the level of conscious sedation and this level is often approached with a close-to-

linear concentration-effect relationship. Comparison of sensitivity between midazolam and the

highest administered doses of the two new benzodiazepines using traditional methods may

therefore be hampered by a nonlinear concentration-effect curve without reaching maximal

effect. A change of sensitivity with increasing doses poses the problem of a slowly developing

Emax curve as illustrated in the middle panel of Figure 1.

Application: methods

Concentration-effect parameters were determined using the described model (E0, Emax, S0,

t2Keo). Additive intra-individual residual error and an effect compartment were assumed.

Data were analysed with NONMEM version IV using ordinary nonlinear regression analysis

[11]. Parameters are presented as geometric means (back-transformed log-means) and

coefficients of variation of the estimates. For the new benzodiazepines the three highest

doses were compared, and the highest administered dose was compared between the

different drugs. Parameters were analysed after log-transformation using unpaired Student=s

t-tests for unequal variances.
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Figure 3. Illustrative concentration-effect graphs. Top panels: plasma concentration, bottom panels: effect

compartment concentration. New benzodiazepine graphs are accompanied by the midazolam graphs for the

same subject. Note the difference in scale on the x-axes.

Table III. Parameter estimates for the rising dose studies.

Data are reported as: geometric mean (coefficient of variation).

 Dose/Drug S0 Emax EC50 t2Keo n

(°.sec -1.ng-1.ml) (°.sec -1) (ng.ml-1) (min)

 1mg Ro48-6791 71 (170) 180 (86) 2.6 (420) 5.0 (580) 10

2mg Ro48-6791 41 (86) 230 (44) 5.6 (120) 4.8 (180) 5

3mg Ro48-6791 42 (130) 270 (81) 6.4 (330) 3.5 (130) 5

1mg Ro48-8684 15 (110) 630 (1000) 43 (1700) 0.23 (4) 10

3mg Ro48-8684 9.5 (58) 3500 (100) 370 (130) 0.79 (1400) 5

10mg Ro48-8684 6.1 (55) 740 (260) 120 (330) 0.88 (1400) 5

midazolam 0.1mg/kg 3.0 (87) 750 (410) 250 (1300) 0.75 (1200) 20T
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Table IV. Percentage increase in S0 (with 95% confidence interval)

Contrast % increase 95% confidence interval

from 3mg Ro48-6791 to 1mg Ro48-6791 69% (-53% - 510%)

from 10mg Ro48-8684 to 1mg Ro48-8684 140% (8.1% - 430%)

from 0.1mg/kg midazolam to 3mg Ro48-6791 1300% (320% - 4500%)

from 0.1mg/kg midazolam to 10mg Ro48-8684 100% (5.9% - 290%)

The back-transformed difference equals the ratio of the geometric means and is used to

provide an estimate of percentage increase with the corresponding 95% confidence interval.

Application: results

Parameters for the three highest doses of the new benzodiazepines and for midazolam are

presented in Table III. Table IV gives the results for the comparison of the S0 parameter

between drugs and doses. Figure 3 provides individual concentration-effect plots chosen as

an illustration of the types of concentration-effect relationships encountered.

Ro 48-6791 is much more potent than midazolam as illustrated by the 14-fold higher S0

(1300% higher; 95%CI: 320% - 4500% higher). Ro 48-8684 may be somewhat more potent

than midazolam with an S0 that is 100% higher (95% CI: 5.9% - 290%).

There are no clear indications of  a change in sensitivity for the different doses of Ro 48-

6791. For Ro 48-8684 however, the S0 for the 1mg group is 140% higher than in the 10mg

group (95% confidence interval: 8.1% - 430%).

Discussion

The original papers describing the PK/PD of Ro 48-6791 [3] and Ro 48-8684 [4] both

encountered problems in the comparison of concentration-effect parameters.

For Ro 48-6791 versus midazolam, a number of subjects were best described by a linear

concentration-effect model while others required an Emax model. The resulting parameters

could not be compared or pooled and drugs had to be compared on the basis of

concentrations associated with the moment of reaching conscious sedation. The current

approach allows the description of all relationships using the same parameters and provides

a coherent set of estimates that indicate 14-fold higher potency for Ro 48-6791 than for

midazolam.

For the study with Ro 48-8684, all subjects were adequately described using a linear

model, even for the midazolam occasions. The comparison of slopes between the different

doses of Ro 48-8684 indicated a decrease in sensitivity with increasing dose. Doubt

remained however, that this difference in sensitivity was due to gradual development of Emax
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behaviour for the higher doses resulting in biased slope estimates. The new method confirms

the finding of a change in sensitivity.

The simulation results indicate a bias in the S0 estimates in the same general direction as

the change in sensitivity for Ro 48-8684, which could explain the significant decrease in

sensitivity with increasing dose. This bias should however be viewed in relation to the

variability of  the parameter estimates as large bias is associated with high variability. This

high variability makes it unlikely that a significant test outcome will be obtained when

comparing increasing doses. The power for obtaining a significant test result when

comparing the different doses using 5 subjects per group for the data from the simulations, is

in the order of 8 to 16%. This low power makes it unlikely that the significant decrease in

sensitivity to Ro 48-8684 is due to bias in the estimation method alone. Nevertheless, one

should be careful in concluding that the change in sensitivity is real, as confounding factors

like an anticipation to the effects of the drug over the course of the study may play a role.

In the case where low doses are compared to high doses, it is obvious that the parameters

estimated for the low doses are less accurately estimated and therefore more variable than

the parameters for high doses. The choice of a statistical method for comparing the groups

should reflect this, and for this reason two-sample Student=s t-tests were used assuming

unequal variances. Although all doses and drugs could have been put into a single ANOVA

model, this would result in severe violation of the assumption of homogeneity of variances.

The use of the S0-methodology is necessarily restricted to linear and Emax concentration-

effect relationships. If a drug is encountered that exhibits some sort of threshold phenomenon,

that could for instance require use of a sigmoid Emax model, other approaches should be

attempted. An exponential model could be used for instance [13,14] but the parameters that

result from such a model cannot be translated to the sigmoid Emax model parameters. An

alternative parameterisation of the sigmoid Emax model that can be used for truncated data is

suggested by Bachman and Gillespie [15]. This is implemented by estimating the effect (E*)

corresponding to a fixed concentration (C*) that is observed on the truncated curve and by

estimating a parameter β equal to C*/EC50. E* and â have improved estimating properties

over Emax and EC50 and can be useful alternatives to describing the truncated curves.

The question arises how the S0 parameter behaves if the model is applied to a situation

where the underlying concentration-effect model is actually linear. Because the Emax model

has one more parameter than the linear model, use of the Emax model in this case will result in

more variable estimates due to over-parameterisation. Estimation of  a linear model in the

simulation with no effect compartment, residual variability of 750 and a 20 min. infusion (HR0)

indicates that bias clearly develops with increasing coverage of the Emax curve but also that

the slope estimates for the lowest part of the curve (with the lowest dose) are only slightly

biased and about three times less variable than the corresponding S0 estimates. It may

therefore be tempting when analysing real-life curves, to use a linear model when the data

'look' linear (where slope substitutes S0) and an Emax model when they do not. Alternatively,  a

formal test like the extra sum of squares principle [16] could indicate whether the Emax model

provides a significantly better fit; the S0 parameter could be used if this is the case, and the
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linear slope otherwise. However, application of this principle to the data from the simulation

indicates that this does not significantly decrease overall variability. This is because the

occasional extreme S0 estimates at the lower doses are associated with seemingly highly

nonlinear concentration-effect data. Even though the data arise from a nearly linear part of the

Emax model, they are sometimes (due to measurement error) significantly better described by

an Emax model with extreme parameters, especially when only a small part of the curve is

available. Substitution of S0 estimates by linear slopes is therefore only feasible if external

information is present indicating that an essentially linear part of the concentration-effect curve

is estimated, irrespective of what the data might indicate. As this is rarely the case in

practice, the Emax model with the S0 parameter should be routinely applied to all subjects and

doses and not just to the ones indicating deviation from linearity.

It may be argued that the S0 parameter only describes a small aspect of the concentration-

effect curve and that initial sensitivity may not be a parameter of interest. However, S0 is

inversely related to EC50  and may therefore be used just as well as a sensitivity parameter.

Moreover, the examples indicate that situations exist where almost the entire concentration-

effect curve may be described by a close-to-linear model.

The notion that Emax and EC50 are not the best choice for estimating the (full) Emax model

has been expressed before. Alternative parameterisations of the classic Emax model have

been advocated by Ratkowsky [17] resulting in parameters with more favourable estimating

properties. These parameters are 1/Emax and EC50/Emax (which equals 1/S0). Examination of

these 'Ratkowsky' parameters for the eight simulations in this paper does indicate less

skewed distributions than for Emax and EC50. However, if we calculate the average absolute

skewness over the five Cmax-values for the eight simulations, then for seven of the simulations,

the skewness is (substantially) lower for log(S0) than for 1/S0. The skewness is similar for

log(Emax) and 1/Emax. This indicates that use of (log) S0 need not be restricted to Emax models

without a maximum, but provides a sensible alternative to EC50 in all cases.
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Conclusions

By parameterising the Emax model in terms of Emax and S0, close to linear concentration-effect

relations may be effectively estimated, enabling comparison to situations with a more fully

developed Emax model.
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Chapter 6

Analysis of asymmetrical agonist
concentration-effect curves
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Summary

We have analysed the shape of concentration-effect (E/[A]) curves obtained with

noradrenaline, phenylephrine, methoxamine, oxymetazoline, cirazoline, indanidine, ST 587

and SK&F 89748-A in rat aorta. A fitting procedure, based on nonlinear mixed effect

modelling and original work by Richards [1], was developed to describe the degree of

symmetry of E/[A] curves.

All of the agonists investigated produced concentration-dependent contractions. The four-

parameter Richards model provided a significantly better fit of the E/[A] data than the

standard logistic/Hill model for all ligands investigated, which implies that E/[A] curves were

asymmetrical. With the exception of ST 587, the asymmetry parameter (δ) tended towards

zero and the Richards model could be replaced without significant loss of goodness-of-fit by

the three-parameter, asymmetrical Gompertz model.

Pre-treatment with the irreversible antagonist, phenoxybenzamine (60 nM), produced a

shift of the δ estimate for noradrenaline from zero to unity, indicating a change from an

asymmetrical to a symmetrical curve.
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This analysis demonstrates that the behaviour of α1-adrenoceptor agonists in rat aorta is

not consistent with expectations for a simple action at a single-receptor/single transducer

system. Comparison of intrinsic activities estimated in the present study with those reported

for cloned α1-adrenoceptors suggests that the α1D- and α1A-subtypes operate in rat aorta.

