Effects of sodium channel blockers on "nerve excitability threshold tracking"

T.Q. Ruijs^{1,2}, J.A.A.C. Heuberger¹, I. Koopmans^{1,2}, M. de Kam¹, M. van Esdonk¹, G.J. Groeneveld^{1,2} ¹Centre for Human Drug Research, Leiden, The Netherlands ²Leiden University Medical Centre, The Netherlands

Introduction

Selective voltage gated sodium channel blockers are of growing interest as treatment for pain. For drug development of such

compounds, it would be critical to have a biomarker that can be used for proof-of-mechanism and dose selection for patient studies.

Aim

To evaluate whether drug-induced changes in sodium conductance can be detected using nerve excitability threshold tracking in 18 healthy subjects.

Methods

In a randomized, double-blind, three-way crossover study, effects of single oral doses of mexiletine and lacosamide were compared to placebo. On each study visit, motor- and sensory nerve excitability measurements of the median nerve were performed (pre-dose; 3- and 6-hours post-dose). Stimulation was guided by QTRAC-S. Treatment effects were calculated using an ANCOVA, with baseline as covariate. Fig. 1: Nerve excitability threshold tracking set-up.

Results

Mexiletine and lacosamide had significant effects on a multitude of motor- and sensory nerve excitability parameters. Including:

↓ TEd40-60ms (motor nerve) (*Fig. 2a*)
MEX: -1.37% (95%CI: -2.20, -0.55; p=0.002)
LAC: -1.27% (95%CI: -2.0968, -0.4430; p=0.004)

↑ Superexcitability (motor nerve) (*Fig. 2b*) MEX: 1.74% (95%CI: 0.61, 2.87; p=0.004) LAC: 1.47% (95%CI: 0.34, 2.60; p=0.013)

↓ Strength-duration time constant (sensory nerve) (*Fig. 2c*)
LAC: -0.08ms (95%CI: -0.12, -0.05; p<0.001)</p>

Conclusions

Mexiletine and lacosamide significantly decrease excitability of motor and sensory nerves, in line with their mechanism of action. This study shows that threshold tracking can be a sensitive biomarker in early phase pharmacological studies. The method would therefore be a valuable tool in drug development, to help identify target engagement in healthy subjects and possibly guide dose selection for patient studies.

-0.10 - 0 1 2 3 4 5 6 **Time (hours)**

Fig. 2: Change from baseline (CFB) effects of mexiletine, lacosamide and placebo on threshold tracking endpoints. SDTC = strenght duration time constant.

Centre for Human Drug Research | Zernikedreef 8 | 2333 CL Leiden | The Netherlands | Tel +31 71 52 46 400 | info@chdr.nl | www.chdr.nl