The curve-fitting analysis developed in this study provides a quantitative and sensitive

measure of asymmetry and a general method for the objective discrimination of agonist

action on the basis of curve shape.

Introduction

Three subtypes of α1-adrenoceptors, known as α1A, α1B and α1D-adrenoceptors, have been 

identified by molecular cloning and expression techniques. These gene products exhibit

distinct pharmacological profiles as judged by radioligand binding and functional studies of

tissue preparations and recombinant expression assays [2]. In addition to this molecular-

based subclassification, the term α1L-adrenoceptor has been introduced to account for the

low potency displayed by several competitive antagonists in various smooth-muscle

preparations [3-5]. For example, prazosin has been consistently reported to exhibit affinity

(KB) values of more than 1 nM for the α1-adrenoceptors in the lower urinary tract of man [6], rat

[7], dog [8] and rabbit [9], while it expresses subnanomolar affinity at the  α1A, α1B and α1D

subtypes [6].

The α1-adrenoceptors mediating contraction of rat aorta have been investigated

extensively (see Van der Graaf et al. [10] for a review) and their pharmacological

characteristics have been subject to controversy since the first studies by Ruffolo and co-

workers in the early eighties [11-13]. In recent years, several groups have suggested that the

α1D-adrenoceptor is the functional α1-adrenoceptor in rat aorta [2,14-19]. However, on the

basis of an analysis of the effects of competitive antagonists on the contractile responses to

noradrenaline and phenylephrine, we have provided evidence for a heterogenous α1-

adrenoceptor population in this tissue [10]. This hypothesis was recently confirmed and

extended by Fagura et al. [20] and supported by Deng et al. [21] who reported biphasic

displacement of [3H]prazosin by BMY 7378 in the rat aorta. In our study, the first indication of

complexity was given by small, but significant, systematic deviations of the curve fit obtained

with the Hill equation from the noradrenaline and phenylephrine concentration-effect (E/[A])

curves as though the curves were not monophasic [10]. Therefore, in an attempt to illuminate

further the characteristics of the functional α1-adrenoceptors in rat aorta, in the present study

we have analysed the sigmoidal E/[A] relationships of a series of α1-adrenoceptor agonists.

For this purpose, we have developed an objective test to determine whether the data can be

best described by a symmetrical or asymmetrical model. In an attempt to maximise the

chance of exposing heterogeneity, compounds were selected from different chemical classes

[see 22,23]: three phenethylamines (noradrenaline, phenylephrine and methoxamine), two

imidazolines (oxymetazoline and cirazoline), two imidazolidines (indanidine and ST 587) and
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an aminotetralin (SK&F 89748-A).

Preliminary accounts of these data [24] and the analysis [25] have been presented to the

British Pharmacological Society.

Methods

Rat isolated aortic ring preparation

Male Wistar rats (225-300 g) were killed by cervical dislocation and the thoracic aorta was

dissected. The aorta was mounted on a length of scoured, polythene tubing and placed in a

Petri dish containing modified Krebs-Henseleit solution (KHS) of the following (mM)

composition: NaCl 119.0, NaHCO3 25.0, KCl 4.7, KH2PO4 1.2, MgSO4 1.2, glucose 11.0,

CaCl2 0.25 and ascorbic acid 0.1. The aorta was cleared from surrounding adipose tissue

and the endothelium was removed by gentle rubbing of the intimal surface with the polythene

tube. The effectiveness of this procedure was confirmed after completion of each agonist

E/[A] curve by the lack of relaxant response to 10 ì M 5-methylfurmethide, the acetylcholine M-

receptor agonist. Six ring segments (~4 mm length) were prepared from each aorta and

mounted between two stainless-steel wires in 20 ml organ baths, thermostatically controlled at

37 " 0.5EC, containing modified KHS and continuously gassed with 95% O2 and 5% CO2.

Tissue responses were measured continuously as changes in isometric tension (g) using

Grass FT03C strain gauges and displayed on potentiometric chart recorders.

Experimental protocol

Following application of 2 g resting tension, tissues were allowed to stabilise for 60 min

during which time the organ bath fluid was replaced four times with pre-warmed KHS at

regular intervals. The resting tension was re-established once after 30 min. In our rat aorta

assay, the contractile effect of maximally-effective concentrations of α1-adrenoceptor agonists

cannot be reversed readily by washing [26] and therefore only one E/[A] curve was obtained

in each tissue. In order to be able to compare the intrinsic activities of different agonists with

this single-curve design, tissues were calibrated with a sub-maximally effective concentration

(1 µM) of phenylephrine followed by a 60 min washout period. Following 90 min incubation

with 30 µM cocaine and 6 µM timolol, single agonist E/[A] curves were obtained by

cumulative dosing at half-log unit concentration increments to noradrenaline, phenylephrine,

methoxamine, oxymetazoline, cirazoline, indanidine, ST 587 and SK&F 89748-A.

The effects of the irreversible antagonist, phenoxybenzamine (PBZ) on the noradrenaline

E/[A] relationship were also investigated. For the study of irreversible receptor antagonism,

tissues were exposed to 60 nM PBZ for 4 or 7 min and washed for 30 min prior to the 90 min

incubation with cocaine and timolol. PBZ did not produce any effects on basal tone.



92

Effects were expressed as percentage of the phenylephrine calibration response. Only one

agonist E/[A] curve was obtained in each tissue.

Analysis

Concentration-effect models

Initially, individual agonist E/[A] curve data were fitted to the logistic model with the following

parameterisation [see 27]:

to provide estimates of the upper asymptote (α), the point of inflection (pECi, that is

-log10(ECi)) and the slope parameter (p) at the point of inflection. The point of inflection is at

50% of á (i.e. pECi = pEC50). This form of the logistic model is equivalent to the Hill equation

[28] and p is equivalent to the Hill slope parameter, nH.

Subsequently, in an attempt to quantify the apparent asymmetry of the E/[A] curves, the

data were fitted to the four-parameter Richards model which includes an asymmetry factor, δ
[1]:

(1)                 
loglog__lne+1

 = E
))EC(-[A](p(10)- i

α

(2)     
_ loglog__ln ) e+(1

 = E 1/))EC(-[A](p(10)- i δδ
α
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Figure 1. Richards curves with from left to right δ=2,1,0 and -1; p = 1, α=100 and pECi= 0;
open circles are the points of inflection.

When δ=1, this equation is identical to the logistic model (Equation 1) and describes a

symmetrical E/[A] curve; in all other cases the Richards model is asymmetrical (Figure 1).

When δ approaches 0, the Richards model collapses to the three-parameter Gompertz model

[see 1,27], which can be derived using the standard limit:

This means that for δ approaching 0:
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Like the Richards model, the Gompertz model is asymmetrical about its point of inflection,

which occurs at α/e (~37% of the maximum effect; Figure 1).  The midpoint location (pEC50)

of the Gompertz model can be calculated as follows:

When δ=-1, the model collapses to the "monomolecular function" [1], which has no lower

asymptote and point of inflection and thus allows infinite and negative values of E for low

agonist concentrations (Figure 1):

When -1<δ<0, the Richards model describes E/[A] curves that are not monotonic with infinite

high values of E for low agonist concentrations. Therefore, we regarded the E/[A] profiles

described by the Richards model with negative values of δ as lacking pharmacological

meaning for the present study and only the condition δ approaching 0 was considered in the

analysis of the experimental data.

Nonlinear mixed effect modelling

With conventional nonlinear least-squares regression, individual parameters are estimated

for each E/[A] curve, so that a data set of n individual E/[A] curves would result in 3n or 4n

parameter estimates for a three- and four-parameter model, respectively. Due to high intrinsic

nonlinearity, the Richards model has very poor statistical properties in estimation and

individual parameter estimates are difficult to obtain [27]. Therefore, conventional nonlinear

least-squares regression was not suitable for the present analysis and we employed

nonlinear mixed effect modelling (see [29], for details). With this method, no individual

parameters are estimated for each E/[A] curve. Instead, the model parameters for each

individual E/[A] curve are assumed to originate from a common distribution and only the mean

and inter-individual variability are estimated. This means that, irrespective of the number of

individual E/[A] curves in a data set, only 6 and 8 estimates (i.e. the mean parameters and

associated inter-individual variabilities) are obtained for a three- and four-parameter model,

respectively. The advantage of nonlinear mixed effect modelling is that all data are fitted

simultaneously in such a manner that combining

of information of each individual experiment may allow adequate estimation of ill-defined

parameters.

Although nonlinear mixed effect modelling itself does not provide individual parameter

estimates, so-called empirical Bayes estimates can be generated for each separate E/[A]

curve (see [29] for details). These estimates are Bayesian in the sense that they are

(5)                  
lnln
p

(2)) ( 
 - pEC = pEC i50

(6)       loglogln )e - 1(   = E )EC -[A] (p  (10) - i•••α
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conditional on the population information and empirical because the population information is

not external to the data, but based on the data itself.

Model discrimination

In order to determine whether two models yield significantly different goodness-of-fits for the

same data set, standard test theory [30,31] requires that they are nested so that one model

can be formulated as a special case of the other one by setting one or more of the

parameters to fixed values. As shown above, the three-parameter logistic and Gompertz

models are sub-models of the four-parameter Richards model when δ approaching 1 and 0,

respectively. Thus, a fit with the Richards model can be compared to each of the three-

parameter models using standard test theory. When conventional nonlinear least-squares

regression would have been used, the significance of the increase in goodness-of-fit with the

Richards model could have been tested using the extra-sum-of-squares principle [30], where

the variance reduction due to the inclusion of extra parameters is compared with the residual

variance of the full model using an F-distribution. In the present study, however, maximum-

likelihood estimation was used for the nonlinear mixed effect modelling and nested models

were compared using the minimum value of the objective function (MVOF), which is equal to -

2*log likelihood. Using likelihood ratio theory [31] it can be shown that the difference between

the MVOFs for two nested models follows a chi-square distribution with degrees of freedom

equal to the difference in the number of parameters. In the present study, the asymmetry

parameter (δ) was estimated without inter-individual variability and therefore the comparison

between the Richards and the three-parameter models is based on a single-degree of

freedom, which is significant at the α=5% level when the MVOF difference exceeds 3.85.

Since the logistic and Gompertz models are not nested, it is not possible to test directly

whether one of the models provides a significantly better fit than the other. However, the

improvement of the fit with the Richards model can be tested relative to both models and this

can be used as an indirect test to compare the logistic and Gompertz models. In the most

extreme case, one of the three-parameter models is indistinguishable from the Richards

models (i.e. the estimate of δ is not significantly different from zero or unity) while the other

three-parameter model is associated with a significant decrease in the goodness-of-fit. This

outcome can be interpreted as a significant better goodness-of-fit for one of the three-

parameter models compared to the other. However, when the Richards model provides a

significantly better fit than both three-parameter models, no formal statement can be made

with regard to the difference between the performance of the logistic and Gompertz model.

Software

All fitting procedures were performed by use of the nonlinear mixed effect modelling software
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package NONMEM (GloboMax LLC, Hanover, Md, USA). An IBM-compatible personal

computer (Pentium7 133 MHz) running under Windows 3.11 was used with the Microsoft

FORTRAN PowerStation 1.0 compiler and NONMEM version IV, level 2.0 (double precision).

Parameters and associated standard errors (s.e.) were estimated using first-order

conditional estimation and additive intra-individual and multiplicative inter-individual residual

error models were assumed [29]. Estimates of the inter-individual variability were expressed

as coefficient of variation (CV). For computational reasons, a lower boundary value between

10-2 and 10-5 was imposed on δ. The NONMEM syntax is provided in the Appendix.

Compounds

Compounds were obtained from the following sources: methoxamine hydrochloride, (-)-

noradrenaline hydrochloride, (-)-phenylephrine hydrochloride, oxymetazoline hydrochloride,

phenoxybenzamine hydrochloride and cocaine hydrochloride (Sigma Chemical Company

Ltd., U.K.); ST 587 (2-(2-chloro-5-trifluoromethylphenylimino)-imidazolidine nitrate; a gift from

Boehringer Ingelheim, Germany); timolol maleate (Merck, Sharp & Dohme, U.K.); indanidine

hydrochloride (also known as Sgd 101/75; a gift from Dr. U. Jahn, Siegfried Ltd.,

Switzerland); SK&F-l-89748-A (l-1,2,3,4-tetrahydro-8-methoxy-5-(methylthio)-2-

naphthalenamine hydrochloride; a gift from SmithKline Beecham Pharmaceuticals, U.S.A.);

cirazoline hydrochloride (a gift from Synthélabo Recherche (L.E.R.S.), France);

5-methylfurmethide iodide (James Black Foundation, U.K.).

Noradrenaline and phenylephrine were dissolved and diluted in stoichiometric aqueous

ascorbic acid solution to prevent oxidation. Phenoxybenzamine was dissolved in absolute

ethanol. SK&F 89748-A was dissolved initially in 50% ethanol to give a 0.2 mM stock solution

and was subsequently diluted in distilled water. All other drugs were dissolved in distilled

water. Noradrenaline and phenylephrine were made up freshly each day. All other drug stock

solutions were stored below –20 C and diluted on the day of the experiment. The maximum

volume of drug solution administered to the 20 ml organ baths did not exceed 800 µl,

corresponding to 4% of the bath volume.

Results

α1-Adrenoceptor concentration-effect relationships

All of the agonists investigated produced concentration-dependent contractions of the aorta

(Figure 2). Initially the individual E/[A] curve data for each ligand were fitted to the logistic

model (Equation 1) to obtain estimates of pEC50, p (which is equivalent to the Hill slope

parameter) and α (Table I). Although convergence was obtained for each agonist, in most

cases the model predictions appeared to deviate systematically from the individual E/[A]
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data, consistent with our observation in the previous study [10]. The deviations were difficult to

detect by eye but most notable at concentrations producing ~60-80% of the maximum

response (α), as illustrated by an individual noradrenaline E/[A] curve in Figure 3b. In an

attempt to quantify the apparent asymmetry of the E/[A] curves in an objective manner, we re-

fitted the E/[A] data to the four-parameter Richards model (Equation 2). As judged by the

decrease in the minimum value of the objective function, the fit obtained with the Richards

model was significantly better than that to the logistic model for all the agonists tested (Table

I). With the exception of ST 587, the estimates of the asymmetry parameter δ,  reached the

lower boundary value or were not significantly different from 0 (oxymetazoline, Table I).

Therefore, the data were subsequently also fitted to the three-parameter Gompertz model

(Equation 4), which is identical in algebraic formulation to the Richards model when δ
approaching 0 (see Methods). Table I shows that the minimum value of the objective function

obtained with the Gompertz and Richards models were practically identical for all agonists

except ST 587. In the case of ST 587, the goodness-of-fit for the Gompertz model was

significantly lower than for the Richards model. As an example, the fits obtained for

noradrenaline with the logistic and Gompertz model are shown in Figure 3 for an individual

E/[A] curve and for the average data.
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Figure 2. Concentration-effect curves obtained on rat aorta to (a) noradrenaline, (b) phenylephrine, (c)

methoxamine, (d) oxymetazoline, (e) cirazoline, (f) indanidine, (g) ST587 and (h) SK&F 89748-A. The curves

shown superimposed on the mean experimental data points were obtained by averaging the individual fits with

the logistic-model (Equation (1)). Error bars indicate standard deviation. Abscissae: [agonist] (log M).

Ordinates: effect (% of 1 µM phenylephrine calibration response).
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Table I. Parameter estimates (mean ± s.e.) obtained by simultaneously fitting individual agonist concentration-

effect curves to the logistic, Richards and Gompertz model using nonlinear mixed-effect modelling. Estimates

of inter-individual variability are shown as CV in parentheses.

 Agonist1 Model        pECi           p         α2 δ MVOF3

 

Noradrenaline Logistic 7.81 ± 0.08 (3%) 0.86 ± 0.03 (0%) 136 ± 6 (13%) - 465.7*

(n=10) Richards 8.10 ± 0.08 (3%) 0.57 ± 0.03 (13%) 140 ± 6 (13%) 0# 386.2

Gompertz 8.11 ± 0.08 (3%) 0.57 ± 0.03 (13%) 140 ± 6 (13%) - 386.2

Phenylephrine Logistic 7.17 ± 0.15 (6%) 0.97 ± 0.08 (22%) 122 ± 4 (9%) - 404.2*

(n=8) Richards 7.44 ± 0.16 (6%) 0.63 ± 0.06 (24%) 127 ± 5 (10%) 0# 364.4

Gompertz 7.44 ± 0.16 (6%) 0.63 ± 0.06 (24%) 127 ± 5 (10%) - 364.4

Methoxamine Logistic 5.80 ± 0.13 (6%) 1.51 ± 0.14 (19%) 114 ± 6 (14%) - 257.3*

(n=7) Richards 5.96 ± 0.14 (6%) 0.95 ± 0.10 (24%) 120 ± 7 (15%) 0# 237.5

Gompertz 5.96 ± 0.14 (6%) 0.94 ± 0.10 (25%) 121 ± 7 (15%) - 237.1

Oxymetazoline Logistic 6.47 ± 0.13 (5%) 1.76 ± 0.26 (37%) 102 ± 3 (7%) - 238.3*

(n=7) Richards 6.61 ± 0.20 (6%) 1.21 ± 0.25 (37%) 105 ± 2 (7%) 0.14 ± 0.32 229.9

Gompertz 6.64 ± 0.15 (6%) 1.13 ± 0.16 (37%) 105 ± 5 (7%) - 230.3

Cirazoline Logistic 7.39 ± 0.13 (5%) 1.33 ± 0.08 (15%) 120 ± 6 (15%) - 395.8*

(n=9) Richards 7.58 ± 0.13 (5%) 0.89 ± 0.06 (18%) 123 ± 7 (16%) 0# 349.0

Gompertz 7.58 ± 0.13 (5%) 0.89 ± 0.06 (18%) 123 ± 7 (16%) - 349.0

Indanidine Logistic 5.84 ± 0.12 (5%) 1.42 ± 0.06 (0%) 80 ± 3 (8%) - 206.5*

(n=6) Richards 6.02 ± 0.12 (5%) 0.96 ± 0.05 (7%) 82 ± 3 (8%) 0# 183.2

Gompertz 6.02 ± 0.12 (5%) 0.96 ± 0.05 (7%) 82 ± 3 (8%) - 183.2

ST 587 Logistic 6.11 ± 0.10 (4%) 1.34 ± 0.12 (20%) 54 ± 6 (25%) - 126.7*

(n=6) Richards 6.04 ± 0.10 (4%) 1.76 ± 0.41 (19%) 52 ± 6 (25%) 1.70 " 0.46 122.1

Gompertz 6.26 ± 0.12 (4%) 0.73 ± 0.07 (13%) 59 ± 6 (24%) - 145.6*

SK&F 89748-A Logistic 6.72 ± 0.19 (6%) 1.57 0.12 (10%) 84 ± 3 (11%) - 199.9*

(n=6) Richards 6.88 ± 0.19 (7%) 0.96 0.10 (23%) 88 ± 3 (8%) 0# 176.1

Gompertz 6.88 ± 0.19 (7%) 0.96 0.10 (23%) 88 ± 3 (8%) - 176.1

1Number of replicates shown in parentheses.
2Expressed as percentage of a 1 µM phenylephrine calibration response
3Minimum value of the objective function
#Lower boundary value (10-5-10-2)

*Goodness-of-fit significantly lower than goodness-of-fit to the Richards model (P<0.05).
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Figure 3. Comparison of the fits obtained with the logistic (a and b) and Gompertz (c and d) model for the

mean noradrenaline concentration-effect data (a and c) and for a representative, individual noradrenaline curve (b

and d) obtained on rat aorta. The curves shown superimposed on the mean (n = 10) experimental data points

were obtained by averaging the individual fits with the logistic (a) and Gompertz (c) model. Error bars indicate

standard deviation. The curves shown superimposed on the data points from the individual experiment were

simulated with the following empirical Bayes parameter estimates for the logistic (b) and Gompertz (d) model:

pECi = 7.56 and 7.84; p = 0.86 and 0.60; α= 150 and 154, respectively. Abscissae: [noradrenaline] (log M).

Ordinates: effect (% of 1 µM phenylephrine calibration response).

Subsequently, we investigated the effects of reducing efficacy on the E/[A] curve shape.

For this purpose, an experiment was performed to study the interaction between

noradrenaline and the irreversible antagonist PBZ.
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Figure 4. Concentration-effect curves to noradrenaline obtained on rat aorta following pretreatment with 60 nM

phenoxybenzamine for 0 (M), 4 (F) and 7 (O) min. The curves shown superimposed on the mean experimental

data points were obtained by averaging the individual fits with the Gompertz model for the 0 and 4 min

pretreatment groups and with the logistic model for the 7 min pretreatment group. Error bars indicate standard

deviation. Effect is expressed as percentage of a 1 µM phenylephrine calibration response.

noradrenaline E/[A] curve (Figure 4). As found previously for the noradrenaline control curves,

in the case of 4 min pretreatment the data fits with the Richards and Gompertz models were

identical (MVOF = 192.6; δ approaching 0, pECi = 7.60 ± 0.13, p = 0.70 ± 0.02, α = 82 ± 20%

of the phenylephrine calibration response; n = 5) and significantly better than the logistic-

model fit (MVOF = 221.7; P<0.0001). However, following 7 min PBZ pretreatment, the

Richards and logistic models fitted the data equally well (MVOF = 89.1 and 89.5,

respectively) while the goodness-of-fit for the Gompertz model was significantly lower (MVOF

= 95.7; P<0.05). The asymmetry factor estimated with the Richards model was not

significantly different from unity (δ = 0.78 ± 0.54) and the parameter estimates for the logistic

model with δ constrained to unity were as follows: pECi = 6.74 ± 0.03, p = 0.94 ± 0.04, α = 33

± 5% of the phenylephrine calibration response; n = 5).
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Figure 5. Concentration-effect curve (n=4) to noradrenaline obtained on rat aorta in the presence of

1 µM prazosin following precontraction with 75 mM KCL. Error bars indicate standard deviation.

Effect is expressed as percentage of a 1 µM phenylephrine calibration response.

Involvement of relaxant responses

Previously, we have developed a model of functional antagonism that predicts asymmetrical

E/[A] relationships and antagonist-induced changes in curve shape when an agonist acts

simultaneously at two receptors mediating opposing stimuli [32].  Therefore, an attempt was

made to expose a relaxant action of noradrenaline which could explain the complexity

encountered in the present study.  In the presence of a high concentration (1 µM) of prazosin,

tissues were precontracted with 75 mM KCl, which produced a sustained response of 117.1 ±

8.2% (n = 4) compared to the phenylephrine calibration.  10 nM B 3 µM Noradrenaline had no

significant effect on the KCl response while higher concentrations produced a further

contraction (Figure 5).
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Discussion

In a previous study, we proposed that the α1-adrenoceptor population in rat aorta is not

homogeneous [10]. This conclusion was reached by analysis, using the Hill equation, of the

effects of competitive antagonists on the steepness of noradrenaline and phenylephrine E/[A]

curves. Although the corresponding Schild analysis also revealed some complexities, it was

shown that changes in the Hill slope of the agonist E/[A] curves were more sensitive

indicators of receptor heterogeneity than deviations from linear, unit-slope Schild plots. On the

basis of this finding, we wondered whether comparison of E/[A] curve shapes of different

agonists could provide information about the character of the α1-adrenoceptors in rat aorta. In

the present study, we have explored this idea and developed an objective and sensitive fitting

procedure, based on original work by Richards [1] to describe and provide a discriminatory

test for differences in agonist E/[A] curve shape.

The main finding of the present study can be summarised as follows. First, the Richards

model provided a significantly better fit of the E/[A] data than the logistic model for all ligands

investigated (Table 1), which implies that α1-adrenoceptor agonists from various chemical

classes produce asymmetrical E/[A] curves in rat aorta. With the exception of ST 587, the

asymmetry parameter (δ) tended towards zero and the Richards model could be replaced

without significant loss of goodness-of-fit by the asymmetrical Gompertz model, which

contains the same number of parameters as the logistic model. Second, it was shown that 7

min pretreatment with 60 nM PBZ produced a shift of the δ estimate for noradrenaline from

zero to unity, that is a change from an asymmetrical to a symmetrical E/[A] curve (Figure 4).

First we considered whether the asymmetrical curve shape could be due to factors other

than agonist-dependent, differential activation of multiple α1-adrenoceptors. Differential

agonist uptake and activation of other receptor classes could produce complex agonist

curves and account for differences between agonists (see, for example, Van der Graaf et al

[32]). However, cocaine and timolol were present in all experiments to block Uptake1 and β-

adrenoceptors, respectively, and Uptake2 does not appear to play a significant role in the rat

aorta assay [10]. Furthermore, the endothelium was always removed and we failed to expose

a vasodilator effect of noradrenaline in the presence of α1-adrenoceptor blockade (Figure 5).

We have also considered the possibility that the calibration of tissues with 1 µM

phenylephrine influenced the E/[A] curve shape. However, when the phenylephrine calibration

was omitted, noradrenaline and phenylephrine E/[A] curves were still best described by the

Gompertz model with parameter estimates that were indistinguishable from the ones

obtained from the experiments in which tissues were exposed to phenylephrine (data not

shown).
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Although it has been our experience that single-receptor systems often produce E/[A]

curves that appear to be indistinguishable from logistic functions, the observed asymmetry by

itself does not necessarily imply heterogeneity of α1-adrenoceptors in rat aorta. First, Black et

al. [33] have shown that non-logistic E/[A] curves are predicted even when receptor

occupancy is described by a rectangular hyperbolic function and the relation between

occupancy and effect is assumed to be logistic. However, under these conditions the degree

of asymmetry is predicted to be inversely related to agonist efficacy and deviations from the

logistic model will only be experimentally detectable in the case of low-efficacy ligands [34].

However, in this study, the reduction of agonist efficacy by irreversible α1-adrenoceptor

blockade with PBZ [35-38] produced the opposite effect. Thus, the noradrenaline E/[A] curves

were asymmetrical in control tissues but became symmetrical after PBZ treatment.

Another explanation for the data would be heterogeneity of post-receptor events. For

example, Ruffolo and coworkers [39-43] have suggested that the rat aorta α1-adrenoceptor is

coupled to two signal transduction pathways; one coupled to the influx of extracellular Ca2+

and the other to intracellular release of Ca2+. Furthermore, it has been proposed that α1-

adrenoceptors in rat aorta are coupled to more than one type of G-protein [44,45]. However,

although mathematical models of promiscuous coupling of a single receptor to multiple

transduction processes predict multi phasic E/[A] curves [39,46], they cannot account for the

steepening of the noradrenaline and phenylephrine E/[A] curves by competitive α1-

adrenoceptor antagonists observed in our previous study [10]. We have shown that the

antagonist-induced curve steepening can be accounted for by a two-receptor/one-inducer

model [10], but the possibility that multiple transducers also play a role cannot be excluded.

Overall, therefore, our analysis of E/[A] curve shape demonstrates that the behaviour of α1-

adrenoceptor agonists in rat aorta is not consistent with expectations for a simple action at a

single-receptor/single-transducer system. The agonists used in this study are known to

display a significant degree of variation in their selectivity for α1-adrenoceptor subtypes [22]

and it was possible that this would be mirrored in differences between E/[A] curve shapes.

Although all agonists produced asymmetrical E/[A] curves, comparison of the fits suggests

that they do not interact in a similar manner with the α1-adrenoceptors in aorta. First, for seven

of the eight agonist E/[A] profiles the asymmetry parameter estimate (δ) tended to zero and

the Richards model could be replaced by the less complex Gompertz model in these cases

without loss of goodness-of-fit (Table I). However, in the case of ST 587 the estimate of δ
(1.70) was significantly greater than zero and the Gompertz model did not provide an

adequate alternative for the Richards model (Table I). Thus, the analysis distinguishes the

behaviour of ST 587 from that of the other ligands which suggests a different receptor-

subtype selectivity. It is not clear whether this is related to the fact that ST 587 also displayed

the lowest intrinsic activity (Table I). It should be noted that although the δ estimate was not

significantly different from unity, the goodness-of-fit obtained with the logistic model was

significantly lower than that obtained with the Richards model (Table I). A second indication of

differences in agonist action is given by the finding that the slope parameter estimates (p) for

the two catecholamines, noradrenaline and phenylephrine, were markedly lower than those for
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the other agonists (Table I). Since phenylephrine displayed practically the same intrinsic

activity as methoxamine and cirazoline (Table I), this ligand-dependency of E/[A] curve

steepness cannot be simply explained by a difference in the overall efficiency of signal

transduction.

An unexpected finding of this study was that asymmetrical noradrenaline E/[A] curves

became symmetrical after prolonged PBZ treatment. An explanation for this observation

would be that a sub-population of α1-adrenoceptors in aorta display greater sensitivity to

alkylation by PBZ than others and that an essentially homogeneous population of PBZ-

resistant receptors mediates contraction to noradrenaline after the pretreatment. As far as we

are aware, PBZ has not yet been demonstrated clearly to display selectivity between the

known α1-adrenoceptor subtypes and it is therefore difficult to interpret this result in terms of

the currently accepted classification of α1-adrenoceptors [2]. It is generally agreed that α1D-

adrenoceptors play an important role in mediating contraction to noradrenaline and other α1-

adrenoceptor agonists in rat aorta [2,10,16-20,47]. To determine which other receptors might

be involved, we compared agonist intrinsic activities estimated in the present study for

contractile responses in rat aorta (Table I) with those published by Minneman et al. [22] for

[3H]inositol phosphate formation by cloned α1-adrenoceptor subtypes. Figure 6 shows that

oxymetazoline, indanidine and ST 587 were reported to be devoid of efficacy in the rat cloned

α1D-adrenoceptor assay but produced significant contraction of rat aorta. These differences in

agonist activity cannot be explained simply by between-assay differences in receptor

concentration and/or efficiency of coupling, because SK&F 89748-A produced ~80% of the

noradrenaline maximum response at the cloned α1D-adrenoceptor but displayed practically

the same intrinsic activity as oxymetazoline and indanidine in aorta (Figure 6). Thus, if it is

assumed that the α1D-adrenoceptor is present aorta, the involvement of at least one other

receptor is required to explain the responses to oxymetazoline, indanidine and ST 587. Since

oxymetazoline, indanidine and ST 587 have been shown to express efficacy only at the

cloned α1A- and not at theα1B- and α1D-subtypes [22,48], it appears that α1D- and α1A-

adrenoceptors operate in rat aorta. This conclusion is in agreement with that reached by

Fagura et al. [20]. However, it is not possible to rule out the involvement of other α1-

adrenoceptor subtypes. For example, very recently Muramatsu et al. [47] have suggested that

oxymetazoline mediates contraction of rat aorta through the α1B-subtype. Moreover, several

studies have detected mRNA for all three cloned α1A-adrenoceptors in rat aorta [49-52].
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Figure 6. Relation between the intrinsic activity of noradrenaline (F), phenylephrine (�), methoxamine (G),

oxymetazoline (∇), cirazoline (M), indaninine (ñ), ST 587 (ï) and SK&F 89748-A (O) for contractile responses

in rat aorta (present study) and for [3H]inositol phosphate formation by the rat cloned α1D-adrenoceptor

expressed in human embryonic kidney 293 cells [22]. Intrinsic activity is expressed as percentage of the

intrinsic activity of noradrenaline. The dashed line represents the line of identity.

Traditionally, analysis of E/[A] curves has focused on estimation of the location parameter

and upper asymptote to describe agonist potency and intrinsic activity, respectively. More

recently, it has been demonstrated that estimates of midpoint slope parameters obtained by

fitting E/[A] curves to the Hill/logistic equation can also provide critical information for

quantitative interpretation of drug-receptor interactions [10,33,53-55]. In this study, we have

found that quantitative descriptors of the degree of symmetry of E/[A] curves can also

contribute to pharmacological analysis. Thus, the analysis developed provides a quantitative

and sensitive measure of asymmetry that cannot be obtained with the standard Hill/logistic

equation and should be generally applicable for the objective discrimination of agonist action

on the basis of their E/[A] shape in other assay systems.
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Appendix

The following NMTRAN-syntax was used for the estimation of the Richards model

parameters:

$PROB RICHARDS MODEL: CIRAZ: method=1 R_CIRAZ
$INPUT A E=DV ID
$DATA CIRAZ.DAT
$PRED
 LA = LOG10(A)
 PEC50 = THETA(1)*EXP(ETA(1))
 P = THETA(2)*EXP(ETA(2))
 ALPHA = THETA(3)*EXP(ETA(3))
 ASY = THETA(4)
 L = LA+PEC50
 LL = L*P
 DEN1 = EXP(-2.3026*LL)
 DEN2 = 1 + (ASY*DEN1)
 DEN3 = DEN2**(1/ASY)
 IF (DEN3.EQ.0) EXIT 1 20
 F = ALPHA/DEN3
 IPRE = F
 Y = F+EPS(1)
$THETA  7.4 0.8  120 (0.00001,0.5,4)
$OMEGA  1 .1 .1
$SIGMA 15
$EST MAXEVAL = 2000 PRINT=4 METHOD=1 POSTHOC NOABORT
$COV
$TABLE ID LA E PEC50 P ALPHA ASY IPRE FILE=R_CIRAZ.DAT NOHEADER NOPRINT
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The following NMTRAN-syntax was used for the estimation of the logistic model parameters:

$PROB LOGISTIC MODEL: CIRAZ: method=1 L_CIRAZ
$INPUT A E=DV ID
$DATA CIRAZ.DAT
$PRED
 LA = LOG10(A)
 PEC50 = THETA(1)*EXP(ETA(1))
 P = THETA(2)*EXP(ETA(2))
 ALPHA = THETA(3)*EXP(ETA(3))
 L = LA+PEC50
 LL = L*P
 DEN1 = EXP(-2.3026*LL)
 DEN2 = 1 + DEN1
 IF (DEN2.EQ.0) EXIT 1 20
 F = ALPHA/DEN2
 IPRE = F
 Y = F+EPS(1)
$THETA  7 0.8  120
$OMEGA  1 .1 .1
$SIGMA 5
$EST MAXEVAL = 2000 PRINT=4 METHOD=1 POSTHOC NOABORT
$COV
$TABLE ID LA E PEC50 P ALPHA IPRE FILE=L_CIRAZ.DAT NOHEADER NOPRINT

The following NMTRAN-syntax was used for the estimation of the Gompertz model

parameters:

$PROB GOMPERTZ MODEL: CIRAZ: method=1 G_CIRAZ
$INPUT A E=DV ID
$DATA CIRAZ.DAT
$PRED
 LA = LOG10(A)
 PEC50 = THETA(1)*EXP(ETA(1))
 P = THETA(2)*EXP(ETA(2))
 ALPHA = THETA(3)*EXP(ETA(3))
 L = LA+PEC50
 LL = L*P
 DEN1 = -1*EXP(-2.3026*LL)
 F = ALPHA*EXP(DEN1)      
 IPRE = F
 Y = F+EPS(1)
$THETA  7.8 0.84  123
$OMEGA  1 1 .1
$SIGMA 13
$EST MAXEVAL = 2000 PRINT=4 METHOD=1 POSTHOC NOABORT
$COV
$TABLE ID LA E PEC50 P ALPHA IPRE FILE=G_CIRAZ.DAT NOHEADER NOPRINT
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Chapter 7

Summary and conclusions

Introduction

This thesis deals with the analysis of repeated measurement data in the field of clinical

pharmacology. The repeated assessment in time of subjects under different conditions or

treatments introduces a complex structure in the data that may be handled in a number of

ways. If interest lies in describing and quantifying the outcome of a study, then often simple

summary measures suffice. If the results are meant for extrapolation or for generalisation or

for increasing understanding of underlying mechanisms, then mathematical models must be

used that allow the data to be placed in a larger knowledge framework.

The preface describes the organisation of the thesis and the first chapter provides a

general introduction into analysis methods for continuous repeated measurements. The

subsequent chapters describe solutions to practical problems encountered during work at the

Centre for Human Drug Research. Several aspects are central to these solutions. First, they

aim to extract the maximum amount of information from the data. Second, they deal with

identifiability, i.e. whether it is possible to correctly identify certain aspects of the data like

treatment response profiles, parameter values or competing models. Third, they provide

solutions to the problem of how to deal with missing information on at least some of the

individuals.
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Maximal information extraction, solving identifiability issues and dealing with missing

information often require the combining of information over all subjects. The statistical

technique of mixed effect modelling is best suited for this purpose and is applied in most

chapters. Linear mixed effect modelling is explained in chapter 2 while chapter 3 deals with

the nonlinear version. Mixed effect modelling capitalises on the notion that all subjects are

different but have much in common at the same time. Instead of estimating parameters for

each subject, average parameters and inter-individual variability estimates are generated.

This allows the sharing of information across subjects where missing information of some is

supplemented by available information of others.

Although simple summary measures may be preferable for presentation of basic trial

outcomes, this thesis shows that models are useful for increasing the understanding of the

data. The techniques to analyse the repeated measurement data properly in these situations

are investigated and made practically accessible.

Chapter 1; overview of methods

The first chapter provides an overview of available methods for the analysis of continuous

repeated measurement data.

The most straightforward way to handle repeated measures data is to identify key aspects

of the profiles and use these for comparisons. Calculation of these summary characteristics

effectively eliminates the repeated measures nature of the data because the sequence of

measurements is transformed into a single value. This makes subsequent treatment

comparison straightforward because standard statistical tests like the Student's t-test or

analysis of variance are usually adequate.

Various model-independent and model-dependent measures are discussed. Model-

independent methods are generally best suited to describe study outcome and provide an

effective means of compressing the data into easily interpretable characteristics. Examples

are measures describing size and time of maximal effect (Cmax and Tmax), average effect

(using means and weighted means in the form of areas under the curve) and time of onset

and duration of effect.

Model-dependent methods allow the placing of study results in a larger conceptual

framework. If models are available or can be developed that are consistent with the data, then

additional and often more general information may be extracted from the data. Well known

examples are pharmacokinetic models that describe drug behaviour in terms of useful

parameters like volumes, clearances and half-lives. By combining concentrations with effects,

parameters related to the time-course, potency and efficacy of the drug may be determined.
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Use of summary measures is preferable if allowed by the data. However, if (some of the)

individuals provide insufficient information to adequately define the summary measures or if

individuals supply estimates with highly different accuracy, then more complex statistical

techniques will have to be used. The statistical class of mixed effects models are most useful

in this regard. Instead of estimating individual parameters for each subject, the entire data set

is analysed collectively but only averages and inter-individual variability of the parameters are

estimated. Each individual supplies information according to its relative accuracy. This allows

information to be transferred from the individual to the population. Empirical Bayes estimates

subsequently allow the population information to be transferred back to the individual by

estimating individual parameters conditional on the previously obtained population

information.

Chapter 2; linear mixed effect models

Lacking an underlying (mechanistic) model to describe the effect profile over time, a plausible

assumption may be that each subject has a curve of the same shape but differs from the other

subjects by a constant (individual-specific) shift over the entire profile:

Repeated measures analysis of variance (ANOVA) is an appropriate technique to handle

these situations. If, however, even a single measurement is missing, the ANOVA model

becomes inestimable and the overall treatment profile cannot be identified.

Information on the missing measurements may be borrowed from the remaining subjects

by assuming that the missing part for the individual is similar in shape to the other curves with

a shift specific to that particular individual.

Chapter 2 provides the background to the analysis techniques for complete data in this

situation and compares two methods that provide a solution to the missing data problem.

Implementation using standard software is described.

The first method simply fills in (imputes) the best estimate for the missing measurement,

subsequently followed by a standard repeated measures ANOVA. The second method uses

the linear mixed effect model, estimated using restricted maximum likelihood instead of least
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squares (the usual ANOVA approach). This allows the model to be fitted to the data even

when there are missing measurements. The standard method of significance testing for the

mixed effect model is based on large sample arguments which means that the test results are

correct if based on an infinite number of measurements. How well this approximation works in

practice is unknown.

Simulation results for the two methods are presented in chapter 2. They show that

imputation (the first method) leads to falsely rejecting the null hypothesis too often if the

number of missing measurements increases. Standard significance testing for the second

method also leads to falsely rejecting the null hypothesis too often, which, however, does not

seem to be influenced by the amount of missing data. A general small sample correction is

proposed and investigated for the second method, leading to adequate type I errors for the

simulated design.

If the assumption of similar profiles is justified, then not only completely random missing

measurements may be dealt with, but also more elaborate missing data mechanisms. In an

analgesia trial for instance, subjects may be allowed to take escape medication if relief is

inadequate after a certain amount of time. This means that pain scores after intake of escape

medication will be missing. These missing scores, if they had been present, would probably

have been higher than the remaining measurements because they are associated with lack of

relief. On theoretical grounds, restricted maximum likelihood methodology may still be used to

estimate the overall profile under the different treatments even with these missing

measurements, if the basic assumptions hold. This would not be possible using simple

techniques because the missing measurements would be associated with high pain scores.

Averaging the remaining available measurements would result in overestimating the effect of

the treatment. This is illustrated with the following graph from a trial investigating the analgesic

effects of ibuprofen 200mg (ó), ketoprofen 25mg (ñ) and ketoprofen 50 mg (ê) compared

with placebo (é) [1]:
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The top line is the placebo response with the largest fraction of escape medication intake.

The solid lines give the averages of available cases while the dashed lines provide the linear

mixed effect model estimates.

The estimated placebo profile clearly shows that the linear mixed effect model can

generate an overall treatment profile that would be expected with the drop out mechanism

associated with intake of escape medication. The use of an adequate model makes the

identification of the treatment profile possible in the presence of missing data. Basic methods

would have failed and analysis would necessarily be restricted to the time points with

complete data.

Chapter 3; nonlinear mixed effect models

In the practice of clinical pharmacology, mechanistic models are often available to describe

the time course of concentrations or effects. The parameters associated with these models

are typically estimated using nonlinear regression. Essential pieces of information may,

however, be missing for at least some subjects resulting in the inability to identify the model

parameters. In these cases, a solution could be to leave the model behind and revert to a

more basic presentation of the results. However, if information is combined over subjects

using an appropriate statistical technique then parameters may become identifiable after all.

Chapter 3 provides an introduction into the background and use of nonlinear mixed effect

models. At the basis lies the deterministic mathematical model describing the profile for a

single individual. The link to the actual data is provided by the intra-individual error model that

quantifies the deviations between measurements and predictions. All subjects can be

estimated simultaneously because the individual subject-specific model parameters are not

estimated themselves but rather the population parameters (the mean and variance) of their

common distribution. The gain can be illustrated with a study of twenty subjects; if a nonlinear

mixed effect model is used then for each model parameter only two population estimates

need to be obtained (a mean and a variance) instead of the original twenty individual

estimates.

If a subject's profile is incomplete, it can still contribute some information to the overall

population parameter estimates. By combining the population information with the individual

data, so-called empirical Bayes estimates for each individual can be obtained. If an individual

supplies little information, the rest is obtained from the population. This mechanism allows

information to be transferred from the population to subjects with incomplete profiles.

An illustration is provided by the first example of chapter 3. In a rising dose study, the

terminal part of the curves associated with the initial low doses crosses the detection limit of

the assay. This results in an unidentifiable terminal half-life for the low doses. By estimating all

doses simultaneously using nonlinear mixed effect modelling, information on the terminal part

of the curve that is available for the higher doses may be transferred to the lower doses:
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If individual-based methods had been used, the low doses would have been associated with

a higher clearance estimate than the high doses because the available information would

suggest a smaller area under the curve and a shorter terminal half-life. This could be

interpreted as nonlinear pharmacokinetic behaviour that could be of major concern in the

development of the drug. However, the dependence of clearance on administered dose can

be directly tested in the nonlinear mixed effects model, and no significant relationship is

found. This means that the data at this point do not provide an indication of nonlinear

pharmacokinetics.

Chapter 3 presents three examples that present parameter identifiability problems where a

solution is implemented using nonlinear mixed effect modelling. The first is the previously

discussed rising dose study. The second deals with pharmacokinetic parameter estimation of

heparin-like substances using what is a pharmacodynamic effect measurement, the anti-Xa

activity. As a small amount of anti-Xa activity may be present in the absence of drug,

estimation of the terminal part of the curve is often hampered by lingering low activity. By

subtraction of non-zero pre-values, the data may all be described by a two-compartment

model using nonlinear mixed effect modelling. This solution is analogous to the first example.

In the initial publication [2], some curves required a two-compartment model, some were

sufficiently described using a one-compartment model and some could not be estimated at

all. This illustrates the power of being able to assume a common model for all individuals and

subsequently identifying the associated parameters even if the individuals do not provide

enough information to allow individual parameter estimation.

An alternative solution to the second example is presented by assuming constant presence

of low basal activity. This basal activity is added onto the pharmacokinetic model as a 

parameter to be estimated. With this solution and using the original data (without pre-value

subtraction), a one-compartment model suffices. Interestingly, the two models generate a

three-fold difference in clearance estimates; two compartments: 9.44ml/min and one

compartment: 32.7 ml/min. Because the two models represent a basically different view, the

data themselves cannot be used to determine which of the two models and clearance

estimates is correct. This illustrates the point that the model that is used may heavily influence

the results, and that additional experiments may be required to provide the final answer. In this

case, a multiple dose study will clearly indicate which clearance estimate is best because the
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predicted steady state levels differ three-fold for the two models.

In the third example, pharmacokinetics and pharmacodynamics of heparin-like substances

are simultaneously estimated after both intravenous and subcutaneous administration. The

model contains so many parameters that accurate estimation requires the combining of

information over all individuals. Because both intravenous and subcutaneous information is

available, reliable estimates of absorption half-life and bioavailability can be computed.

Additionally, the relationship between anti-Xa activity and a general coagulation parameter

(the APTT) is estimated.

The examples from chapter 3 illustrate that parameters may be obtained for situations that

were formerly thought to be inaccessible to modelling. This approach requires the conviction

that all individuals are similar. The same structural model should apply to all subjects, and in

the absence of sufficient information, the best parameter estimates for the individual are

those that are similar to the estimates of the other subjects. This approach may hide true

differences between subjects and may give the appearance of more homogeneity than is

actually present. Estimates obtained using nonlinear mixed effect modelling may be the best

estimates currently known but they rely heavily on the adequacy of underlying assumptions

regarding the structural model and the distribution of the parameters. They can, therefore,

never replace the need for well-designed, data-rich studies.

Chapter 4; identifying clearance profiles

The clearance of drugs that are rapidly and extensively removed by the liver depends on the

rate of blood flow through the liver. Measuring the clearance of such a drug can, therefore,

provide an indication of the rate of liver blood flow. If the marker drug is infused continuously,

repeated sampling will provide insight into the effect on the marker concentration of clearance

changes over time. Chapter 4 deals with the translation of the observed time-concentration

profile into the underlying clearance profile. By introducing assumptions about the physiology

of the clearance mechanism, this clearance profile may then be translated into a liver blood

flow profile. Three different approaches are investigated.

The first approach is only applicable for drugs with single-compartment pharmacokinetics

and uses simple estimates of concentration-change to obtain clearance estimates for each

time point. Alternative clearance estimates may be obtained using a second nonlinear

regression approach, if consecutive periods with constant clearance are assumed. The

marker indocyanine green is used to identify the effect of heavy exercise on clearance and

liver blood flow using these two techniques. The following graph (left panel) presents

measured ICG concentrations (mean"SD) and the estimated average profile using the

second nonlinear regression approach:
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The right panel presents the clearance estimates for each time point (mean±SD) using the

first approach and the estimated average clearance profile using the second approach.

The third approach is necessary for drugs with two-compartment pharmacokinetics and

requires a parametric description of the clearance profile. Nonlinear regression techniques

using the differential equations that define the behaviour of the marker concentration can be

used to identify the underlying clearance profile, but only if the basic mathematical form of this

clearance profile is given. The regression analysis then provides parameter estimates that

define the ultimate shape of the profile. This last approach clearly requires most assumptions

that may heavily influence the final parameter estimates.

A range of different profiles may be tested to see which are unlikely and which remain as

reasonable options. In this case, sorbitol was used as marker compound and two different

intervening drugs with documented effects on liver blood flow (somatostatin and octreotide)

were infused in a stepwise manner.

The following graph presents the sorbitol concentrations for the different treatments:

octreotide (é), somatostatin (F) and placebo (G). The constant rate sorbitol infusion was

preceded by a bolus loading dose and ended at 170 minutes, octreotide and somatostatin

infusions started at 50min, doubled in rate at 65min and ended at 80 min:

Simple proportionality between intervening expected drug concentrations and changes in
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sorbitol clearance could not explain the observed concentration profile. Although the return to

a baseline state may be explained by reported half-lives for the intervening drugs, the onset of

effect was much more rapid. Although the rate of infusion of somatostatin and octreotide was

doubled after 15 minutes, this had very little additional influence on the clearance of sorbitol.

This result is corroborated by flows measured in a portal branch using echo-Doppler

techniques. The smooth lines in the previous graph provide the average predicted profile for

the final model.

The identifiability of the clearance and flow profile and the degree to which information may

be extracted from the concentration profile depends to a large extent on the plausibility of the

assumptions. The approaches in chapter 4 progress from relatively few to quite a large

number of assumptions. While allowing more information to be extracted this also introduces

more information in the form of assumptions that may be hard to verify. As always, a balance

must be struck and the degree to which the assumptions influence the final statements must

be investigated.
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Chapter 5; comparing incomplete concentration-effect curves

Parameter identification may be difficult in situations where insufficient information is

available. Instead of borrowing missing information from other subjects (as in chapters 2 and

3), chapter 5 focuses on means extracting relevant information by re-writing the parameters in

the mathematical model.

The Emax model is one of the most widely applied mathematical models to describe the

relationship between drug concentrations and effects. The most important model parameters,

Emax and EC50 can only be determined with reasonable precision if the observed data shows

asymptotic behaviour consistent with approaching Emax. If this is not the case then a wide

range of values may be used to describe the same curve. If only a small initial part of the Emax

curve is available then ordinary linear regression could be used to estimate drug sensitivity.

However, if more of the curve becomes available, the estimated straight line will tend to flatten

out as illustrated in the next graph:

This means that a simple straight line provides an unacceptable solution. If the Emax model

is used in the situation as described in the above graph, then Emax and EC50 are very poorly

estimated, as shown in the left hand panels. The ratio of Emax to EC50 is much less variable

however, even in the severely truncated curves. This ratio is equal to the slope of the tangent

to the Emax curve at zero concentration and is almost equal to the slope of the straight line

fitted to concentration-effect data that have their maximum far below EC50:
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By rewriting the Emax equation in terms of Emax and S0 (which equals the ratio of Emax to EC50)

both situations with incomplete curves and with full curves can be described.

When comparing drugs or when comparing different doses of the same drug, often only a

fraction of the entire Emax curve is covered by the data. Simulations in chapter 5 indicate that

in these cases, use of S0 as a measure of drug-sensitivity is superior to the use of EC50,

being estimated with far greater precision. Five levels of truncation were simulated with 100

curves each. The level of truncation is indicated by the maximum concentration reached, as a

percentage of EC50. The following graph presents the result for the S0 and EC50 estimates of

one of eight simulations; the box encompasses 50% of the estimates, the whiskers indicate

the 5% and 95% percentile of the estimates, and the median is represented by the horizontal

line in the box:

The S0 parameter is even superior to EC50 when the curve approaches 100% Emax, making it

a sensible alternative parameter in any situation.

Two examples in chapter 5 illustrate the use of the S0 parameter to identify changes in

sensitivity in a rising dose design and to detect differences in sensitivity between a new drug

and an active comparator. The examples are from two rising dose studies [3,4] that

investigate the sedative effects of new benzodiazepines compared to midazolam. The drugs

were infused over 20 minutes or until conscious sedation was reached.

In the original publications, differences in sensitivity between the new drug and midazolam

had to be compared on the basis of the plasma concentrations measured at the point of

reaching conscious sedation. This meant that only the high dose levels could be used and

comparison was based on only a single point on the concentration-effect curve. Average and

individual concentration-effect graphs for one of the drugs (Ro 48-8684) suggested a

decrease in sensitivity with increasing dose, which could not be tested formally.

Reanalysis of the studies (described in chapter 5) using the S0 concept indicated a

significant 58% decrease in S0 and therefore in sensitivity (95%CI: 7.5%/81%) when the 1mg

dose of Ro 48-8684 was compared to the 10mg dose. This was not detected for Ro 48-6791

(decrease: 41%; 95%CI: !215%/84%). Both drugs were more potent than midazolam;

midazolam sensitivity was 50% lower (95%CI: 5.6%/74%) when compared to Ro 48-8684

and 93% lower (95%CI: 76%/98%) when compared to Ro 48-6791.
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Use of S0 enables quantification and comparison of sensitivity to drug effects where only a

qualitative comparison was possible using basic methods.

Chapter 6; model identification

Practice often dictates a choice between competing models. A simple model  may indicate a

systematic pattern in the deviations of observed from predicted values. Increase of model-

complexity generally results in a better description of the data but significance tests are

required to prove that the increase in explained variability is not due to chance alone.

If one model may be seen as a simplification or restriction of the other then likelihood ratio

tests may be used to test for significance. Using standard nonlinear regression this implies a

separate significance test for each individual. If the data set is analysed collectively using

nonlinear mixed effect modelling then a single model comparison may be performed for the

entire data set.

The logistic model is widely used in in-vitro pharmacology to describe the relationship

between the logarithm of the concentration and the effect. It is similar to the sigmoid Emax

model and one can be rewritten in terms of the other. Chapter 6 describes a class of drugs

(á1-adrenoceptor agonists) and their effect on rat-aorta segments. Small but consistent and

systematic deviations are seen when using the logistic model as illustrated in the next graph:

The right panel indicates the fit for an individual experiment and the left panel the average

("SD) fit for all experiments.
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An alternative model is suggested that is not symmetric like the logistic model. When the

data are fitted to this asymmetric Gompertz model, the deviations decrease as illustrated in

the next graph:

The Gompertz model cannot however be expressed as a (restricted) logistic model or vice

versa. The two competing models have the same number of parameters and for these

reasons likelihood ratio testing cannot be used to determine whether one model is

significantly better than the other. There is however a 'super model' (the Richards model)

which has both the logistic and the Gompertz as sub-models. The Richards model has very

poor parameter estimating properties. Parameter estimation for individuals separately is

practically impossible, but collective estimation using NONMEM allows adequate

determination of parameters and opens up the perspective of a single comparison of the sub-

models to the super-model. For most of the investigated drugs this resulted in an

indistinguishable fit for the Richards and the Gompertz model and a highly significant

difference between the logistic and the Richards model. This clearly indicates the superiority

of the Gompertz model.

The asymmetry in the concentration-effect curves is attributed to heterogeneity in the

receptor population. Interestingly, blocking a receptor sub-population results in a

concentration-effect curve that is better described using the logistic model than the Gompertz

model.

The use of a super model may be an exceptional solution to a model comparison problem

but often models can be seen as extensions of more basic models. One-compartment and

two-compartment pharmacokinetic models may be compared. Linear, Emax, and sigmoid

Emax concentration-effect model may be compared, and it is possible to test whether inclusion

of a hypothetical effect-compartment in pharmacokinetic/pharmacodynamic modelling results

in a significant improvement in fit. By using nonlinear mixed effect modelling in all these

cases, a single unambiguous statement may be issued regarding superiority of one model

over another.
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Conclusions

The classification of analysis methods for repeated measurement data can be made along

two axes. On the one axis there is the contrast between summary measures and analysis of

the entire data set as a whole. On the other axis there is the contrast between model-

independent and model-dependent methods.

As has been argued in chapter 1, the choice for summary measures is preferable if the

data support it. The fact that the remainder of the thesis is almost entirely devoted to analyses

of entire data sets as a whole, illustrates that this ideal situation is not always present.

Fortunately, statistical mixed effects models allow the extraction of characteristics from the

data in these less than ideal situations.

The need to deviate from simple summary measures is almost invariably dictated by the

absence of sufficient information for at least some of the individuals. This may be caused by

missing data (either by misfortune or by design) or by the incomplete characterisation of the

underlying process by the data. The main and motivating advantage for the use of mixed

effects models is the gathering of strength. The first step from individual to population comes

about by combining individual information of variable quality and accuracy into a single

population estimate. This way, all relevant available information (however limited) may be

used. In the second step, empirical Bayes estimates allow the transfer of population

information back to the individual, without ignoring the (possibly limited) information that is

present in the data for the individual. This movement from individual to population and back

allows the sharing of information between individuals, while providing the best possible

estimate for the population under investigation.

The choice between model-independent and model-dependent measures is largely

dictated by the objectives of the investigation and often a combination of both is used. The

split between the two methods is largely parallel to the distinction between 'confirm' and 'learn'

studies [5]. If a study is designed to confirm pre-existing notions, the type and size of the

response is often fairly well known. In this cases the test for presence or absence of

differences can be operationalised by pre-defining summary measures on the basis of which

decisions can be made. By keeping these measures as simple as possible, the discussion of

study outcome will be focussed on the objectives of the study, without being side-tracked by

discussions about the means of quantifying the study results.



127

If on the other hand the study is designed to learn rather than to confirm, this learning

process may be enhanced if a mathematical model can be found or developed that is

consistent with the data. Naturally, the results may be initially summarised by model-

independent summary measures, but by estimating the relevant model parameters it may be

easier to generalise the information obtained from the study. Estimation of pharmacokinetic

parameters for instance may allow the prediction of concentration profiles for input regimes

that were not initially studied.

By translating (qualitative) physiological information into a mathematical model, it becomes

possible to test whether what we think we know is supported by the data. Mathematical model

building is always an iterative process with a continuous going back and forth from the model

to the data. If model-building is successful then the language of mathematics is used to build

a structure for the knowledge about the process or system studied. Statistics links theory to

reality by providing a means of testing whether the mathematical construct is consistent with

the data as observed in the real world.

The field of clinical pharmacology is uniquely suited to the development of models for drug

action. By providing the methods to link concepts and ideas to real data, the statistician, with

one foot in the field of biology and medicine and the other in the field of mathematics and

statistics, will be a builder of bridges from theory to reality and back.
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Summary in Dutch;
Nederlandstalige samenvatting

Het modelleren van herhaalde metingen
binnen de klinische farmacologie;

van individu naar populatie en terug

Klinisch farmacologische experimenten onderzoeken het effect en concentratie-verloop van

geneesmiddelen bij de mens. In de praktijk betekent dit meestal dat op een aantal tijdstippen

na elkaar, bloed wordt afgenomen en maten voor de werkzaamheid van het geneesmiddel

worden bepaald. Zo zal voor een middel tegen hoge bloeddruk op vaste tijden een bloeddruk

meting herhaald worden. Dit leidt tot een reeks van metingen met bijbehorende tijdstippen.

De analyse van zo=n reeks van herhaalde metingen waarbij gebruik gemaakt wordt van

modellen, is het onderwerp van dit proefschrift.

Modellen geven een wiskundige beschrijving van de relatie tussen datgene wat gemeten

wordt zoals concentratie of effect, en datgene wat van invloed is op de hoogte van die meting

zoals tijdstip van afname of toegediende dosis. Een farmacokinetisch model bijvoorbeeld 

beschrijft een curve van geneesmiddel concentratie in de tijd, waarbij de vorm van de model

curve afhankelijk is van de waarde van zogenaamde model parameters. Met behulp van

regressie methoden wordt de waarde van de parameters zo gekozen dat de resulterende

curve het best past bij de gevonden metingen. De wiskunde onderscheidt lineaire en niet-

lineaire modellen waarbij de model parameters voor lineaire modellen het meest eenvoudig

te schatten zijn. Bij niet-lineaire modellen zijn geen simpele formules te geven om de best

passende model parameter te bepalen aan de hand van de metingen. Modellen die

ontwikkeld zijn op basis van ideeën over biologische werkingsmechanismen (en die

daardoor het meest interessant zijn) zijn bijna altijd niet-lineair.

De meest eenvoudige manier om herhaalde metingen te analyseren, is door de reeks

getallen terug te brengen tot één enkel getal dat een aspect van de reeks samenvat. Uit het

tijdsverloop van de bloeddruk kan bijvoorbeeld de gemiddelde bloeddruk of de laagst
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gemeten bloeddruk worden bepaald. Ook kan met behulp van een model de relatie

beschreven worden tussen geneesmiddel concentratie en bloeddruk daling. Eén van de

model parameters levert dan bijvoorbeeld een maat voor de werkzaamheid van het

geneesmiddel

Het grote voordeel van zo=n samenvattende maat is dat het herhaalde-metingen aspect

verdwijnt. Bij het onderzoeken van twee middelen tegen hoge bloeddruk hoeft men slechts

een enkel getal te vergelijken (de minimaal bereikte bloeddruk bijvoorbeeld) in plaats van de

complete reeks van metingen. De benodigde statistische methoden kunnen dan ook

eenvoudig blijven, wat deze techniek in de praktijk erg aantrekkelijk maakt.

Problemen ontstaan echter op het moment dat de reeks onvoldoende informatie bevat om

een redelijke schatting van zo=n samenvattende maat te maken. Als er bijvoorbeeld metingen

ontbreken is het niet goed mogelijk om een gemiddelde te bepalen. Een oplossing kan

verkregen worden als de ontbrekende informatie  aangevuld zou kunnen worden. Die

aanvulling kan komen van individuen die wèl een complete reeks metingen hebben.

De statistische methode van de mixed effect modelling leent zich bij uitstek voor het delen

van informatie tussen individuen. Niet langer wordt voor elk individu afzonderlijk een schatting

voor de samenvattende maat berekend, maar alle individuen worden tegelijkertijd in één

groot model geanalyseerd. Voor elke samenvattende maat wordt alleen een gemiddelde

voor alle individuen en een maat voor de verschillen tussen individuen berekend. Op deze

manier kan elk individu bijdragen aan het totaal, hoe beperkt de eigen bijdrage ook mag zijn.

Mixed effect modelling maakt de overdracht van informatie van individu naar populatie

mogelijk. De verkregen populatie-informatie kan vervolgens weer teruggebracht worden naar

de individuen door gebruik te maken van empirical Bayes estimates. Dit zijn schattingen

voor het individu, waarbij gebruik wordt gemaakt van de eerder verkregen populatie

informatie. Een samenvattende maat voor een individu met veel ontbrekende informatie

wordt dan voor een groot gedeelte bepaald door de populatie informatie. Een individu met

veel eigen informatie zal weinig hoeven te lenen. Op deze manier kan informatie effectief

gedeeld worden tussen de individuen.

Het is niet altijd nodig om modellen te gebruiken bij de analyse van herhaalde metingen.

De gemiddelde of minimale bloeddruk waarde is een voorbeeld van een zogenaamde

model-onafhankelijke maat. De model-onafhankelijke methoden die geen gebruik maken van

modellen, hebben als voordeel dat ze eenvoudiger zijn en gemakkelijker te begrijpen. Dit

maakt deze methoden in de praktijk aantrekkelijk.

Door wèl modellen te gebruiken kan meer informatie uit de data worden verkregen en

bestaat de mogelijkheid om de gegevens in een groter geheel te plaatsen. Met behulp van

een model-afhankelijke maat voor de werkzaamheid van een geneesmiddel, kan

bijvoorbeeld een voorspelling worden gegeven over het effect als de helft van de dosis wordt

gegeven. Tegelijkertijd kunnen problemen opgelost worden die te maken hebben met

onvolledige informatie bij een deel van de individuen; mixed effect modelling kan niet zonder

modellen.

Alle in het proefschrift beschreven oplossingen maken gebruik van modellen om zoveel
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mogelijk informatie uit de data te halen. Bijna alle oplossingen maken gebruik van mixed

effect modelling om problemen met onvoldoende informatie aan te pakken.

Hoofdstuk 1 geeft allereerst een overzicht van verschillende methoden voor de analyse van

herhaalde metingen. Vervolgens beschrijft dit proefschrift een aantal situaties waarin

modellen gebruikt zijn bij de analyse van herhaalde metingen. Praktische oplossingen worden

gegeven voor analyse problemen zoals die zich hebben voorgedaan op het Centre for Human

Drug Research.

Hoofdstuk 2 beschrijft de analyse van studies waarbij elke proefpersoon een aantal

behandelingen ondergaat en bij elke behandeling een aantal metingen worden gedaan. Bij

gebrek aan een geschikt model om de metingen te beschrijven kan gekeken worden naar het

gemiddelde effect op elk afzonderlijk tijdstip. Als deze gemiddelden grafisch uitgezet worden

tegen de bijbehorende tijdstippen kan het zo verkregen profiel een indruk geven van het effect

verloop in de tijd. Zo=n gemiddeld profiel kan volstaan, als de individuele profielen tenminste

voldoende op elkaar lijken.

Dit soort gegevens wordt vaak geanalyseerd met behulp van variantie analyse, maar

daarvoor mag geen enkele meting ontbreken. In hoofdstuk 2 worden twee oplossingen

onderzocht als er toch metingen ontbreken: het invullen van een passend getal op de open

plek, of het analyseren van de metingen gebruik makend van een linear mixed effect model.

Bij een goede statistische methode is van tevoren bekend hoe groot de kans is op de

onjuiste uitspraak dat de onderzochte maten verschillen terwijl ze dat in werkelijkheid niet

doen. Deze kans op een zogenaamde type I fout wordt meestal gesteld op 5%.

Beide in hoofdstuk 2 onderzochte methoden blijken een te grote kans te hebben op een

type I fout. De invulmethode wordt daarbij steeds slechter naarmate er meer data ontbreken.

Het linear mixed effect model geeft standaard een te grote kans op een type I fout,

onafhankelijk van de hoeveelheid ontbrekende gegevens. Het probleem met de invulmethode

valt niet gemakkelijk op te lossen, maar voor het linear mixed effect model wordt in hoofdstuk

2 een eenvoudige correctie voorgesteld. In het onderzochte geval leidt de correctie er toe dat

de kans op een type I fout weer de verwachte 5% wordt.
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Hoofdstuk 3 beschrijft een oplossing voor het bepalen van parameters van niet-lineaire

modellen als de individuen zelf te weinig informatie leveren om tot goede schattingen te

leiden. Door informatie te delen, gebruik makend van nonlinear mixed effect modelling,

kunnen de gegevens als één geheel worden gepresenteerd. Parameters kunnen geschat

worden waar dat voorheen onmogelijk was. In één van de voorbeelden worden kinetische

parameters berekend (zoals de halfwaardetijd) in een proefopzet waarbij opklimmende

doses van een nieuw geneesmiddel worden toegediend. Bij de lagere doseringen verdwijnt

het laatste gedeelte van de concentratie-tijd curve onder de detectie-limiet van de

bepalingsmethode. Hierdoor kan de laatste fase van de curve niet beschreven worden. Door

de informatie van hogere doseringen te gebruiken kunnen zinvolle parameter schattingen

worden verkregen. Bovendien is het mogelijk om te kijken of er aanwijzingen zijn of de

kinetiek afhangt van de toegediende dosis; bij geneesmiddel ontwikkeling zal men dat in een

zo vroeg mogelijk stadium willen weten.

Hoofdstuk 4 beschrijft kinetische methoden die een indruk kunnen geven van de snelheid

waarmee bloed door de lever stroomt. Dit is belangrijk omdat voor een aantal stoffen geldt

dat de snelheid waarmee ze uit het lichaam verdwijnen voornamelijk afhangt van de snelheid

waarmee ze aangeboden worden aan de lever. Door een continu infuus van zo=n stof aan te

leggen en op geregelde tijden monsters te nemen, kunnen de gevolgen van een verandering

in leverstroom-snelheid onderzocht worden. Bij een daling van de leverstroomsnelheid

(bijvoorbeeld doordat de proefpersoon moet fietsen) wordt de stof slechter verwijderd zodat

de concentratie stijgt. De gemeten concentraties lopen echter altijd achter bij de

veranderingen in stroomsnelheid omdat het even duurt voordat een nieuw evenwicht is

ingesteld.

Het vertalen van die concentraties in de onderliggende snelheden wordt beschreven voor

twee verschillende model stoffen: indocyanine groen (ICG) en sorbitol. Voor ICG gaat dat wat

eenvoudiger dan voor sorbitol, omdat de kinetische eigenschappen van ICG eenvoudiger

zijn. De methode is voor sorbitol dan wel ingewikkelder maar levert wel meer informatie op.

Niet alleen kan de mate van verandering in leverstroomsnelheid vastgesteld worden, ook de

absolute hoogte (in liter per minuut) kan nauwkeurig worden bepaald. ICG is eigenlijk alleen

geschikt voor het vaststellen van de mate van verandering, uitgedrukt als percentage daling of

stijging.
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Hoofdstuk 5 geeft een oplossing voor een veel voorkomend probleem bij het vastleggen

van de relatie tussen concentraties van geneesmiddelen en de tegelijkertijd gemeten

effecten. Vaak blijkt dat een verdubbeling in concentraties niet leidt tot een verdubbeling van

effecten omdat het effect aan een maximum is gebonden. Zo=n relatie tussen concentratie en

effect wordt vaak beschreven met het zogenaamde Emax model. Het blijkt in de praktijk dat

het maximum vaak bij lange na niet bereikt wordt, bijvoorbeeld omdat dit gepaard gaat met

allerlei ongewenste bijverschijnselen. De model parameters van het Emax model kunnen

echter alleen goed geschat worden als het maximum ook daadwerkelijk bereikt wordt. Vooral

de maat die de gevoeligheid van het effect karakteriseert (de EC50 die de concentratie geeft

waarop 50% van het maximale effect optreedt) is erg slecht te bepalen als maar een deel van

de curve aanwezig is.

Een oplossing wordt gegeven in hoofdstuk 5 door een alternatieve gevoeligheids-maat te

gebruiken. Deze nieuwe gevoeligheidsmaat (S0 gedoopt) geeft de steilheid van de curve bij

lage concentraties weer. Met behulp van deze S0 wordt de vorm van de concentratie-effect

relatie net zo goed beschreven als met de EC50. Maar de S0 kan veel nauwkeuriger bepaald

worden dan de EC50 bij curven die hun maximum bij lange na niet bereiken. Doordat

gevoeligheid nauwkeuriger vastgesteld kan worden, wordt het mogelijk om te onderzoeken of

die gevoeligheid voor een geneesmiddel verandert naarmate er meer van wordt toegediend.

Ook kan de gevoeligheid voor verschillende geneesmiddelen goed met elkaar vergeleken

worden.

Hoofdstuk 6 tot slot, beschrijft een oplossing voor het kiezen uit twee concurrerende

modellen. De relatie tussen concentraties en effecten in laboratorium-omstandigheden wordt

vaak beschreven met behulp van het zogenaamde logistische model. De door dit model

voorspelde curve is symmetrisch ten opzichte van de EC50. In de praktijk blijkt dat sommige

stoffen systematische afwijkingen ten opzichte van die symmetrische curven laten zien. Dit

zou een aanwijzing kunnen zijn voor de aanwezigheid van verschillende receptoren.

De asymmetrische curven lijken beter beschreven te worden met het zogenaamde

Gompertz model. Klassieke toetsingstheorie kan alleen modellen vergelijken waarbij het ene

model te herleiden is uit het andere model door sommige parameters constant te houden.

Het Gompertz en het logistische model lijken niet op elkaar en hebben bovendien allebei

evenveel parameters zodat de toetsingstheorieën niet toepasbaar zijn.

De oplossing ligt in een nieuw model dat beide oude modellen tot subtype heeft. Zo=n

model bestaat en heet het Richards model. De parameters van dit model zijn alleen erg

slecht te schatten. Door gebruik te maken van nonlinear mixed effect modelling kunnen toch

betrouwbare schattingen worden verkregen door de gegevens van de verschillende

experimenten te combineren.
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Het Gompertz model blijkt in bijna alle gevallen veel beter te passen. De enige

uitzondering vormt een experiment waarbij een deel van de receptorpopulatie uitgeschakeld

is. De overgang van een asymmetrische naar een symmetrische curve zou er op kunnen

wijzen dat er maar één type receptor is overgebleven.

De verschillende verhalen uit dit proefschrift laten zien dat door het gebruik van modellen

en het combineren van informatie, oplossingen kunnen worden gevonden voor belangrijke

analyse problemen in de (klinische) farmacologie. De statisticus levert daarbij het materiaal

om een brug te kunnen bouwen tussen de metingen en de (klinisch farmacologische) theorie.
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Nawoord
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